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Abstract: Skeletal muscle is the most abundant tissue in the body and is required for numerous
vital functions, including breathing and locomotion. Notably, deterioration of skeletal muscle
mass is also highly correlated to mortality in patients suffering from chronic diseases (e.g., cancer).
Numerous conditions can promote skeletal muscle wasting, including several chronic diseases, cancer
chemotherapy, aging, and prolonged inactivity. Although the mechanisms responsible for this loss of
muscle mass is multifactorial, mitochondrial dysfunction is predicted to be a major contributor to
muscle wasting in various conditions. This systematic review will highlight the biochemical pathways
that have been shown to link mitochondrial dysfunction to skeletal muscle wasting. Importantly,
we will discuss the experimental evidence that connects mitochondrial dysfunction to muscle wasting
in specific diseases (i.e., cancer and sepsis), aging, cancer chemotherapy, and prolonged muscle
inactivity (e.g., limb immobilization). Finally, in hopes of stimulating future research, we conclude
with a discussion of important future directions for research in the field of muscle wasting.

Keywords: oxidative stress; reactive oxygen species; muscle atrophy; calpain; protein synthesis; pro-
teolysis

1. Introduction

In healthy adults, skeletal muscles comprise 40%–50% of total body mass; muscles
provide several vital physiological functions and are required for both locomotion and
breathing. Notably, muscle fibers are also an endocrine organ and play a key role in glucose
homeostasis [1,2]. The loss of skeletal muscle mass due to disease or other conditions not
only reduces an individual’s quality of life but is also associated with increased morbidity
and mortality [3,4]. Numerous causes of skeletal muscle wasting exist, including disease
(e.g., cancer, sepsis, etc.), cancer chemotherapy (e.g., doxorubicin), aging, and extended
durations of muscle inactivity (e.g., limb immobilization). Although the regulation of
muscle mass is a multifactorial process, studies have identified common elements that con-
tribute to skeletal muscle atrophy across several diseases and conditions [5]. For example,
growing evidence suggests that mitochondrial dysfunction is a common denominator that
contributes to muscle loss during numerous diseases, aging, and prolonged periods of
inactivity. This review discusses the cell signaling pathways that connect mitochondrial
dysfunction and muscle wasting. Specifically, this report will debate the strength of the
experimental evidence that directly links mitochondrial dysfunction to muscle wasting in
response to prolonged inactivity, aging, chemotherapy agents (i.e., doxorubicin), and spe-
cific diseases (i.e., cancer and sepsis). We begin with an overview of the cellular events
leading to skeletal muscle atrophy.

Primer on Skeletal Muscle Wasting

Skeletal muscle mass is regulated by the balance of the rates of protein synthesis and
protein breakdown. A detailed discussion of the control of muscle protein synthesis and
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proteolysis is outside the scope of this review, and the reader is directed to comprehensive
reviews for more information [5–7]. Nonetheless, to provide context for readers new to
the field of skeletal muscle wasting, we provide a short summary of the key events that
regulate skeletal muscle mass.

Muscle protein synthesis is controlled by the complex interplay between transcription
and translational events [8]. While mRNA is an essential precursor for protein synthesis,
differences exist between the abundance of mRNA and their respective protein; indeed,
only 40% of cellular proteins are highly correlated with the abundance of the corresponding
mRNA [9,10]. This finding indicates that translational efficacy plays a major role in the
control of protein synthesis. While the majority of investigations have focused on the
importance of the Akt/mechanistic target of rapamycin (mTOR) pathway in the regula-
tion of protein synthesis, growing evidence reveals that muscle protein synthesis can be
regulated by mTOR independent mechanisms (reviewed in [11]). However, at present,
the components of the mTOR independent pathways responsible for the control of protein
synthesis remain unknown.

Increased mechanical load on skeletal muscle fibers promotes an increase in muscle
protein synthesis and results in fiber hypertrophy [11]. In contrast, prolonged muscle
inactivity and/or increased production of reactive oxygen species (ROS) in muscle fibers
depresses protein synthesis and fiber atrophy ensues [12–14]. The mechanism(s) to explain
oxidative stress-induced depression of muscle protein synthesis is hypothesized to result
from depressed anabolic signaling, leading to decreased translation [15].

Skeletal muscle protein degradation results from the coordinated action of four pro-
teolytic systems: (1) autophagy; (2) the ubiquitin–proteasome system; (3) calpains; and
(4) caspase-3. Numerous detailed reviews describing these proteolytic systems exist and,
therefore, only a short synopsis is provided to highlight the role that ROS play in stim-
ulating activation of specific proteases [5,7,15]. Briefly, autophagy is a highly regulated
lysosomal pathway for the degradation of organelles and select cytosolic proteins [7].
During autophagic protein breakdown, both organelles (e.g., mitochondria) and cytosolic
proteins are packaged into vesicles called autophagosomes; following formation, these vesi-
cles fuse with lysosomes and the autophagosome contents are degraded by lysosomal
proteases (i.e., cathepsins). In healthy muscle fibers, autophagy is a tightly controlled
proteolytic pathway [7]. However, increased production of ROS in cells accelerates au-
tophagic flux via the induction of autophagy, coupled with an increased expression of key
autophagy proteins [15,16].

The ubiquitin–proteasome system is comprised of a core proteasome subunit (20S)
that provides an enclosed cavity where proteins are degraded. This 20S subunit is coupled
with a regulatory complex (19S) connected to each end [17]. Collectively, the 20S subunit,
combined with the 19S regulatory complexes, forms the complete ubiquitin–proteasome
complex (labeled as the 26S proteasome). This 26S proteasome degrades proteins that have
been ubiquitinated by E3 ligases [17]. Notably, oxidized proteins can also be degraded by
the 20S proteasome without undergoing ubquitination [18]. Moreover, oxidative stress can
promote protein degradation in several other ways. For example, oxidants can stimulate
gene expression of key proteins within the ubiquitin proteasome system, including muscle
specific E3 ligases [15].

