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Abstract

The apparent diffusion coefficient (ADC) derived from diffusion-weighted imaging (DWI) correlates inversely with
tumor proliferation rates. High-grade gliomas are typically heterogeneous and the delineation of areas of high and low
proliferation is impeded by partial volume effects and blurred borders. Commonly used manual delineation is further
impeded by potential overlap with cerebrospinal fluid and necrosis. Here we present an algorithm to reproducibly
delineate and probabilistically quantify the ADC in areas of high and low proliferation in heterogeneous gliomas,
resulting in a reproducible quantification in regions of tissue inhomogeneity. We used an expectation maximization
(EM) clustering algorithm, applied on a Gaussian mixture model, consisting of pure superpositions of Gaussian
distributions. Soundness and reproducibility of this approach were evaluated in 10 patients with glioma. High- and
low-proliferating areas found using the clustering correspond well with conservative regions of interest drawn using all
available imaging data. Systematic placement of model initialization seeds shows good reproducibility of the method.
Moreover, we illustrate an automatic initialization approach that completely removes user-induced variability. In
conclusion, we present a rapid, reproducible and automatic method to separate and quantify heterogeneous regions
in gliomas.
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Introduction

Diffusion-weighted imaging (DWI) has been extensively
used as an imaging method that yields surrogate para-
meters for tumor cellularity and proliferation and may
be used to monitor treatment response in the brain and
the abdomen[1�4]. The apparent diffusion coefficient
(ADC) value depicts the average diffusion or the

Brownian molecular motion of water within a voxel[3,4].
A low ADC correlates, among many other factors, with a
high cellular density and increased proliferation, whereas
a high ADC is related to low cellular density and low
proliferation[1,2,5].

Since quantitative measures of the ADC in tumor
regions may be of great clinical importance both in initial
tumor grading as well as for therapy follow-up, such
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measures must be extracted from the data in a reproduc-
ible fashion. Commonly, DWI data are evaluated using
manual region of interest (ROI) analysis. Using such
analysis, a negative correlation between the ADC and
the micro vessel density, as a marker of tumor prolifera-
tion was found in the tumor bulk[6]. In another study, the
minimum ADC in astrocytic tumors (all WHO Grades
I�IV) was found to be in general negatively correlated to
the Ki-67 labeling index (LI), which is an index for cell
proliferation[7]. However, since the borders within heter-
ogeneous tumor regions on the one hand, and between
cerebrospinal fluid (CSF) and necrotic areas on the other
hand, are ill defined, the ROI placement is inherently
user dependent. Thus, an objective automated method
for tissue segmentation beyond manual ROI placement
is needed to enable a reliable ADC quantification in het-
erogeneous gliomas.

Whereas previously proposed methods such as region
growing, live wire or shape-based segmentation require
and produce sharp boundaries, statistical segmentation
approaches are more suitable to incorporate soft bound-
aries by yielding class probabilities. Gaussian mixture
models with the help of expectation maximization
(EM) optimization[8�10] or similar optimization strate-
gies are one approach to achieve a probabilistic classifi-
cation based on histogram analysis[11�16].

An important first requirement for statistical segmen-
tation approaches is that the distributions of the

measurement value (e.g. the ADC) within the expected
different segments (e.g. high vs low cellularity) can be
separated into a superposition of 2 Gaussians. If this is
given for the tumor volume, the probability can be calcu-
lated that this voxel belongs to one of the expected clus-
ters. In Fig. 1, we illustrate a theoretical distribution of
the ADC in a tumor region in the brain.

Based on these individual probabilities, using the EM
approach[8�10], the assumed tissue groups can be found.
The overall probability of the found cluster, which can be
seen as a quality measurement of the complete approach,
is then given by the so-called posterior probability.
Furthermore, the given probabilities within the tumor
area can be used to take partial volume effects into
account[11�13]. These likelihoods can be used to come
to a probabilistic quantification that allows for a repro-
ducible quantification in regions of tissue inhomogene-
ity[11,12]. The probabilistic quantification does not
necessarily ensure a more valid delineation. However,
the objectivity of the quantification increases by applying
probabilistic assumptions.

