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Peroxisome proliferator-activated receptors (PPARs) are members of nuclear transcription factors. The functions of the PPAR
family (PPARA, PPARD, and PPARG) and their coactivators (PPARGC1A and PPARGC1B) in maintenance of lipid and
glucose homeostasis have been unveiled. However, the roles of PPARs in cancer development remain elusive. In this work, we
made use of 11,057 samples across 33 TCGA tumor types to analyze the relationship between PPAR transcriptional expression
and tumorigenesis as well as drug sensitivity. We performed multidimensional analyses on PPARA, PPARG, PPARD,
PPARGC1A, and PPARGC1B, including differential expression analysis in pan-cancer, immune subtype analysis, clinical
analysis, tumor purity analysis, stemness correlation analysis, and drug responses. PPARs and their coactivators expressed
differently in different types of cancers, in different immune subtypes. This analysis reveals various expression patterns of the
PPAR family at a level of pan-cancer and provides new clues for the therapeutic strategies of cancer.

1. Introduction

Peroxisome proliferator-activated receptors (PPARs), mem-
bers of nuclear receptor subfamily, are a series of ligand-
activated transcription factors (TFs) that regulate the
expression of target genes, which involve in various biological
processes, including cellular differentiation, cell proliferation,
lipid metabolism, and tumorigenesis [1]. PPARs can be acti-
vated by various ligands, such as fatty acids (FAs), eicosa-
noids, and some targeted drugs [2]. Upon binding to the
ligand, PPARs form a heterodimer with retinoid X receptor

(RXR), and this PPAR/RXR complex is required for its sub-
sequent binding to specific DNA regions in PPAR response
elements (PPREs), the gene promotor region [3]. PPARs then
trigger transcription of target genes after recruitment of coac-
tivators and release of corepressors [4]. PPARGC1A and
PPARGC1B were peroxisome proliferator-activated receptor
gamma coactivators 1 alpha and beta, respectively, playing
important roles in the PPAR signaling network [5]. There
are mainly three isotypes of PPARs with distinct tissue distri-
bution, metabolic patterns, and ligand specificity: PPARα,
PPARγ, and PPARδ [6]. Although the roles of the three
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isotypes played in carcinogenesis and chemoprevention have
not been clearly characterized [7], some agonists of them
have been used in clinical trials for years. There is no conclu-
sions but controversial results regarding the antitumor func-
tions of PPARα and PPARγ [8]. The characteristics of PPARs
differ from each other, and different isotypes may have differ-
ent impacts in different types of cancer. To date, there is no
bioinformatics study systematically investigating the tran-
scriptional levels of each PPAR in pan-cancer. Thus, it is of
importance to study the PPARs’ expression patterns in
pan-cancer and exploit the potential of PPAR-targeted drugs
when it comes to the treatment of differentially PPAR-
expressed tumors.

In this study, we analyzed the expression signatures of
PPARA, PPARD, PPARG, PPARGC1AA, and PPARGC1B
in pan-cancer. Utilizing multidimensional correlation analy-
sis, we found the associations between transcriptional levels
of PPARs and stemness, tumor purity, and drug sensitivity
across TCGA cancers.

2. Materials and Methods

2.1. Data Downloading and Preprocessing. On June 23, 2020,
the gene expression profiles, phenotype information, and
survival data of PARRA, PPARD, PPARG, PPARGC1A,
and PPARGC1B in 33 types of TCGA tumor samples and
adjacent tissues (a total of 11,057 samples) were downloaded
from GDC TCGA sets in the UCSC Xena database (http://
xena.ucsc.edu/) in formats of Fragments Per Kilobase per
Million (FPKM) and HTSeq-Counts. Meanwhile, demo-
graphics, tumor information, and follow-up data of all
patients were also extracted from the database.