Calpains are calcium-activated proteases that selectively cleave target proteins [19,20].
Calpain activation occurs due to increased cytosolic levels of free calcium and oxidative
stress is an established trigger to promote disturbances in cellular calcium homeostasis [21].
Although 15 different calpains exist in humans, the two primary calpains that contribute
to skeletal muscle proteolysis are calpain 1 and calpain 2 [19]. Active calpains are re-
ported to cleave >100 proteins including cytoskeletal proteins (e.g., titin, nebulin), kinases,
phosphatases, and oxidized contractile proteins (i.e., actin and myosin) [19,22].

Caspase-3 is the fourth major proteolytic system found in muscle fibers. Caspase-3 can
be activated via several interrelated signaling processes and, similar to calpain, oxidative
stress is a prominent activator of caspase-3 [21]. Caspase-3 can cleave numerous muscle pro-
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teins, including actin and myosin complexes [22]. Moreover, oxidation of muscle contractile
proteins increases the susceptibility of these proteins to caspase-3 degradation [22].

To summarize, skeletal muscle mass is regulated by the interplay between the rates of
protein synthesis and rates of proteolysis. If follows that skeletal muscle atrophy occurs
when the rate of proteolysis exceeds the rate of protein synthesis. Although numerous
factors participate in the control of muscle protein synthesis and proteolysis, oxidative
stress is a common factor that contributes to muscle atrophy by depressing protein synthesis
and accelerating proteolysis [15]. While several sites of oxidant production exist in muscle
fibers, mitochondria dysfunction often results in increased ROS emission [23–27]. The next
section highlights the theory behind the postulate that mitochondrial dysfunction is an
essential contributor to muscle wasting.

2. Signaling Links between Mitochondrial Dysfunction and Skeletal Muscle Wasting

The earliest suggestion that mitochondrial dysfunction contributes to skeletal muscle
wasting was reported in 1964 [28]. This study documented that mitochondrial dysfunction
occurs prior to the appearance of muscle atrophy in denervation-induced muscle wasting;
however, no direct evidence was provided that mitochondrial dysfunction contributed to
muscle atrophy. Nonetheless, since the original postulate that mitochondrial dysfunction
contributes to muscle atrophy, numerous studies have documented signaling connections
between mitochondrial dysfunction and muscle wasting in a variety of wasting conditions.
This work has been summarized in several recent reviews [23–27] and, therefore, only a
synopsis is provided here.

2.1. Mitochondrial Signaling Leading to Skeletal Muscle Wasting: Premise

Mitochondrial dysfunction can contribute to skeletal muscle wasting in at least three
ways: (1) increased mitochondrial production of ROS; (2) mitochondrial release of proapop-
totic factors; and (3) mitochondrial damage resulting in a reduced production of ATP via
oxidative phosphorylation (Figure 1).
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Figure 1. Dysfunctional mitochondria display a disrupted morphology that appears swollen and fragmented compared
to healthy mitochondria. These alterations coincide with an impaired respiratory capacity (e.g., decreased mitochondrial
complex activity) that results in diminished ATP production, increased mitochondrial ROS emissions, and the release of
mitochondria-derived proapoptotic factors.
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The following examines increased mitochondrial ROS production. Numerous pre-
clinical studies provide evidence that increased mitochondrial ROS emission accompanies
muscle wasting in several conditions (e.g., disease, prolonged inactivity, etc.). For instance,
it is well established that prolonged skeletal muscle inactivity is associated with increased
mitochondrial ROS emissions [29–32]. Direct evidence also indicates that denervation-
induced skeletal muscle wasting is also accompanied by increased mitochondrial ROS
production [33]. Further, increases in mitochondrial ROS emissions are observed with
age-related loss of skeletal muscle mass (i.e., sarcopenia), cancer, and treatment with
doxorubicin (a chemotherapeutic drug) [30,34,35]. Together, these studies confirm that
increased mitochondrial ROS production accompanies the muscle wasting associated with
these conditions.

A chronic increase in mitochondrial ROS production can promote muscle wasting by
inhibiting muscle protein synthesis and accelerating proteolysis (Figure 2). As mentioned
earlier, oxidative stress can activate all four of the major proteolytic systems (reviewed
in [15,36]). Specifically, oxidative stress can elevate proteolysis in three independent ways.
First, oxidative stress often results in increased cytosolic free calcium, and elevated cytosolic
calcium can activate both calpains and caspase-3 [19,20,37,38]. Second, redox disturbances
can stimulate several transcriptional activators that promote expression of genes involved
in proteolysis (i.e., atrogenes) [39,40]. Finally, oxidative stress can also accelerate proteolysis
by oxidizing muscle proteins and increasing their susceptibility to proteolytic breakdown
by calpains, caspase-3, and the ubiquitin–proteasome system [18,22].
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In addition to accelerating proteolysis, oxidative stress can also contribute to muscle
wasting by depressing protein synthesis in skeletal muscle fibers. Indeed, numerous
studies conclude that exposure of cells to oxidants depresses protein synthesis [41–43].
This oxidative stress-induced depression of protein synthesis is postulated to occur due
to depressed mRNA translation because of decreased anabolic signaling through the
Akt/mTOR pathway [44]. Recent evidence also links oxidative stress to depressed protein
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synthesis in skeletal muscles in vivo [12,45]. Collectively, these studies provide evidence
that oxidative stress depresses cellular protein synthesis in both in vitro and in vivo.