In this article, we describe a method to objectively sep-
arate high-proliferating from low-proliferating parts in het-
erogeneous gliomas represented in diffusion-weighted
images. We evaluate the plausibility and the repro-
ducibility of the implemented approach that includes mul-
timodal image overlay, signal intensity thresholding and
probabilistic ADC-based clustering.

Figure 1 Theoretical histogram: red depicts the high-proliferating area, green the low-proliferating region, brown the
necrosis area and blue the CSF. The volume fractions of the different compartments were set to 0.4:0.3:0.15:0.15 for
high-proliferating, low-proliferating, necrosis, and CSF, respectively.
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Materials and methods

Ten patients, 8 males and 2 females, with histologically
proven grade III�IV glioma were included in the study.
The group consisted of 2 grade III and 8 grade IV
patients; the mean age was 69� 14 years. Patient
names were rendered anonymous and the resulting
code used to uniquely link data and patient. Diffusion
tensor imaging (DTI), axial T2-weighted fluid attenuated
inversion recovery (FLAIR), and contrast-enhanced
T1-weighted magnetic resonance imaging (MRI) data
were acquired and processed in order to obtain a quan-
tification of ADC in high and low malignant tissue. The
extent of the gross tumor volume (GTV) was delineated
manually by a radiologist on the T2-weighted FLAIR
data. T1-weighted contrast-enhanced imaging was used
for delineation of the high-proliferating area within the
GTV. Fig. 2 gives an overview of the steps performed
during the analysis.

Imaging parameters

Measurements were performed on a 1.5-T whole-body
clinical MRI scanner equipped with a quadrature head

coil (Magnetom Symphony, Siemens Healthcare,
Erlangen, Germany, gradient strength¼ 40 mT/m).

DTI

Fifty axial slices were acquired; using a thickness of
2.5 mm, 6 gradient directions, 2 b-values (0 and 1000 s/
mm2) and 10 averages. Repetition time (TR)/echo time
(TE) 8400/108; voxel size 2.5 mm3; resolution 96� 96;
field of view 240� 240 mm2.

T2-weighted FLAIR

Twenty-four axial slices; TR/TE 9000/114; voxel size
0.5� 0.5� 5.0 mm3; resolution 448� 512; field of view
210.11� 210.11 mm2; inversion time 2500; slice thick-
ness of 5 mm.

T1-weighted contrast-enhanced imaging

Twenty-four axial slices; TR/TE 700/18; voxel size
0.5� 0.5� 5.0 mm3; resolution 512� 512; field of view
240.13� 240.13 mm2.

Acquire DTI 
(10 datasets to average) 

Apply FLAIR mask to 
ADC to suppress CSF 

Apply necrosis histogram 
cut off 

Indicate conservative 
ROIs using ADC map 

overlaid with morphologic 
images

EM clustering and 
separation of high and low 

proliferative areas

C
lu

st
er

in
g

Acquire T2w-FLAIR  Acquire T1w+CA 

Mean ADC calculation 

Coregistration of 
morphological and 
functional images

P
re

pr
oc

es
si

ng

Perform probabilistic 
quantification

Q
ua

nt
ifi

ca
tio

n
A

cq
ui

si
tio

n 

Figure 2 Overview of the processing steps from image acquisition to quantification. CSF, cerebrospinal fluid; CA,
contrast agent; EM, expectation maximization.
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ADC calculation

Post-processing was performed using the MeVisLab
development environment (Fraunhofer MEVIS,
Bremen, Germany). The tensor components were esti-
mated by linear least squares calculation. The ADC is
determined by the following equation:

ADC ¼
l1 þ l2 þ l3

3
ð1Þ

where li is the ith eigenvalue of the tensor.

Preprocessing

To improve the signal to noise ratio of the diffusion data,
the 10 averages were matched spatially using a linear
registration model, normalized cross-correlation as a sim-
ilarity measure, and trilinear interpolation. To further
improve the matching, we re-sampled the data to a
finer grid of an isotropic voxel size of 1.25 mm using a
cubic B-spline for the interpolation.