The 33 types of TCGA tumors and abbreviations were as
follows: adrenocortical carcinoma (ACC), Bladder Urothelial
Carcinoma (BLCA), breast invasive carcinoma (BRCA), cervi-
cal squamous cell carcinoma and endocervical adenocarcinoma
(CESC), Cholangiocarcinoma (CHOL), colon adenocarcinoma
(COAD), Lymphoid Neoplasm Diffuse Large B-cell Lym-
phoma (DLBC), esophageal carcinoma (ESCA), glioblastoma
multiforme (GBM), head and neck squamous cell carcinoma
(HNSC), Kidney Chromophobe (KICH), kidney renal clear
cell carcinoma (KIRC), kidney renal papillary cell carcinoma
(KIRP), Acute Myeloid Leukemia (LAML), Brain Lower
Grade Glioma (LGG), liver hepatocellular carcinoma (LIHC),
lung adenocarcinoma (LUAD), lung squamous cell carci-
noma (LUSC), Mesothelioma (MESO), ovarian serous cysta-
denocarcinoma (OV), pancreatic adenocarcinoma (PAAD),
Pheochromocytoma and Paraganglioma (PCPG), prostate
adenocarcinoma (PRAD), rectum adenocarcinoma (READ),
Sarcoma (SARC), Skin Cutaneous Melanoma (SKCM), stom-
ach adenocarcinoma (STAD), Testicular Germ Cell Tumors
(TGCT), thyroid carcinoma (THCA), Thymoma (THYM),
Uterine Corpus Endometrial Carcinoma (UCEC), Uterine
Carcinosarcoma (UCS), and Uveal Melanoma (UVM) from
GDC TCGA documents in the UCSC Xena database.

2.2. Differential Expression Analysis and Coexpression
Analysis of PPARs between Tumor and Normal Samples.
For each and across all TCGA tumor types, we used the

“ggpubr” R package to perform differential expression analy-
sis (Wilcox test) between tumor and normal tissues. Only
tumor types with more than 3 normal samples were included.
The differences in expression of the 5 PPAR family genes in
pan-cancer were presented in a form of log2 Fold Change
(log2 FC) in a heatmap.

Using corrplot R package, coexpression analysis between
PPARA, PPARD, PPARG, PPARGC1B, and PPARGC2B
was also done at a transcriptional level, to explore the poten-
tial expression pattern between every two PPAR genes.
Moreover, a protein-protein interaction network among
those genes was constructed by using the STRING database
(https://string-db.org/) [9].

2.3. Clinical Correlation Analysis. To analyze the differences
in overall survival outcomes between patients expressing
high and low levels of PPARs, Kaplan-Meier plots for
PPAR genes in pan-cancer were generated by using the R
package. Phenotype and survival data for 33 TCGA cancer
types were downloaded on June 23, 2020, from GDC TCGA
sets in the UCSC Xena database (http://xena.ucsc.edu/).
Patients were divided into high- and low- expression groups
according to the median expression level of PPARA, PPARD,
PPARGC1A, and PPARGC1B, respectively.

In addition, Cox proportional hazard regression was
applied to access the hazard ratios of PPARA, PPARD,
PPARG, PPARGC1A, and PPARGC1B in each TCGA tumor
type. Moreover, differential analysis was also used to detect
the differences in the level of PPAR expression signatures in
different stages of STAD as an example. The threshold for
significance was set as two-paired p < 0:05.

2.4. Immune Subtype Analysis. Roles of immune tumor
microenvironment (TME) were of therapeutic and prognos-
tic significance in antitumor therapies. Six immune subtypes
across TCGA tumor types had been identified by investiga-
tors based on five representative immune signatures, which
offered a resource for analyzing the TME of some specific
tumor. For TCGA tumors, the distribution of immune
subtypes varies from each other and each immune subtype
presents different biological and clinical features, which
determine antitumor therapied to some extent [10]. To
access the mRNA expression levels of PPARA, PPARD,
PPARG, PPARGC1A, and PPARGC2B in the six different
immune subtypes across TGCA tumor types, we performed
differential expression analysis with the Kruskal test. Tumors
were characterized by immunogenomic features identified by
Thorsson et al., including wound healing (C1), IFN-γ domi-
nant (C2), inflammatory (C3), lymphocyte depleted (C4),
immunologically quiet (C5), and TGF-β dominant (C6) [10].