2.2. Mitochondrial Damage Results in the Release of Proapoptotic Factors

Numerous factors, including cytosolic calcium levels and elevated mitochondrial ROS
production, can result in permeabilization of the mitochondria outer membrane, resulting
in the release of pro-apoptotic factors [46]. For example, permeabilization of the mito-
chondrial membrane results in the release of cytochrome c, which activates caspase-3 and,
thus, leads to the accelerated breakdown of muscle contractile proteins and myonuclear
apoptosis [22,46]. Conceptually, the loss of myonuclei within skeletal muscle fibers could
diminish protein synthesis by depressing the transcriptional capacity within the fiber [24].
This premise is supported by experiments demonstrating that knockout of caspase-3 in
skeletal muscles protects against denervation-induced muscle atrophy by suppressing
apoptosis and the loss of myonuclei [44].

2.3. Mitochondrial Dysfunction Results in Energy Stress

Many conditions that result in muscle wasting are associated with mitochondrial
dysfunction and a compromised ability to produce ATP [25,29,31,47,48]. Dysfunctional
mitochondria exhibit an impaired capacity for oxidative phosphorylation (i.e., state 3 respi-
ration), which can result in low ATP levels in the fibers. Importantly, low levels of ATP
can depress muscle protein synthesis and accelerate proteolysis [28,47] (Figure 2). In refer-
ence to ATP and protein synthesis, energy is required for protein synthesis and, therefore,
low energy levels in the muscle fiber could limit the production of new proteins. Moreover,
low energy levels in muscle fibers are also associated with increased AMP-kinase (AMPK)
activity, which is associated with inhibition of mTORC directly or indirectly (reviewed
in [49]). Nonetheless, studies in bacteria reveal that, during periods of low energy levels
in the cell, protein synthesis continues at a level that allows the cell to adapt to a lower
energy condition [50]. However, it remains unknown if the low energy levels induced by
prolonged muscle inactivity are a primary contributor to the depressed protein synthesis
that occurs during inactivity-induced muscle atrophy.

Note that low energy levels in muscle fibers can also promote accelerated protein
breakdown by influencing the AMPK/FOXO3 axis (Figure 2). Briefly, AMPK is sensitive
to cellular energy levels, such that AMPK activity increases in cells during conditions
of low ATP availability [25,51]. Active AMPK promotes the activation of the FoxO3
which is a transcriptional activator responsible for increased expression of key atrogenes
involved in the ubiquitin proteasome system (e.g., atrogin-1 and muscle ring finger-1)
and autophagy (e.g., LC3) [52]. Hence, it is feasible that AMPK-induced activation of
FOXO3 accelerates muscle protein breakdown by expression of proteins involved in both
the ubiquitin–proteasome system and autophagy [25,53].

To summarize, the mitochondrial dysfunction that occurs during muscle wasting can
contribute to fiber atrophy in at least three ways: (1) increased ROS production; (2) release
of proapoptotic factors; and (3) decreased oxidative phosphorylation capacity. Notably, it is
likely that these three signaling pathways do not operate independently. Indeed, increased
mitochondrial production of ROS can contribute to both increased release of proapoptotic
factors from the mitochondria and the low energy stress-induced activation of AMPK,
resulting in increased expression of select atrogenes [54]. The remaining sections of this re-
view will debate the experimental evidence that indirectly and directly links mitochondrial
dysfunction to the muscle wasting that occurs in response to prolonged muscle inactivity,
select diseases, and pharmacological agents used in the treatment of cancer.

3. Mitochondrial Dysfunction and Skeletal Muscle Atrophy

The previous segments highlighted the cellular signaling networks that provide a
mechanistic connection between mitochondrial dysfunction and skeletal muscle wasting.
The final segments of this review will examine the evidence connecting mitochondrial
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dysfunction to skeletal muscle atrophy due to prolonged muscle inactivity, aging, treat-
ment with chemotherapeutic drugs, and specific diseases known to foster muscle wasting.
We begin with a discussion of the evidence linking mitochondrial dysfunction to inactivity-
induced muscle atrophy.

Mitochondrial Dysfunction Resulting in Increased Mitochondrial Ros Emission Promotes
Inactivity-Induced Muscle Atrophy

Prolonged skeletal muscle inactivity is associated with both muscle atrophy and a
reduction in maximal muscle force production. Common clinical conditions resulting in
muscle inactivity include prolonged mechanical ventilation, bedrest, and limb immobiliza-
tion. For example, intensive care unit patients that are provided respiratory support via
mechanical ventilation experience inactivity of both inspiratory muscles (i.e., diaphragm)
and limb muscles. In contrast, limb immobilization and bed rest result in selective atrophy
of the affected locomotor muscles. It is well known that disuse atrophy occurs due to both
a decrease in muscle protein synthesis and increased proteolysis [12,16,55–62]. The cell
signaling events that prompt inactivity-induced muscle atrophy remain an active area of
study, and growing evidence indicates that oxidative stress is an important stimulus that
can promote muscle atrophy.

The first evidence that oxidative stress contributes to inactivity-induced muscle wast-
ing appeared over 30 years ago [63]. Since this landmark discovery, numerous studies have
since confirmed this observation and, while debate exists as to whether oxidative stress is
essential for disuse muscle atrophy to occur, growing evidence demonstrates that oxidants
depress muscle protein synthesis and accelerate proteolysis [12,13,21,31,32,40,48,63–68].
Importantly, many studies demonstrate that select antioxidants can partially or completely
rescue skeletal muscles from inactivity-induced muscle atrophy (reviewed in [15,36]). To-
gether, this evidence solidifies the notion that oxidative stress is an important promoter of
disuse muscle atrophy.