The axial T1-weighted contrast-enhanced images as
well as the T2-weighted FLAIR images were registered
onto the ADC map using normalized mutual information
and trilinear interpolation.

Exclusion of CSF and necrosis

CSF is clearly hypointense in T2-weighted FLAIR images
and a mask was created in the corresponding images
to exclude the voxels belonging to the lower quantile in
the T2-weighted FLAIR histogram. Similarly, an ADC
threshold 40.001 mm2/s was used to exclude necrotic
areas.

Manual placement of conservative ROIs

To obtain reference ADC values for high- and low-pro-
liferative areas, a radiologist manually placed conserva-
tive ROIs in regions that clearly represented one of the
two classes. All 3 acquired MRI datasets were taken into
account.

Test for gaussianity

To justify the later use of a Gaussian mixture model for
automated clustering of the 2 regions, a �2 test was per-
formed on the ADC distributions using ROOT (CERN,
Switzerland).

Probabilistic segmentation

The probabilistic segmentation was performed by fitting a
mixture model of 2 Gaussians to the normalized histo-
gram within the masked GTV using the EM algorithm.
The EM clustering with Gaussian mixture models is
described in further detail in Refs.[8,9]. The derived pos-
terior probabilities of the segmented voxels were used to
quantify the ADC of the low- and high-proliferative

regions by calculating the weighted sum by the posterior
probability of the corresponding ADC measures.

Manual initialization of the model

To manually initialize the EM algorithm, the starting
parameters were derived from the manually drawn
ROIs. The stability of the approach with regard to the
initialization was assessed by systematically choosing
ADC values from the ROIs as class means. This proce-
dure was repeated 10 times. The ADC from the conser-
vative ROIs was averaged and the mean of the maximum
values of the high-proliferating ROIs þ� and the mean of
the minimum values of the low-proliferating ROIs ��
were used as a criterion to exclude runaway values in
this test. To evaluate the reproducibility, dot plots were
generated and intra-class coefficients (ICCs) were calcu-
lated from 10 initializations from all 10 patients using the
software Stata (College Station Release 11; StataCorp
LP, TX, USA).

Automated initialization of the model

In order to automatically initialize the EM algorithm, the
fully automated model initialization as given in Ref.[13]

was implemented. The GTV describes the gross tumor
volume, K is the number of clusters, �k is the mean, �k is
the variance and �k is the fraction of cluster k belonging
to the whole Gaussian mixture model (Eq. (5)).

�k ¼
1

K þ 1
½maxðGTVÞ �minðGTVÞ� þminðGTVÞ ð2Þ

�k ¼ ½maxðGTVÞ �minðGTVÞ�2 ð3Þ

�k ¼
1

K
ð4Þ

pðxÞ ¼
XK

k¼1

�kNðxj�k , �kÞ ð5Þ

To evaluate the plausibility of the automated clustering,
the ADC in both regions found using the automated
approach was compared with the value from the seed-
based initialization. The results were included in the dot
plots mentioned above. Further details on the EM clus-
tering approach are given in the Appendix.

Results

Analysis of the manually placed ROIs

The ADC distributions within the conservative ROIs with
absolute frequency were averaged and showed 2 distinct
peaks in all patients (see Fig. 3). The �2 test yields the
following parameters:

� High-proliferating tissue �2 (0.95; 100�3¼ 97)¼ �
121.0489.2
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� Low-proliferating tissue �2 (0.95; 100�3¼ 97)¼ �
121.0485.9

The following absolute ADC values were found by
averaging over all patients:

� High-proliferating tissue 4.13� 10�4
� 9.1� 10�5

mm2/s
� Low-proliferating tissue 7.26� 10�4

� 9.9� 10�5

mm2/s

Histogram clustering results

The Gaussian mixture model appropriately represented
the histogram of the ADC values in the GTV in all
10 patients. This is exemplarily shown on 3 patients in
Figs. 4i, 5i and 6i. The class ADC values found using the
clustering method corresponded well with the mean
ADC values in the manually drawn ROIs (compare (f)
and (g) in Figs. 4�6). Qualitatively, the found ADC dis-
tributions (purple lines) correspond well to the theoreti-
cally introduced model shown in Fig. 1.