2.5. Stemness Indices and TME in Pan-Cancer. More than
tumor cells, solid tumor tissues consist of other normal cells,
such as stromal cells, immune cells, and vascular cells, which
made up TME together. We intended to analyze the correla-
tion between PPAR expression and the fraction of stromal
and immune cells in TCGA tumor samples. Methods to
access the proportion of these two TME components had
been proposed, one of which was ESTIMATE (Estimation
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of STormal and Immune cells in MAlignant Tumors using
Expression data) [11]. The ESTIMATE score was calculated
based on gene expression signatures and could reflect tumor
purity with favorable prediction accuracy. Thus, Spearman
correlation analysis was performed between the expression
level of 5 PPAR genes and stromal score by using the estimate
package and limma package.

To further analyze the associations between PPARs and
stemness features of pan-cancer, we calculated the stemness
indices of TCGA tumor samples by using a one-class logistic
regression (OCLR) algorithm and performed Spearman cor-
relation analysis based on gene expression and stemness
scores [12]. Stemness indices describe the features of self-
renewal and dedifferentiation within tumor cells, which
might promote distant metastasis and tumorigenesis. Here,
two types of stemness indices were obtained, including the
DNA methylation-based stemness index (DNAss) and
mRNA expression-based stemness index (RNAss).

For breast invasive carcinoma and liver hepatocellular
carcinoma, specifically, we accessed RNAss, DNAss, stromal
score, immune score, and ESTIMATE score (the algebraic
sum of the stromal score and the immune score) to analyze
the correlation relationship with PPAR transcriptional
expression.

2.6. Drug Sensitivity Analysis in Pan-Cancer. The data includ-
ing the RNA-seq profiles of PPAR genes and the drug activity
were downloaded from the CellMiner database (https://
discover.nci.nih.gov/cellminer/). Impute package from Bio-
conductor (http://www.bioconductor.org/packages/release/
bioc/html/impute.html) was used to preprocess the raw data.
CellMiner is a web-based tool with genomic and pharmaco-
logic information for investigators to make use of transcript
and drug response data in the NCI-60 cell line sets, which
was compiled by the U.S. National Cancer Institute [13].
Transcript expression levels of 22,379 genes, 360 micro-
RNAs, and drug responses of 20,503 compounds are avail-
able in the CellMiner website [14]. To explore the
correlation between the transcriptional expression of PPAR
genes and compound sensitivity, we followed the methods
of Dong et al. [15], and Pearson correlation analysis was
performed between the two controlled by p value < 0.05.

3. Results

3.1. Differential Expression Analysis and Coexpression
Analysis of PPARs between Tumor and Normal Samples.
The flowchart of the analysis process is summarized in
Figure 1. The gene expression of PPARA, PPARD, PPARG,
PPARGC1A, and PPARGC1B was displayed (Figure 2(a)).
Differential expression analyses with the Wilcox test were
performed on 5 PPAR family genes between tumor and para-
tumor samples (Figure 2(b)). Those 5 PPAR genes were
either down- or upregulated in most types of tumors.
PPARA, PPARG, PPARGC1A, and PPARGC1B were seen
with low expression in the majority of tumors while PPARD
is mainly upregulated.

Specifically, compared to normal tissues, PPARA was
observed with low expression in most types of tumors except

pan-lung: LUAD and LUSC. It is also obvious that PPARA
was the only gene in the PPAR family that was downregu-
lated in CHOL (p < 0:001, Figure 2(c)). Interestingly, how-
ever, we found significant overexpression of PPARD in
CHOL (p < 0:001, Figure 2(d)). There was a significantly dif-
ferential expression of PPARG in BRCA. More than BRCA,
both two lung tumors, LUAD and LUSC, expressed low
PPARG (p < 0:001), which is opposite to PPARA as well as
PPARD and different from the other 4 PPAR family genes
(Figure 2(e)). Significant overexpression of PPARGC1A was
observed in KICH (p < 0:001), and downregulation was
observed in KIRC and THCA (p < 0:001) (Figure 2(f)).