The cellular sites for oxidant production in muscle fibers exposed to prolonged in-
activity has received widespread investigation; these studies reveal that oxidants are
produced from several sources, including NADPH oxidases, xanthine oxidase, and mito-
chondria [29,31,32,48,69,70]. However, mitochondrial ROS production plays a dominant
role in inactivity-induced oxidative stress in muscle fibers [29,69,70]. Indeed, treatment
of animals with a mitochondrial-targeted antioxidant prevents the inactivity-induced in-
crease in mitochondrial ROS emission and protects against inactivity-induced depression
of muscle protein synthesis and accelerated proteolysis [12,31,32,48].

The mechanisms responsible for increased mitochondrial ROS emission within in-
active muscle fibers have been widely debated, and several rival hypotheses exist (see
references [23,25,26,71–73] for details). A detailed discussion of these mechanisms exceeds
the scope of this report, but a short summary is warranted. Briefly, prolonged muscle
inactivity has been hypothesized to promote increased mitochondrial dysfunction and
increased ROS production in at least five different ways: (1) Energy oversupply, result-
ing in an abundance of electron donors and increased oxidant production; (2) impaired
fission/fusion events, leading to mitochondrial dysfunction and increased ROS produc-
tion; (3) mitochondrial calcium overload, leading to dysfunction and accelerated oxidant
production; (4) JAK/STAT signaling-induced increases in mitochondrial ROS production;
and (5) activation of NADPH oxidase 2 (NOX2) in muscle fibers, resulting in a cross-talk
between NOX2 and mitochondria whereby activation of NOX2 promotes an increase in
mitochondrial ROS production. What follows is a synopsis of each of these proposed
mechanisms responsible for skeletal muscle inactivity-induced mitochondrial dysfunction.

The metabolic oversupply hypothesis evolved from the observation that, following
prolonged mechanical ventilation in humans, inactive diaphragm muscle fibers exhibit
increased intramuscular lipid (i.e., triglycerides) content [74]. Therefore, in inactive mus-
cle fibers, this increase in energetic substrate supply will exceed the metabolic demand,
resulting in an accumulation of electrons entering the electron transport chain. The end-
result of these events is increased leakage of electrons from the electron transport chain
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and increased mitochondrial ROS production [75–77]. Nonetheless, it remains unclear
if this increased lipid content in muscle fibers is directly responsible for mitochondrial
dysfunction in the diaphragm.

Disruption of the mitochondrial network is another common hallmark of mitochon-
drial dysfunction during catabolic conditions, such as inactivity and various other forms
of muscle wasting (reviewed in [26,27]). The dynamic control of the mitochondrial net-
work in skeletal muscle fibers is regulated by the balance of mitochondrial biogenesis,
fusion, and fission [26,27]. For example, muscle inactivity resulting from denervation is
associated with changes in the expression of key fission and fusion proteins that results
in the disruption of the mitochondrial network [78]. Similar findings have been reported
in numerous other forms of muscle inactivity (reviewed in [25,27,79]). Indeed, evolv-
ing evidence suggests that mitochondrial fission and remodeling of mitochondria play a
contributory role in skeletal muscle atrophy due to inactivity, aging, and several chronic
diseases [25,27,53,79,80].

Prolonged skeletal muscle inactivity is associated with calcium release from the sar-
coplasmic reticulum, resulting in increased cytosolic levels of free calcium [81]; this ele-
vation in cytosolic calcium promotes calcium uptake into the mitochondria and resultant
mitochondrial depolarization [82]. Mitochondrial calcium overload is often associated with
increased mitochondrial ROS production and activation of the mitochondrial permeability
transition pore [82–85]. Therefore, mitochondrial calcium overload is a proposed mech-
anism for explaining the mitochondrial dysfunction associated with prolonged muscle
inactivity (reviewed in [38]).

Activation of the Janus kinase (JAK)/signal transducer and activator of transcription
(STAT) pathway has been shown to promote mitochondrial dysfunction, resulting in in-
creased ROS production in skeletal muscle fibers [86–88]. For example, both animal and
human studies have confirmed that prolonged mechanical ventilation and the ensuing di-
aphragmatic inactivity results in activation of the JAK-STAT pathway in diaphragm muscle
fibers [87,88]. In particular, activation of JAK results in phosphorylation of STAT3; active
STAT3 can then translocate into mitochondria and promote increased ROS production via
modulation of the electron transport chain [87,88].

Finally, activation of NOX2 in muscle fibers results in increased mitochondrial ROS
production [89]. NOX2-induced ROS production results in a cross-talk between NOX2 and
mitochondria, whereby NOX2 production of superoxide promotes increased mitochondrial
ROS emission [89]. While NOX2 can be activated in skeletal muscles in several ways,
signaling through activation of the angiotensin II type I receptor may play an important
role in catabolic conditions [90]. Nonetheless, the precise link between active NOX2 and
mitochondrial ROS emission remains unclear.

In summary, five different mechanisms have been proposed to explain the link(s)
between prolonged skeletal muscle inactivity and increased mitochondrial ROS emission,
and it is feasible that several of these mechanisms may work in concert to promote in-
creases in mitochondrial ROS production. Regardless of the mechanism(s) responsible for
inactivity-induced mitochondrial dysfunction, convincing evidence exists that mitochon-
drial dysfunction results in increased mitochondrial ROS emission and is a key player in
promoting inactivity-induced muscle wasting.

