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Impairment of the nerve growth factor pathway 
driving amyloid accumulation in cholinergic neurons: 
the incipit of the Alzheimer’s disease story?

NGF Pathway Dysfunctions in Mild Cognitive 
Impairment and AD Neurodegeneration: 
Lessons from Human Studies and Animal 
Models
The basal forebrain cholinergic neurons (BFCN) provide 
the major cholinergic innervation to the hippocampus and 
neocortex, playing a role in cognition and attention behav-
iors through the release of the neurotransmitter acetylcho-
line. BFCN are located in the medial septum, diagonal band 
of Broca, nucleus basalis of meynert and striatum. They are 
found to be massively degenerated in late stages of sporadic 
Alzheimer’s disease (AD), one of the most diffuse and le-
thal disease of the elderly. However, in contrast with the so 
called “cholinergic hypothesis”, AD cannot be considered 
as a generalized brain cholinergic disease (Mesulam, 2004). 
Indeed, the cholinergic system undergoes only a mild re-

duction of synaptic density and a partial atrophy at the AD 
onset, while frank BFCN degeneration and death require 
more than a decade to appear (Mesulam, 2004). Functional 
BFCN synapses relay on continuous and activity-depen-
dent release of nerve growth factor (NGF) by cortical and 
hippocampal neurons (Iulita and Cuello, 2014). NGF binds 
to two classes of cell surface receptors localized at the 
BFCN terminals: the specific NGF receptor tyrosine kinase 
A (TrkA) and the common neurotrophic receptor p75NTR. 
The NGF signal is retrogradely conveyed from axons and 
dendrites toward the nucleus of BFCN, where it modulates 
cholinergic gene expression. The requirement of an active 
NGF/TrkA pathway in forebrain-related cognition is con-
firmed by the positive correlation between TrkA levels and 
Mini-Mental Status Examination scores. 

As mentioned above, a number of experimental results 
prompt the perturbation of the NGF pathway as an early 
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event in AD pathology. In fact, alterations of the NGF/TrkA 
signaling system correlate well, and even more robustly than 
the amyloid load, with cognitive deficits in MCI and in its 
progression toward AD. Moreover, single BFCN expression 
analysis indicates that TrkA mRNA is reduced in MCI, and 
suggests that decreased neurotrophin responsiveness may 
be an early AD biomarker (Mufson et al., 2012). Since the 
pro-apoptotic NGF precursor (proNGF) increases while 
TrkA levels diminish in the AD forebrain, it is conceiv-
able that degenerative pathways may override NGF-TrkA 
survival signals during pre-sympthomatic AD (Mufson et 
al., 2012). Further, experimental findings from animal and 
cellular models indicate that the impairment of the NGF 
signaling system may be a critical event in the manifestation 
of this pathology. Accordingly, in vitro NGF deprivation in 
PC12-derived and primary hippocampal neurons induces 

an “Alzheimer’s like molecular syndrome” with both amyloid 
and tau accumulation (Calissano et al., 2010). Moreover, 
antibody-mediated neutralization of NGF promotes the 
appearance of histopathological signs typical of AD, includ-
ing amyloid generation and neuronal deficits in the AD11 
mouse model (Ruberti et al., 2000). Thus, it would seem 
reasonable to antagonize basal forebrain dysfunctions in AD 
by exogenous NGF administration. In line with this, intrace-
rebral NGF supply has been found beneficial to cholinergic 
neurons and related behavior in rodents. In particular, nasal 
administration of NGF modulates secretases levels and re-
duces amyloid burden in APP/PS1 transgenic mice (Yang et 
al., 2014). Of note, NGF gene therapy has been attempted in 
a phase 1 clinical trial, which showed high tolerability and 
lack of side effects in AD patients. Also, the results of a 10 
years long study confirmed safety and efficacy of the NGF 