We also queried PPAR protein expressions from the
Human Protein Atlas database (https://www.proteinatlas
.org), and the PPAR proteins that combined to specific anti-
bodies in both tumor and normal issues were displayed in
Figure S1, which tend to follow the same expression
patterns as the results of differential expression analysis.

Coexpression analysis revealed a correlation (correlation
coefficient = 0:45) between PPARA and PPARGC1A, sug-
gesting a potential positive interaction between those two
genes (Figure 2(h)), which was further confirmed by the
protein-protein interaction (PPI) network (Figure S2). The
coexpression relationship could also be observed between
PPARA and PPARG (correlation coefficient = 0:24, p <
0:001). By contrast, a different coexpression pattern was
seen between PPARGC1A and PPAGC1B with a negative
correlation (correlation coefficient = −0:13, p < 0:001).

3.2. Clinical Correlation Analysis. We employed Kaplan-
Meier analyses on PPARA, PPARD, PPARG, PPARGC1A,
and PPARGC1B in 33 TCGA tumors (Figures 3(a)–3(f)).
Based on the median gene expression values, patients were
divided into high and low groups.

Low expression of PPARA was significantly associated
with poor prognosis in patients with KIRC (p < 0:01,
Figure 3(a)), GBM (p = 0:026), and LGG (p = 0:009).

By contrast, elevated expression of PPARD was corre-
lated with worse clinical outcomes of patients with LGG
(p = 0:040), LIHC (p = 0:018), and SARC (p = 0:011) while
elevated PPARD led to better clinical outcomes in BLCA
(p = 0:025) and UVM (p = 0:006).

The higher expression of PPARG and PPARGC1A was
associated with better prognostic outcomes in KRIC
(p < 0:001, Figures 3(c) and 3(d)). Likewise, low expression
of PPARGC1B might be a less favorable sign for clinical out-
comes in patients of READ (p = 0:011, Figure 3(f)), which is
consistent with the differentially low expression in READ
compared to paratumor samples.

Cox proportional hazard regression was applied to detect
the prognostic roles of PPARA, PPARD, PPARG,
PPARGC1A, and PPARGC1B in 33 TCGA tumors. Genes
with a hazard ratio ðHRÞ > 1 were considered as a prognostic
factor. From the forest plot (Figure 3(g)), we found that
PPARD and PPARG were of pan-cancer significance with
HR > 1 in most cancer types.

Specifically, in STAD, we found that the expression of
PPARG (p = 0:016) and PPARGC1A (p = 0:005) was corre-
lated with TNM stages. The expression level of PPARG was
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comparatively lower in stage III and higher in stage IV. Com-
pared to other TNM stages, the expression level of
PPARGC1A was the highest in stage I, followed by stage
IV, and was comparatively low in stage II and stage III
(Figure 4). The difference in the expression level of PPAR
family genes in different TNM stages might serve as predic-
tors of tumor development in clinical applications.

3.3. Immune Subtype Analysis. We applied differential
expression analysis with the Kruskal test on the mRNA
expression of 5 PPAR genes in the six immune subtypes
across 33 TCGA tumor types (Figure 5(a)).

The expression patterns of PPARA (p < 0:001), PPARD
(p < 0:001), PPARG (p < 0:001), PPARGC1A (p < 0:001),
and PPARGC1B (p < 0:001) varied in 6 immune subtypes
in pan-cancers (Figure 5(a)). Obviously, PPARD ranked the
first on the overall expression level in C1-C6.

In addition, different types of tumors displayed variation
within immune subtypes. For the C1-C6 immune subtypes of
LIHC, there were differences in the expression of PPARA
(p < 0:001), PPARD (p < 0:05), and PPARGC1A (p < 0:01)
(Figure 5(b)). C6 had the highest expression of PPARA, followed
by C4 and C3 while C4 has the lowest expression of PPARD.
The expression level of PPARGC1A varied by immune subtypes,
with C3, C4, andC6 comparatively highwhereas C1 andC2 low.