4. Mitochondrial Dysfunction and Sarcopenia

Sarcopenia is defined as the age-related loss of skeletal muscle mass and function [91].
Clinically, patients with sarcopenia are identified as individuals with age-related loss of
skeletal muscle mass that is two standard deviations (or more) below the mean of healthy,
middle aged individuals [92]. Estimates of the incidence of sarcopenia vary across studies,
but a large-scale investigation involving >4650 subjects reported that ~35% of women and
~75% of men over the age of 60 years meet the criteria for sarcopenia [93]. Unfortunately,
the incidence of sarcopenia increases above age 70, and ~52% of women and ~88% of men
are labeled as sarcopenic at age 80 or higher. This age-related decline in muscle mass has
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significant consequences, as sarcopenia is a risk factor for the loss of both mobility and
independence; moreover, sarcopenia is associated with increased comorbidities that pose a
major healthcare challenge for older adults [94].

The mechanisms responsible for sarcopenia are complex and likely involve several
factors, including mitochondrial dysfunction, oxidative stress, satellite cell dysfunction,
neurological deficiencies (e.g., impaired neuromuscular junctions), chronic low-grade
inflammation, and diminished anabolic signaling in muscle [26,95–98]. Although sar-
copenia has a complex etiology, oxidative stress has been suggested to be a key factor
contributing to age-related muscle loss (reviewed in [99]). Although ROS can be produced
in a variety of subcellular sites (reviewed in [100]), mitochondria isolated from skeletal
muscle of senescent animals exhibit increased production of ROS [101,102]. Further, ag-
ing is associated with dysfunction of skeletal muscle mitochondria, including impaired
oxidative phosphorylation, reduced mitochondrial DNA content, accumulation of mu-
tated mitochondria DNA, dysfunctional fission/fusion, and impaired autophagy (i.e.,
mitophagy) [103–107]. Together, these observations form the basis for the premise that
mitochondrial dysfunction and increased mitochondrial ROS production are responsible
for the sarcopenic phenotype [99].

Numerous studies confirm that sarcopenic muscles exhibit impaired mitochondrial
fusion and fission (reviewed in [27]). For example, mitochondria from aged skeletal
muscles of both rodents and humans display morphological abnormalities that include both
mitochondrial enlargement and fragmentation [108,109]. Further, compared to muscles
from young adult animals, fibers from senescent skeletal muscles exhibit fusion/fission
abnormalities, as evidenced by lower abundance of both mitochondrial fusion proteins
(e.g., mitofusins 1 and 2 (Mfn1, Mfn2) and optic atrophy protein 1 (OPA1)), as well as the
fission protein dynamin-related protein 1 (DRP1) [110–112]. Importantly, an age-related
decline in OPA1 has also been reported in humans [112]. This age-related decline in
fusion/fission proteins is significant because deletion of Mfn2 or OPA1 results in skeletal
muscle atrophy in young animals. Collectively, these results support the concept that
an age-related impairment of key fusion and fission proteins is a potential contributor to
sarcopenia (reviewed in [25,26]).

As discussed previously, it is widely reported that mitochondrial health in skeletal
muscle fibers declines with age. The maintenance of mitochondrial health over the lifespan
is dependent upon the removal of damaged mitochondria via mitophagy and mitochon-
drial biogenesis to replace these damaged mitochondria [26,80]. It follows that a decline
in mitophagy in skeletal muscle leads to the accumulation of damaged and dysfunctional
mitochondria [27]. In this regard, numerous mitophagy regulators decline with age in
sarcopenic muscles of both rodents and humans, and this decrease correlates to walk-
ing speed in the frail elderly [104,113–115]. Hence, an age-related decline in mitophagy
is predicted to contribute to sarcopenia. A potential causal link between depressed mi-
tophagy and muscle atrophy is that dysfunctional mitochondria produce higher levels of
ROS [34,101,102]. This is important because oxidative stress has been proposed to be a
key contributor to sarcopenia [99]. Evidence that mitochondrial dysfunction contributes
to muscle dysfunction in aged animals comes from two independent studies revealing
that treatment with the mitochondrial targeted antioxidant peptide SS-31 protects against
age-related decline of muscle endurance in senescent animals [116,117]. In contrast to these
results, a recent study concludes that pharmacological attenuation of age-related increases
in mitochondrial ROS emission (i.e., treatment with SS31) does not rescue age-related
muscle atrophy but does protect against oxidative damage and a decline in mitophagy
in aged muscles [34]. However, it is important to note that the animals treated with this
pharmacological intervention were treated for only four months, beginning late in the
animals’ lives. Future studies are required to determine whether lifelong treatment with
this mitochondrial-targeted peptide would have protected against sarcopenia.

To summarize, the etiology of sarcopenia is complex and likely involves the inter-
action of a variety of factors, including a decline in mitochondrial dysfunction. Indeed,
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accumulating evidence suggests that an age-related increase in mitochondrial dysfunction
is a key contributor to sarcopenia.

5. Role of Mitochondrial Dysfunction in Chemotherapy-Induced Muscle Wasting

Doxorubicin (DOX) is an anthracycline antibiotic that is widely used as an antitumor
agent in the treatment of human cancers. While DOX is highly effective in the treatment
of numerous cancers (e.g., lymphoma, leukemia, breast, and Kaposi’s sarcoma), DOX is
cytotoxic and promotes the rapid wasting of both cardiac and skeletal muscle fibers. Indeed,
a common clinical risk of using this highly effective anticancer drug is the development of
cardiomyopathy [118]. Treatment with DOX also promotes rapid atrophy in all skeletal
muscle fiber types, with no preference between fiber types in the rate of atrophy [30].