Figure 1 A schematic model illustrating amyloid precursor protein (APP) metabolism control by the nerve growth factor/tyrosine kinaseA 
NGF/TrkA signaling system in healthy basal forebrain cholinergic neurons (BFCN) (anti-amyloidogenic route, left), and the consequences of 
its perturbation in Alzheimer’s disease (amyloidogenic route, right).
Anti-amyloidogenic route. The NGF pathway is shown. Upon binding to its ligand NGF, TrkA trans-phosphorylation takes place, inducing TrkA 
phosphorylation at the tyrosine 490 (Y490) residue and TrkA docking of the signaling adaptor SH2 containing sequence C (ShcC). Once activated, 
ShcC inhibits c-Jun N-terminal kinase (JNK), a ser/thr APP kinase thus hindering the phosphorylation of APP at the threonine residue 668 (T668). 
Since TrkA is able to bind only APP molecules not phosphorylated at T668, the reduction of APPpT668 levels induced by NGF promotes 1) APP-Tr-
kA binding, 2) subsequent TrkA-mediated trafficking of APP to the Golgi compartment and to the plasmamembrane, and 3) preferential cleavage 
of APP by the neuronal alpha secretases 10–17 (ADAM10–17) through the physiological pathway.
Amyloidogenic route. Reduced availability of mature NGF, and/or expression levels of TrkA affect APP metabolism in BFCN. In fact, disturbances 
in the anti-amyloidogenic NGF/TrkA-ShcC signaling pathway grant the activation of JNK by pro-apoptotic signals, resulting in augmented APPpT668 
levels and disruption of APP interaction with TrkA in favor of beta secretase 1 (BACE1) binding and cleavage of APP along the amyloidogenic 
pathway. This is a schematic model of results reported in Triaca et al., 2016.
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therapy, and reported long lasting brain responsivity to NGF 
in terms of activation of functional markers, hypertrophy, 
and axonal sprouting (Tuszinsky et al., 2015). As less invasive 
alternatives to intracerebral stereotaxic NGF delivery, the 
NGF administration via the ocular or nasal routes has also 
been performed in rodents and promoted cholinergic system 
neuroprotection. All together, these findings underline the 
importance of a proper homeostatic regulation of the neu-
rotrophic pathway in the early phase AD and pinpoint the 
feasibility of NGF therapy, claiming the need for efficient, 
safe and long-lasting therapeutic approaches for the NGF 
treatment of AD.

Signaling and Molecular Mechanisms 
Responsible for the Regulation of APP 
Processing by the NGF/TrkA Pathway in the 
Basal Forebrain
Activity-dependent release of NGF from cortical and hippo-
campal neurons has been demonstrated to sustain the cho-
linergic tone on BFCN target neurons via the muscarinic re-
ceptors 1 (M1). NGF has been thought to maintain neuronal 
homeostasis and forebrain-related cognition mainly through 
this interplay. In fact, M1 activation induces the physio-
logical cleavage of APP to generate soluble APPα (sAPPα), 
which is neuroprotective per se, and it is also a potent inhib-
itor of the enzyme responsible for the amyloidogenic APP 
cleavage, the beta secretase 1 (BACE1). 

Whether NGF directly regulates APP metabolism in 
BFCN has not been investigated so far. Indeed, we recently 
demonstrated that the NGF signaling pathway is able to 
modulate APP processing in BFCN both in vitro and in vivo 
(Triaca et al., 2016). We showed that stimulation of primary 
cholinergic septal neurons with NGF promotes binding of 
the NGF receptor TrkA with APP and the preferential APP 
trafficking to the Golgi compartment, where APP binding to 
and cleavage by BACE1 is hampered. As a result, the levels of 
BACE-generated APP fragments, like soluble APP β (sAPPβ), 
C-terminal Fragment β (CTFβ) and beta amyloid (1–42), are 
strongly reduced. 

In particular, we observed that binding of TrkA to APP is 
facilitated by NGF through the reduction of APP phosphory-
lation at the threonine 668 (T668) residue of its cytosolic tail. 
In fact, co-localization and co-immunoprecipitation analyses 
showed that TrkA fails to bind APP molecules phosphorylat-
ed at T668 (APPpT668), suggesting that APP phosphorylation 
prevents APP binding to TrkA as already observed for an-
other APP interactor, namely Fe65. APP phosphorylation at 
T668 is a post-translational modification known to facilitate 
APP cleavage by BACE1 and amyloid generation, and it was 
proposed as target for AD therapy (Lee et al., 2003). Thus, 
NGF exerts its anti-amyloidogenic action by lowering the 
fraction of APPpT668 molecules, favoring TrkA-APP interac-
tion and the subsequent APP processing along the anti-amy-
loidogenic route.

The early downstream molecular players involved in the 
control of APP metabolism have also been investigated. 
Upon NGF binding, TrkA activation promotes the phos-
phorylation of the isoform C of the SH2 containing sequence 
(Shc), the early TrkA adaptor expressed in adult BFCN. 
Afterward, ShcC activation inhibits the p54 isoform of the 
c-Jun N-terminal kinase p54 (JNK), a well known ser/thr 
APP kinase, thus reducing APPpT668 levels, and promoting 
APP-TrkA binding (Figure 1).