In BRCA, significant differences were observed in the
expression of PPAR family genes in the six immune subtypes
(Figure 5(c)). In general, C4 has the lowest expression of
PPAR genes. The expression of PPARA (p < 0:001), PPARG
(p < 0:001), PPARGC1A (p < 0:001), and PPARGC1B
(p < 0:001) showed similar patterns in C1-C6, with high

expression in C3 and C6 while comparatively low expression
in C1, C2, and C4. PPARD, however, expressed higher in C1
and C2 compared to other immune subtypes.

For SARC, C6 had the lowest expression of PPARA
(p < 0:05) and PPARGC1A (p < 0:01), whereas the expres-
sion level of PPARG (p < 0:05) was the highest among C1,
C2, C3, C4, and C6 immune subtypes (Figure 5(d)).

3.4. Stemness Indices and Microtumor Environment in Pan-
Cancer. Stromal scores of TCGA cancer samples were calcu-
lated by applying the ESTIMATE (Estimation of STromal
and Immune cells in MAlignant Tumors using Expression
data) algorithm [11]. Spearman correlation analysis was used
to describe the correlation between the expression level of
PPAR family genes and stromal scores in pan-cancer. As is
shown in Figure 6(c), we found a positive correlation
between PPARA and stromal scores in TGCT
(correlation coefficient = 0:60, p = 0). There was likewise a
relationship between PPARD and LAML with a correlation
coefficient = 0:48, p < 0:001. The expression of PPARG was
positively correlated with a number of tumor types, including
BRCA, DLBC, LGG, MESO, OV, PCPG, PRAD, SARC, and
SKCM, suggesting that elevated expression of PPARG was
associated with lower tumor purity in many types of tumors.
Significant differences were found between PPARGC1A and
PPARGC1B towards their relationship with tumor purity.
The higher expression of PPARGC1A was correlated with
high tumor purity in CHOL, GBM, KIRC, KIRP, and THCA,
while with low stromal scores of BLCA, HNSC, LUSC, and
TGCT, which was the opposite to the pattern of PPARGC1B.

Differential analysis

Coexpression analysis

Clinical analysis

Immune subtype analysis

Stemness score

Tumor purity

Drug sensitivity

Stage analysis

Survival analysis

Cox proportional
hazard model

RNAss

DNAss

Stromal score

Immune score

UCSC Xena database

RNA-seq data,
phenotype data
survival data,

stemness scores,
immune subtype data

Figure 1: The flowchart of the present study.
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To analyze the correlation between PPARs and stemness
features of pan-cancer, we calculated the stemness indices of
TCGA tumor samples by using a one-class logistic regression
(OCLR) algorithm and performed Spearman correlation
analysis based on gene expression and stemness scores [12].
Two types of stemness indices were accessed, which included
DNA methylation-based stemness index (DNAss) and
mRNA expression-based stemness index (RNAss).

There were differences between the two stemness indices on
the correlation with the PPAR expression level in TCGA tumors.
For DNAss, it is obvious that there were strong correlations
between TGCT and PPAR family genes, with positive correla-
tions of PPARD (correlation coefficient = 0:56, p < 0:001),
PPARG (correlation coefficient = 0:44, p < 0:001), and
PPARGC1B (correlation coefficient = 0:52, p < 0:001) and
negative correlations of PPARA (correlation coefficient = −0:59,
p < 0:001) and PPARGC1A (correlation coefficient = −0:66,
p < 0:001) (Figure 6(a)).

For RNAss, strong negative correlations were observed
between TGCT RNAss and PPARA (correlation coefficient =
− 0:63, p < 0:001), between THYM RNAss and PPARD
(correlation coefficient = −0:81, p < 0:001), between PCPG
RNAss and PPARG (correlation coefficient = −0:53, p < 0:001),
and between PRAD RNAss and PPARGC1A (correlation
coefficient = −0:63, p < 0:001) (Figure 6(b)). A positive associa-
tion between the expression profiles of PPARGC1B and the
RNAss of TGCT was detected (correlation coefficient = 0:64,
p < 0:001), suggesting that PPARGC1B might correlate with
the stemness in TGCT.