The mechanism(s) responsible for DOX-induced cardiac and skeletal muscle wasting
has been extensively studied and evidence reveals that DOX-induced toxicity to both
cardiac and skeletal muscle fibers is driven by increased mitochondrial ROS production and
resultant oxidative stress (reviewed in [119,120]). Expressly, although DOX can promote
ROS production in cells via several pathways, mitochondrial ROS production is the primary
source of DOX-induced ROS production in both cardiac and skeletal muscle fibers [30].
DOX-induced increase in mitochondrial ROS production is propelled by DOX accumulation
in mitochondria, resulting in DOX redox cycles on complex I resulting in the subsequent
production of superoxide radicals [121,122]. This DOX-induced rise in mitochondrial ROS
emission promotes the activation of all four major proteolytic systems and a rapid rise in
muscle protein degradation [16,30,123–125]. Although DOX administration activates all
proteolytic systems in skeletal muscle, active calpain plays a particularly important role in
the loss of skeletal muscle protein [30].

Support for the idea that increased mitochondrial ROS production is essential for
DOX-induced atrophy of both cardiac and skeletal muscle fibers comes from several lines of
evidence. For example, treatment of C2C12 myotubes with SS-31, a mitochondrial-targeted
protective peptide, prevents DOX-induced myotube atrophy [123]. Similarly, preclinical
studies confirm that treatment of rodents with SS-31 prevents DOX-induced activation of
cellular proteases and atrophy of both cardiac and skeletal muscle fibers [30,126]. Similarly,
treatment of rodents with MitoQ, a mitochondrial-targeted antioxidant, protects against
DOX-induced cardiac dysfunction [127].

To summarize, although DOX is a highly effective chemotherapeutic agent against
numerous solid tumors, treatment of cancer patients with DOX is limited by the drugs’
toxic effects on both cardiac and skeletal muscle. In this regard, compelling evidence
reveals that treatment with DOX results in both mitochondrial dysfunction and increases
in mitochondrial ROS emission within both cardiac and skeletal muscle fibers. Importantly,
a growing number of investigations indicate that increases in mitochondrial production of
ROS is a required trigger to promote DOX-induced muscle wasting.

6. Mitochondria and Cancer Cachexia

Cancer cachexia is characterized by the loss of skeletal muscle mass with or without
the loss of fat mass. Clinically, cancer cachexia is defined as an involuntary loss of >5% of
total body weight within 6 months or a body mass index (BMI) of <20 [128]. It is estimated
that cancer cachexia affects ~30% of all cancer patients, with prevalence ranging from
~11–89% depending on the type of cancer [129–131]. The prevalence and degree of muscle
wasting that occurs with cancer cachexia varies and is dependent upon cancer type and
disease progression. Body weight loss can range from a low weight loss (<5% of total body
weight, termed prechachexia) to severe with body weight loss exceeding ~18% of total body
mass in a 6 month period [132]. Cancer cachexia is commonly observed in gastrointestinal
cancer (e.g., pancreatic cancer) as well as lung and prostate cancer. Importantly, cancer
cachexia is also associated with depressed appetite; nonetheless, conventional nutritional
support does not compensate cancer-mediated muscle wasting [128]. Unfortunately, cancer-
mediated muscle wasting is associated with higher mortality rates in cancer patients [133].
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While significant progress has been made in our understanding of cancer cachexia in
recent years, the complexities of various cancer pathologies and patient populations has
mired the development of treatment options. Over 100 types of cancer have been identified
with varying pathologies. This point is further complicated by the fact that similar cancer
types can also manifest diverging signaling pathways. For instance, a recent report by No-
sacka et al. demonstrated that cancerous xenografts from four different patients diagnosed
with pancreatic ductal adenocarcinoma resulted in distinct physiological responses when
transplanted in rodents [134]. Moreover, studies of human cancer patients are difficult to
interpret because of age-related frailty of the patient population and pharmacological treat-
ments that confound results (e.g., doxorubicin). Nonetheless, accruing evidence reveals
several commonalities with cancer cachexia.

Findings from both preclinical and clinical studies confirm that the hallmarks of can-
cer cachexia are decreased myofiber cross-sectional area, disrupted muscle ultrastructure,
and increased fibrosis [35,135–138]. Both depressed protein synthesis and accelerated
proteolysis have been observed with muscle wasting due to cancer cachexia [139–142].
While the factors that contribute to cancer-induced muscle wasting are believed to be mul-
tifactorial, recent evidence has implicated mitochondrial dysfunction as a key contributor
to cancer cachexia.

Reports from both preclinical and human studies reveal that mitochondrial mor-
phology is disrupted with cancer cachexia, displaying a swollen phenotype [136,143–145].
Observations of disrupted mitochondrial morphology are supported by reports demon-
strating alterations in mitochondrial fusion and fission machinery with several reports
showing increased expression of Fis1 and decreased Parkin [145–147]. Additionally, de-
creased mitochondrial respiration and mitochondrial complex activity have also been
observed with cancer cachexia [138,142,143,148,149].

With regard to the evidence that mitochondrial dysfunction contributes to cancer
cachexia, several reports have provided compelling arguments for the involvement of
mitochondrial dysfunction with cancer cachexia. Recently, Brown et al. provided evidence
that mitochondrial dysfunction precedes the development of cachexia in rodent models of
lung and colorectal cancer [138]. Further, pharmacological targeting of mitochondria with
the small peptide SS-31 has been shown to attenuate muscle wasting in a rodent model
of colon cancer [35]. Collectively, these studies implicate mitochondrial dysfunction as a
key contributor to muscle wasting. In theory, mitochondrial dysfunction can contribute to
cancer cachexia through chronic elevation in mitochondrial ROS emission and disrupted
ATP producing capacity.