Fig. 4 demonstrates the successful use of the CSF sup-
pression, yielding a good separation of CSF and low-
proliferative areas using the T2-weighted FLAIR cut-off.
Fig. 5 similarly demonstrates the usefulness of the ADC-
based necrosis cut-off. Note, however, that in the border
region between necrosis and high-proliferative areas, a
small region of misclassification occurred (Fig. 5e,
arrows). Fig. 6 again demonstrates that high- and low-
proliferative areas could be separated appropriately.
However, it also shows a potential pitfall in cases

where the GTV includes healthy brain tissue that is erro-
neously classified as high malignant (Fig. 6e).

Reproducibility and automated
segmentation

For all 10 patients, the clustering routine was repeated
10 times using representative initialization seed voxels
(Fig. 7). Each segmentation took only 0.1 s and thus,
is virtually a real-time approach. For the low- and high-
proliferative area, ICCs of 0.920 and 0.996 were found,
respectively, indicating good agreement[3]. The auto-
mated clustering results are within the range of results
found using the seed-based initialization and are indi-
cated as gray crosses. The automated clustering was suc-
cessful in all 10 cases.

Discussion

In this work, we show that low- and high-proliferating
areas in high-grade gliomas can be objectively delineated
and probabilistically quantified by an EM algorithm. We
propose an automated and rapid approach that antici-
pates the heterogeneous nature of high-grade gliomas.
The application of a Gaussian mixture model is validated
by a �2 test of the averaged high-proliferating and low-
proliferating ROIs, yielding Gaussian distributions in the
different areas.

Quantitatively, we demonstrate that the derived mean
values of this theoretical model are plausible. Through
the application of a statistical algorithm with a Gaussian

Figure 3 Original averaged full frequency histograms consisting of conservative areas. The high-proliferating area
is highlighted in red and the low-proliferating area is shown in green. The Gaussian curve fits the area displayed
(dashed curves).
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Figure 4 Imaging data, histogram analysis, and resulting segmentation of patient 1 (WH) (a) Axial ADC map. The
arrow points to a low-proliferative area of the tumor. (b) Axial contrast-enhanced T1-weighted image. The arrow
indicates a high-proliferating part of the tumor. (c) Axial T2-weighted FLAIR image. The arrow points to a low-
proliferative area of the tumor. (d) ADC map with GTV outlined in yellow. The arrow indicates CSF. (e)
Segmentation result shows the posterior probability of high- (red) and low-proliferative (green) areas. (f) Enlarged
outline of the posterior probability as shown in (e). (g) ADC histogram within the manually drawn ROIs. High- and
low-proliferating distributions are represented in red and green, respectively. (h, i) ADC distribution within the GTV.
The dotted line shows the ADC distribution after necrosis and CSF exclusion. The fitted Gaussian distributions for the
high- and low-proliferating tissue classes are depicted in red and green, respectively. The sum of these distributions
represents the data appropriately (see purple line).
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Figure 5 The results for patient 2 (SH) organized as in Fig. 4. An interesting aspect in this patient is the almost
complete lack of clearly definable low malignant areas. This can be appreciated by comparing the large size of the
contrast-enhancing area in (b, arrow) with the hyperintense T2-weighted FLAIR area of similar size (c, arrow). The
central necrotic areas of the tumor are outlined in (d, arrow and outlines). In the resulting segmentation (e), these areas
are excluded due to the necrosis cut-off. The overall clustering result is plausible since mainly high malignant areas are
found. Only some of the partial volume between necrosis and high-proliferative areas (e, arrow) is misclassified as low
proliferating. The sum of the Gaussian distributions represents the data appropriately (i, purple line).
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Figure 6 The results for patient 3 (SHE) organized as in Fig. 4. The GTV outline in this patient includes normal brain
tissue (d, arrows). This leads to a misclassification of normal brain tissue as a high-proliferative area (e, arrows).
The sum of the Gaussian distributions represents the data appropriately (h, purple line).
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mixture model, we are able to probabilistically quantify
the ADC in areas of low- and high-proliferation in high-
grade gliomas. This unsupervised algorithm is plausible
because the overall distribution fits well to the raw data
and the found clusters correspond well to the conserva-
tive ROIs. The high ICCs indicate a good reproducibility
of the clustering approach. Furthermore, automated clus-
tering was successful in all 10 patients.