In BRCA (Figure 7(a)), specifically, the expression pro-
files of PPARA was positively correlated with BRCA stromal
scores (correlation coefficient = 0:14, p < 0:001), immune

scores (correlation coefficient = 0:21, p < 0:001), and ESTI-
MATE score (correlation coefficient = 0:2, p < 0:001). The
expression profiles of PPARD were positively correlated with
BRCA DNAss (correlation coefficient = 0:19, p < 0:001),
immune scores (correlation coefficient = 0:27, p < 0:001),
and ESTIMATE score (correlation coefficient = 0:21, p < 0:001).
Notably, we found negative correlations between PPARG
expression with RNAss (correlation coefficient = −0:45,
p < 0:001) and DNAss (correlation coefficient = −0:14, p <
0:001) while positive correlations with BRCA’s stromal
score (correlation coefficient = 0:47, p < 0:001), immune
score (correlation coefficient = 0:34, p < 0:001), and
ESTIMATE score (correlation coefficient = 0:43, p < 0:001).
In addition, slight but statistically significant correlations
were found between PPARGC1A and stemness indices
and tumor purity. There were strong correlations, however,
between PPARGC1B and stromal score (correlation
coefficient = 0:23, p < 0:001), immune score (correlation
coefficient = 0:34, p < 0:001), and ESTIMATE score
(correlation coefficient = 0:32, p < 0:001).

For LIHC (Figure 7(b)), however, there were slight
correlations between each PPAR family gene and stemness
indices and TME except relatively strong associations
between PPARA and tumor purity (stromal score:
correlation coefficient = −0:17, p < 0:001; immune score:
correlation coefficient = −0:29, p < 0:001; and ESTIMATE
score: correlation coefficient = −0:26, p < 0:001).

3.5. Drug Sensitivity Analysis in Pan-Cancer. To analyze the
potential effects of the PPAR family on drug response, we
performed Pearson correlation analysis between the
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transcriptional expression of PPAR family genes in NCI-
60 cancer cell lines and drug activity of 263 antineoplastic
drugs retrieved from the CellMiner database [16].

The scatter plots that displayed a significant correlation
relationship between drug sensitivity and gene expression are
presented in Figure 8 and ranked by the p value, selected
by p < 0:05. Notably, PPARGC1B was positively correlated
with the sensitivity of Bafetinib (correlation coefficient =
0:493, p < 0:001) and Nilotinib (correlation coefficient =
0:486, p < 0:001) and the resistance of staurosporine
(correlation coefficient = −0:469, p < 0:001). The sensitivity
of dabrafenib, a selective inhibitor of mutated forms of
BRAF kinase for BRAF-mutated melanoma, thyroid cancer,
and non-small-cell lung cancer, was found to be positively
associated with PPARGC1A (correlation coefficient = 0:448,
p < 0:001) and PPARGC1B (correlation coefficient = 0:377,
p = 0:003). Highly expressed PPARG tumor cells were more
resistant to carboplatin (correlation coefficient = −0:422,
p < 0:001), cisplatin (correlation coefficient = −0:396, p =
0:002), arsenic trioxide (correlation coefficient = −0:419, p <
0:001), and lomustine (correlation coefficient = −0:410, p =
0:001) (Figure 8).

4. Discussion

In the present study, we aimed to explore the correlation of
PPAR transcriptional expression with TCGA tumor features,
which include TME, clinical significance, immune subtypes,
stemness, and drug responses. PPAR isotypes showed dis-
tinct effects on tumor development. Using multidimensional
analysis, we first performed differential expression analysis
on a total of 11,057 samples (10,327 tumor samples and
730 adjacent samples) across 33 TCGA cancer types and
found significant difference on the PPARs’ expression level
in different tumor types. We also applied survival analysis
and Cox proportional hazard regression. Statistically signifi-
cant survival differences were observed between high and
low PPAR-expressed patients in some types of cancers,
suggesting that PPARs might become potential prognostic
indicators for clinical applications.