As discussed previously, chronic elevation in mitochondrial ROS emissions can elicit
muscle wasting. Evidence from preclinical models show that mitochondrial ROS emissions
increase with cancer cachexia and are accompanied by increased markers of oxidative
stress [35,138,139,150,151]. In contrast to these findings, some studies have reported de-
creased markers of muscle oxidative stress, and that exacerbated oxidative stress does not
accentuate cancer cachexia [146,152]. Perhaps one explanation for this discrepancy between
experimental findings can be explained by evidence of the time course of mitochondrial
dysfunction. For instance, it appears that mitochondrial ROS emissions are elevated within
the first three weeks of cancer induction before returning to baseline in rodent models
of cancer cachexia [138,139]. Hence, it is plausible that muscle atrophy is first initiated
by early elevations in mitochondrial ROS emissions. In support of this, evidence in cell
culture demonstrates that incubation of cells with media derived from kidney cancer cells
increases mitochondrial ROS production and induces myotube atrophic response [151].

A depressed ability for mitochondria to produce ATP may also contribute to cancer
cachexia. In this regard, several studies have shown diminished mitochondrial complex
activity and mitochondrial respiration [138,142,143,148,149,153]. Indeed, ATP content is
decreased in muscle undergoing cancer-induced cachexia [149]. As discussed previously,
low levels of ATP can diminish energy availability for processes of protein synthesis,
as well as leading to increased AMPK activation. Notably, despite evidence of cachexia-
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induced decreases in mitochondrial respiration, increasing mitochondrial volume via
overexpression of PGC-1α was unable to rescue cancer-induced muscle wasting [154].
Further, AMPK activity does not appear to increase until later in the progression of cancer
cachexia, suggesting that AMPK activation occurs after the onset of muscle atrophy [155].
Nonetheless, disrupted energy producing capacity may play a role in the cancer-induced
muscle wasting.

While compelling evidence exists supporting the tenet that mitochondrial dysfunc-
tion contributes to various cancer types, the highly diverging physiological response
between different cancer types warrants consideration and limits our current under-
standing. Evidence from preclinical models that mitochondrial dysfunction precedes
cancer cachexia, and that mitochondrial targeted pharmacological agents attenuate cancer
cachexia, supports this notion. Nonetheless, many cancer types exist with varying patho-
physiology. Future research is required to delineate the precise role that mitochondria play
in cancer cachexia.

7. Evidence Linking Mitochondrial Dysfunction with Sepsis-Induced Muscle Wasting

Sepsis is a pathological condition characterized by a systemic inflammatory response
due to infection of microbial origin. Sepsis is a life threatening condition that can result in
organ failure of one or more organ systems, and is estimated to affect more than 48 million
patients worldwide [156]. Among the threat of damage to organ systems, sepsis evokes
skeletal muscle wasting of both respiratory and locomotor muscles [157–160]. This is
problematic, as this muscle wasting likely contributes to impaired mobility and reduced
quality of life in sepsis survivors [161].

While the factors that contribute to sepsis-induced muscle wasting are likely multifac-
torial, mitochondrial dysfunction has emerged as key contributor to this muscle wasting.
The first evidence that mitochondrial dysfunction plays a major role in muscle wasting was
reported by Brealey et al. [162]. In this seminal report, the severity of sepsis was found to
be associated with mitochondrial dysfunction in skeletal muscle; mitochondria in sepsis pa-
tients exhibited diminished mitochondrial complex activity, depressed antioxidant capacity,
and lower ATP concentrations. Hence, bioenergetics failure was implicated to contribute
to the severity of sepsis-induced muscle wasting [162]. Indeed, numerous reports have
demonstrated the extensive mitochondrial dysfunction that occurs with sepsis-induced
muscle wasting [163–170]. Mitochondrial dysfunction has been postulated to contribute to
sepsis-induced muscle wasting in three ways: (1) diminished energy producing capacity;
(2) increased oxidative stress; and (3) deficient satellite cell function.

Sepsis has been well documented to result in a decreased capacity for mitochondria to
produce ATP through oxidative phosphorylation in skeletal muscle. Preclinical and human
studies have consistently shown that mitochondrial complex gene expression, protein
abundance, and activity are decreased with sepsis [162,163,165,167,171,172]. This decrease
in oxidative phosphorylation (OXPHOS) machinery also corresponds to decreased ATP
content in muscle [162,165,171,173–175]. In addition to the decrease in OXPHOS machinery,
decreased energy availability may also be exacerbated by a decreased ability to distribute
energy from the mitochondria throughout the myofiber. For instance, mitochondrial
creatine kinase activity and protein abundance are decreased with sepsis, which would
limit the ability to transport ATP out of the mitochondria into the cytosol [176]. Collectively,
the inability of dysfunctional mitochondria to provide energy to the cell may result in the
muscle atrophy, as discussed previously.

While the cause(s) driving diminished mitochondrial respiratory capacity has not
been fully elucidated, an increased production of free radicals has been purported to play
an inhibitory role in mitochondrial respiration during sepsis [177]. Notably, cross-talk
can occur between sources of oxidant production (e.g., NADPH oxidase) and mitochon-
dria that result in increased mitochondrial ROS emissions; oxidation of mitochondria
increases mitochondrial-derived ROS production, resulting in a viscous cycle of oxidative
stress that results in increased muscle proteolysis [36]. Sepsis is reported to increase oxi-
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dant emission from ROS generating enzymes, such as NADPH oxidase and nitric oxide
synthase [177,178]. In this regard, inhibition of nitric oxide synthase and administration
of free radical scavengers has been shown to prevent sepsis-induced mitochondrial dys-
function [177]. Further, nitric oxide is also capable of independently inhibiting complex
I activity in mitochondria [179]; nitric oxide modification of mitochondria can result in
decreased mitochondrial respiration. Indeed, knockout mice that lack the inducible nitric
oxide synthase (iNOS) isoform are protected from mitochondrial dysfunction in response
to sepsis [180]. Hence, activation of ROS generating enzymes may play a role in the initial
development of mitochondrial dysfunction during sepsis.