The APP-TrkA interaction seems to have a pathological 
significance in AD. In fact, APP-TrkA interaction is spe-
cifically lost in AD affected tissues, like the hippocampus, 
while it seems to be preserved in the AD cerebellum, as well 
as in the hippocampus of patients affected by other neuro-
degenerative diseases, like Huntington’s disease. A deeper 
analysis of the APP-TrkA interaction in BFCN in vitro and 
in vivo by proximity ligation assay (PLA) and bimolecular 
fluorescence complementation (BiFC) is currently ongoing 
in our group.

Altogether, these findings suggest that the NGF system 
maintains amyloid levels within the physiological range in 
healthy BFCN by modulating APP processing by BACE1. 
Based on reduced TrkA and/or NGF levels observed in MCI 
and early AD, it is tempting to speculate that disturbances 
in attention and cognition may result from the perturbation 
of the NGF-TrkA-ShcC pathway in BFCN, inducing and/or 
contributing to synaptic deficits of their hippocampal and 
cortical target neurons.

Intraneuronal Amyloid Accumulation in 
BFCN during Mammalian Brain Ageing and 
Neurodegeneration: is Disrupted NGF 
Signaling the Culprit? 
It is well known that BFCN are more vulnerable to AD, as 
compared to those located in the cerebellum. Higher fore-
brain susceptibility to intraneuronal amyloid accumulation 
has been suggested to account for this difference. Intraneu-
ronal amyloid accumulation has been extensively demon-
strated to occur during brain ageing and in AD pathology in 
the BFCN of mice, monkeys and humans by the Geula Lab 
(Baker-Nigh et al., 2015). A substantial increase of intraneu-
ronal amyloid long before plaques formation has also been 
reported in 3xFAD transgenic mice (La Ferla et al., 2007). 
While intraneuronal amyloid is neuroprotective against 
oxidative stress at physiological levels (picomolar), higher 
concentrations have been reported to affect synaptic proteins 
content, spine density, and LTP. Therefore, intraneuronal 
amyloid accumulation has been prospected as a good predic-
tor of synaptic and neuronal loss (Bayer and Wirths, 2010). 
As elegantly demonstrated by LaFerla et al. (2007), the newly 
generated amyloid first appears inside neurons and after-
wards outside the cells, suggesting that intraneuronally gen-
erated amyloid can be released into the extracellular space 
causing plaque deposition in 3xFAD transgenic mice. Novel 
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findings from clinical examinations, amyloid imaging, and 
functional MRI provide evidence that not only neocortical 
regions, but also subcortical areas of the basal forebrain (e.g., 
striatum) show amyloid accumulation and neurodegener-
ation at the pre-symptomatic AD stage. Accordingly, early 
AD pathology is characterized by signs and symptoms of 
dysfunctional subcortical circuits (Shinohara et al., 2014). 
In line with this, the study of amyloid accumulation in the 
BFCN of mouse models lacking the mature NGF signaling 
will be instrumental in the pathological and molecular pro-
filing of the AD onset.

Perspective
Based on the relevance of NGF signaling in the physiological 
control of APP processing in the basal forebrain, it can be 
hypothesized that lack of neurotrophic support may boost 
amyloid generation and intracellular accumulation in BFCN, 
thus promoting the initial synaptic disturbances seen in MCI 
and early AD. Here, we prospect that upon NGF withdrawal 
cholinergic neurons may primarily contribute to AD pathol-
ogy and affect target neurons in the cortex and hippocampus 
by generating and releasing amyloid, possibly through the 
exosomal and/or synaptic routes. On the other hand, the 
newly generated amyloid is able to inhibit the endocytosis 
of the NGF/TrkA complex at the cholinergic terminals, in a 
negative feedback loop which settles the AD onset (Kim et 
al., 2016; Xu et al., 2016). Once age-related events (oxidative 
stress, astrogliosis, reduced amyloid clearance) occur, they 
compromise the brain buffering capacity and determine the 
overt neuronal loss of BFCN and their targets typical of late 
stage AD. 

The fine analysis of the spatio-temporal sequence of am-
yloid appearance in the AD brain will hopefully provide 
important insights into the pathological drivers of this dev-
astating neurodegenerative disease of the elderly, paving the 
way for novel targeted approaches in AD therapy. 
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