By application of a binary T2-weighted FLAIR mask,
CSF could be excluded robustly (Fig. 4). Necrotic areas
could be suppressed by application of an ADC-based
histogram cut-off. However, the necrosis threshold is
not completely satisfactory because it cannot suppress
necrosis totally without additionally cutting off apparent
low-proliferating tumor tissue (Fig. 5).

Limitations

A limitation of our current approach is that the signal
overlap between normal tissue and high-proliferating
areas[17] is not solved. Potentially, the addition of a par-
tial volume class may mitigate this error. A further,
related limitation is that the method only clusters on a
predefined GTV drawn on a two-dimensional slice.
Future research should extend the method onto the
whole brain, resulting in a fully automated three-dimen-
sional whole-brain clustering algorithm that includes
and defines contextual three-dimensional constraints.
Another limitation of our study was that no biopsies
from different tumor regions could be obtained. Thus,
we can only rely on the available image data and the
unique ADC distribution to obtain a plausible separation
of high- and low-proliferative areas.

The resulting problems of intensity overlap as dis-
cussed above and the definition of three-dimensional con-
straints may be addressed by incorporation of algorithms
that include prior knowledge of spatial and anatomical
constraints of normal anatomy and tumor tissue[14,18]. In
these publications, a discriminative variant of the usually
generative Markov random fields in combination with a
support vector machines (SVM) algorithm was used,
which may be combined with the approach proposed
here.

A potential drawback of the EM algorithm may be data
overfitting[8]. Although deterministic, the algorithm may
converge towards a local maximum in the log-likelihood
step. This is due to singularities that can occur if one
mean of the Gaussian mixture model �k equals xn

which denotes an observed data point. In this case, the
log-likelihood term goes to infinity and thus has to be
excluded from the maximization procedure and only a
local maximum can be achieved. However, in our case,
we did not encounter these potential difficulties regarding
the objectivity of the retrieved ADC values, considering
the applied test. In Ref.[19] several EM techniques were
evaluated for brain segmentation to overcome singulari-
ties and compared with underlying ground truth. A var-
iational EM algorithm and 2 hybrid approaches, using
genetic algorithms in combination with EM and the var-
iational approach plus genetic algorithms, respectively,
were evaluated. In Ref.[20], it can be clearly seen that
the simple hybrid algorithm (GA plus EM) outperforms
the classic EM algorithm in terms of a higher log-likeli-
hood result and moreover a faster convergence at equal
computational costs. In Ref.[19], the hybrid variational
approach in conjunction with EM outperforms all other

Figure 7 Dot plots of the clustering results using conservative ROIs and automated clustering. (a) Results of the seed
point segmentation within the high-proliferating region (black dots) and automated segmentation (black crosses).
Fractional outliers were found in BM 4/10 and in JA 1/10. The ICC for the seed-based initialization was 0.92. Note
that the ADC from the automated clustering is well within the range of the seed point-based measurement. (b) Results of
the seed point segmentation within the low-proliferating region. No complete outliers were found. Fractional outliers
were found in BM 4/10, WF 1/10. The ICC for the seed-based initialization was 0.996. Again note that the ADC from
the automated clustering is well within the range of the seed point-based measurement.
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proposed algorithms. Regarding complexity pertaining to
the variational approach, Ref.[8] describes a little com-
plexional overhead.

Thus, the proposed variational approach in combina-
tion with genetic algorithms may improve objective
parameter estimation, also in our setting. Future research
should explore this combined approach.