While other sources of ROS may play a role in triggering mitochondrial dysfunction
during sepsis, mitochondria themselves are major contributors to ROS production in my-
ofibers. Indeed, increased mitochondrial ROS emissions may contribute to sepsis-induced
muscle wasting. Several reports have shown that muscle mitochondrial ROS emissions
are increased with sepsis [172,175,181,182]. The importance of sepsis-induced mitochon-
drial ROS is demonstrated by time-course studies showing that increases in mitochondrial
superoxide production correlate with the decreases in muscle force production during
sepsis [172]. Moreover, mitochondrial targeted antioxidants prevent sepsis-induced con-
tractile dysfunction in diaphragm muscle [175,182]. These studies provide strong evidence
for the importance of mitochondrial dysfunction with sepsis; however, these studies did
not measure muscle cross-sectional area, and direct evidence on mitochondrial dysfunction
in sepsis-induced muscle wasting is limited.

In regard to the direct evidence implicating mitochondrial dysfunction as a critical
mediator of sepsis-induced muscle wasting, a recent report reveals that overexpression of
parkin, a protein responsible for mitophagy (i.e., mitochondrial autophagy), protects mus-
cle against sepsis-induced wasting [168]. Mitochondria are observed to present a swollen
appearance and disorganized morphology in muscle during sepsis [165,168,170,176,183].
However, parkin overexpression during sepsis attenuated altered mitochondrial morphol-
ogy and prevented myofiber atrophy [168]. The protective effects of parkin overexpression
likely occur through increased removal of dysfunctional mitochondria via mitophagy;
however, parkin overexpression was also noted to increase Nrf2, a key transcriptional
regulator of antioxidant enzymes, which may have contributed to the protective effects.
Future studies are required to further asses the protective role of mitophagy during sepsis.

Lastly, it should also be noted that mitochondrial dysfunction may contribute to
sepsis-induced myopathy by affecting muscle satellite cells. A recent report reveals that
mitochondria in satellite cells become dysfunctional and that this dysfunction persists
following recovery from sepsis [173]. Skeletal muscle is observed to have a blunted
regenerative capacity following sepsis, and survivors can exhibit muscle weakness five
years following recovery from sepsis [173,184]. In this regard, mitochondrial dysfunction
in muscle stem cells is attributed to play a role in the blunted regenerative capacity of
muscle following sepsis. The authors demonstrate that engrafting mescenchymal stem
cells is capable of improving mitochondrial function, and restores the regenerative capacity
of skeletal muscle [173]. The role of mitochondrial dysfunction in satellite cells further
highlights the multifactorial role of mitochondria in sepsis-induced myopathy.

8. Summary and Future Directions

The prediction that mitochondrial dysfunction is a primary factor contributing to
skeletal muscle atrophy originated in the mid-1900s. Nonetheless, specific evidence demon-
strating that mitochondrial damage/dysfunction contributes to numerous forms of muscle
wasting was not available until the early 2000s. Specifically, direct evidence connecting
mitochondrial dysfunction to muscle wasting due to disease, aging, chemotherapy, and dis-
use muscle atrophy has steadily emerged over the past decade. Indeed, compelling support
now exists that mitochondrial dysfunction contributes to muscle wasting in a variety of
diseases (cancer and sepsis), aging, cancer chemotherapy, and muscle atrophy due to
prolonged periods of muscle inactivity.
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While numerous reports link mitochondrial damage/dysfunction to muscle wasting,
many questions remain unanswered. For example, limited information exists about the
mechanisms responsible for the skeletal muscle mitochondrial dysfunction that occurs
due to disease, aging, and during prolonged inactivity. Further, it remains unclear as to
whether both subsarcolemmal and intermyofibrillar mitochondria become dysfunctional
during conditions that promote muscle wasting.

Additional research is also needed to identify specific therapeutic interventions that
can protect against mitochondrial dysfunction and prevent muscle atrophy. For example,
although a few studies suggest that specific mitochondrial-targeted peptides (i.e., SS-31) can
protect against muscle wasting during prolonged inactivity and in response to treatment
with doxorubicin, additional studies are required to determine whether mitochondrial-
targeted treatments are effective in preventing muscle wasting during long durations of
muscle inactivity (weeks to months) and during prolonged treatment with chemotherapeu-
tic drugs (e.g., doxorubicin). Moreover, more experiments are needed to establish whether
mitochondrial-directed compounds can prevent sepsis-induced muscle wasting. Similarly,
while experiments indicate that treatment with mitochondrial-targeted peptides during
late senescence do not prevent age-related muscle atrophy, it remains unclear whether an
appropriate intervention can protect against sarcopenia if treatment begins early in life.

Another important topic for future investigations relates to the observation that cancer-
induced increases in skeletal muscle mitochondrial ROS emissions returns to baseline over
time. This finding raises two key questions. First, what are the mechanism(s) responsible for
this time-dependent fluctuation in cancer-induced increase mitochondrial ROS emission?
Second, what is the significance of this fluctuation in mitochondrial ROS production in
promoting sepsis-induced muscle atrophy?

Finally, it remains unknown whether increased mitochondrial ROS production plays a
key role in the regulation of fission and fusion in skeletal muscle mitochondria. Studies that
address this and other unanswered questions are required to identify new treatments to
prevent muscle wasting due to disease, doxorubicin, aging, and prolonged muscle disuse.
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