It is also worth noting that PPARG along with
PPARGC1A was found to be differentially expressed in the 4
stages of stomach adenocarcinoma, with highest PPARG in
stage IV, which is consistent with the findings of Nagy et al.
that PPARG may contribute to STAD carcinogenesis [17]. In
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Figure 3: The results of survival analysis of PPARs in pan-cancer. (a–f) Kaplan-Meier plots of PPARs in pan-cancer showing the differential
survival outcomes of high PPAR and low PPAR (p < 0:05). (g) Cox proportional hazard analyses illustrating the hazard ratios (HRs) of PPARs
in 33 TCGA tumors; those PPARs whose HR > 1 in certain types of cancer were regarded as danger factors of the very type of cancer, which
were unfavorable for prognostic outcomes.
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this study, however, PPARGwas found to have low expression
in the majority of TCGA cancers. Evidence backed for
PPARG’s antineoplastic actions in inducing cell cycle arrest,
terminal differentiation, and anti-inflammatory effect [18].
Troglitazone (TGZ), a PPARG agonist, was reported to induce
G2/M cell cycle arrest through activation of p38 mitogen-
activated protein kinase in renal cell carcinoma [18, 19], and
similar effects were also seen in bladder cancer cells [20].
Another agonist of PPARG, curcumin, was able to eliminate
oxidative stress and chronic inflammation via downregulating
the WNT/β-catenin pathway, which is observed to have aber-
rant activation in many cancers [21]. Sporadically, the tumor-
promoting side of PPARG was observed in some cancers; it is
easy to infer that the precise effects of PPARG and its agonists
might depend on types of cancers and tumor environment.

Moreover, according to the C1-C6 immune subtypes
previously identified by investigators [10], we classified
tumor samples by representative immune signatures and
examined the RNA-seq level of PPARA, PPARD, PPARG,
PPARGC1A, and PPARGC1B from C1 to C6, which were
all seen to have differential expressions. These immune fea-
tures along with extracellular matrix, tumor vasculature,
and tumor cells make up the concept of the tumor microen-
vironment (TME), the heterogeneity of which highly influ-
ences therapeutic response and clinical prognosis [22].
Thus, we further accessed the fractions of stromal cells and
immune cells in tumor samples of 33 TCGA cancer types
by calculating stromal scores, immune scores, and ESTI-

MATE scores. Those TME characteristics were correlated
with the expression level of PPARA, PPARD, PPARG,
PPARGC1A, and PPARGC1B. Unexpectedly, correlations
did exist in some types of cancers. In breast invasive carci-
noma, particularly, PPARG and PPARGC1B were negatively
correlated with tumor purity.

Stemness has been proposed to describe the stem cell-like
characteristics of the tumor: self-renewal and dedifferentiation
[23]. The acquisition of stem cell-like properties has been
reported to be found in many tumor progression [24]. Here,
we utilized an OCLR approach to calculate the RNAss score
and DNAss score of tumor samples and then correlated it with
transcriptional signatures of PPARs. We found an association
between PPARs and stemness within tumors, suggesting that
PPARs may play a role in stemness maintenance.

This study also found that the transcriptional expression
level of PPARs, PPARG1A, and PPARG1B was associated
with drug responses. Notably, high expression of PPAGC1B
was even more sensitive to Bafetinib and Nilotinib across
cancer treatments, which is of clinical significance for
selection of antitumor therapies.