Future research and practical applications

The probabilistic ADC measurement in gliomas as pro-
posed here can be used for the planning of resections and
biopsies, as high-proliferative areas can be identified.
Moreover, it can be applied in modern radiotherapy tech-
niques where intensity modulation is used to adapt the
local dose to the biological activity in heterogeneous
tumor parts[21,22]. The identified low-proliferating and
high-proliferating parts could be also used in a tumor
growth model as described in Ref.[23] to more precisely
estimate the proliferation rate in different tumor areas.
Moreover, this approach could be established in other
heterogeneous tumor types where the ADC is used for
tumor therapy monitoring.

Conclusion

In conclusion, we have presented a method for the objec-
tive delineation of high- and low-proliferating areas in
high-grade gliomas. The probabilistic quantification
allows for an objective and reproducible extraction of
the ADC values in the different clusters. These objective
values, reflecting high-proliferating and low-proliferating
regions in gliomas may enable the detection of slight
changes in ADC under therapy, and can, for example,
aid the differential diagnosis between pseudoresponse
and pseudoprogression.

Appendix: The general EM algorithm

An algorithm, also known as the soft variant of K-means
is the probabilistic clustering EM algorithm with a prob-
abilistic model. The algorithm applied here can use a
Gaussian mixture model p(x) (Eq. (7)) with an n-dimen-
sional multivariate Gaussian (Eq. (6)), expectation value
vector ~�, random vector ~x and covariance matrix �.
These superpositions are linear combinations using the
normalized mixture coefficient � and can approximate
any continuous probability density to arbitrary accu-
racy[8].

Nð~xj ~�, �Þ ¼
1

2�ð Þn=2
1

�j j1=2
exp½�0:5ð~x� ~�ÞT��1ð~x� ~�Þ�

ð6Þ

pð~xÞ ¼
XK

k¼1

�kN

�
~xj ~�k,

X
k

�
ð7Þ

The general EM algorithm defines model parameters �,
which can be determined as latent or hidden variables Z
and can denote the labeling or the segmentation of the
data. In the multivariate Gaussian case, these model para-
meters are defined as the parameters of the Gaussian
mixture model (� ¼ ~�, ~�, ~�), where the components
determine the respective cluster arrays ~� ¼ ð ~�1 � � � ~�kÞ,
~� ¼ ð�1 � � ��kÞ, ~� ¼ ð�1 � � ��kÞ.

In the K-means case, the model parameters can be
defined as ~� ¼ ð ~�1 � � � ~�kÞ.

The quality measurement of the whole approach is
given by the probability pðZjX , �Þ. In the multivariate
Gaussian case, this parameter is defined as the responsi-
bilities or posterior probability �ðzkÞ � pðzk ¼ 1j~xÞ where
zk denotes these latent variables and is defined as a
binary vector. zk denotes to which class the voxel
belongs[8].

The general EM algorithm is denoted given the follow-
ing steps (adapted from Ref.[8]) if we consider a vector of
observations ~x.

�ðzÞk � pðzk ¼ 1j~xÞ ¼
pðzk ¼ 1Þpð~xjzk ¼ 1Þ

PK
j¼1

pðzj ¼ 1Þpð~xjzj ¼ 1Þ

¼
�kNðxj ~�, �kÞPK

j¼1
�jNðxj ~�j , �jÞ

ð8Þ

� Expectation step: Estimate pðZjX , �oldÞ (estimate
posterior probability (Eq. (8)) and evaluate latent
variables given the joint distribution of the para-
meters �old and the observations X .

� Maximization step: Optimize the model parameters
�new given by Eq. (9) and Eq. (10). In this step,
the posterior probability (Eq. (8)), determined
in the expectation step, is being used to maximize
the log-likelihood and to estimate the new parameter
set �new.

�new ¼ arg max
�

Qð�, �oldÞ ð9Þ

�old ¼
X

z

pðZjX , �oldÞ lnðpðX , Zj�ÞÞ ð10Þ

The log-likelihood function is checked for convergence
in a last step.
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