The three isotypes of peroxisome proliferator-activated
receptors differ in both physiological functions and roles
in carcinogenesis. PPARα, encoded by PPARA, mainly
enriches in the liver, kidney, and heart, regulating fatty
acid metabolism and mitochondrial biosynthesis [25]. In
addition to its endogenous ligands (fatty acids), PPARα
responds to the PPARα agonists (synthetic fibrates), such
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Figure 5: The results of correlation analysis between members of PPAR and immune subtypes. (a) The transcriptional expression of PPARs
in C1-C6 immune subtypes across TCGA cancers. (b–d) Box plots showing the expression level of PPAR immune subtypes in LIHC, BRCA,
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as fenofibrate and gemfibrozil, which have been working
well in the treatment for hypolipidemic diseases [26].
Moreover, PPARα agonists have been reported to show
antitumor effects in colon carcinogenesis. However, it is
still controversial whether the roles of PPARα is cancer-
repressing or cancer-promoting [25]. Some studies sug-
gested that long-term activation of PPARα induced hepa-
tocellular carcinoma in mice and was essential for the
development of hepatic steatosis [27]. The roles of PPARα
in carcinogenesis require further elucidation. PPARG,
encoding PPARγ, functions as a key regulator of glucose
homeostasis and adipocyte differentiation [28]. Downregu-
lation of PPARγ is associated with decreased terminal dif-
ferentiation and cell cycle arrest, which induces cell
proliferation and leads to tumorigenesis [7, 29]. The
potential mechanism was proposed by Drori et al. that
the PPARγ-induced differentiation may be mediated by a
putative PPARγ coactivator, HIC5, suggesting the impor-
tance of coactivators in PPARγ signaling [30]. Peroxisome
proliferator-activated receptor coactivators 1 alpha and
beta (PPAGC1A and PPARGC1B, respectively) cooperate
with PPARPγ, allowing the subsequent interaction

between PPARγ and other transcription factors [31, 32].
Pharmacological activators of PPARδ also show controver-
sial effects on the hallmarks of caner, which may depend
on the type of PPARδ ligands and target tissues [33, 34].

Although this study is the first one to multidimensionally
analyze peroxisome proliferator-activated receptors (PPARs)
in pan-cancer, it still possessed some limitations that warrant
consideration. Firstly, all the samples involved in this study
were from America, and thus, we were not quite sure about
the applicability of the prediction model in Europe and Asia.
Second, the results of this study have not been verified by
other independent databases, and thus, our future work is
validating it by our own data and other public database.
Third, the potential mechanism in this study is based on bio-
informatics analysis and has not been verified by molecular
and animal experiments. The analysis of this study focuses
on the correlation between the PPAR family and multiple
omics data. However, the biostatistical correlation could
not elucidate the direct interaction and direct regulation
mechanism, which should be the main limitation of this
study. Thus, we plan to verify these potential mechanisms
via molecular experiments. Further investigations are
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Figure 6: The results of correlation analysis between members of PPAR and stemness indices and microenvironment scores. (a, b) The two
heatmaps showing the correlation of the expression level of PPARA, PPARD, PPARG, PPARGC1A, and PPARGC1B and stemness indices
(DNAss and RNAss) in 33 TCGA cancer types. DNAss: DNAmethylation-based stemness score; RNAss: RNA-based stemness score. (c) The
heatmap showing the correlation between stromal scores and the mRNA expression of PPARs (red points represent a positive correlation
while blue points represent a negative correlation).
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Figure 7: The correlation between PPARs and their coactivators and stemness scores (RNAss and DNAss), stromal scores, immune scores,
and ESTIMATE scores in breast invasive carcinoma (BRCA) and liver hepatocellular carcinoma (LIHC).
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required to figure out the potentials of PPARs and their coac-
tivators as drug targets for cancer, which makes our study
even more important in the contribution to the expression
signature analysis of PPARA, PPARD, PPARG, PPARGC1A,
and PPARGC1B.

5. Conclusion

Weperformedmultidimensional analyses on PPARA, PPARG,
PPARD, PPARGC1A, and PPARGC1B, including differential
expression analysis in pan-cancer, immune subtype analysis,
clinical analysis, tumor purity analysis, stemness correlation

analysis, and drug responses. PPARs and their coactivators
expressed differently in different types of cancers, in different
immune subtypes. This analysis reveals various expression pat-
terns of the PPAR family at a level of pan-cancer and provides
new clues for the therapeutic strategies of cancer.

Data Availability

The datasets generated and/or analyzed during the current
study are available in Supplementary Materials and TCGA
program (https://portal.gdc.cancer.gov).
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