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Background: Differentiated thyroid cancer (DTC) is the most common type of thyroid

cancer. Many of them can relapse to dedifferentiated thyroid cancer (DDTC) and exhibit

different gene expression profiles. The underlying mechanism of dedifferentiation and the

involved genes or pathways remained to be investigated.

Methods: A discovery cohort obtained from patients who received surgical resection

in the Fudan University Shanghai Cancer Center (FUSCC) and two validation cohorts

derived from Gene Expression Omnibus (GEO) database were used to screen

out differentially expressed genes in the dedifferentiation process. Weighted gene

co-expression network analysis (WGCNA) was constructed to identify modules highly

related to differentiation. Gene Set Enrichment Analysis (GSEA) was used to identify

pathways related to differentiation, and all differentially expressed genes were grouped

by function based on the GSEA and literature reviewing data. Least absolute shrinkage

and selection operator (LASSO) regression analysis was used to control the number

of variables in each group. Next, we used logistic regression to build a gene signature

in each group to indicate differentiation status, and we computed receiver operating

characteristic (ROC) curve to evaluate the indicative performance of each signature.

Results: A total of 307 upregulated and 313 downregulated genes in poorly

differentiated thyroid cancer (PDTC) compared with papillary thyroid cancer (PTC) and

normal thyroid (NT) were screened out in FUSCC cohort and validated in two GEO

cohorts. WGCNA of 620 differential genes yielded the seven core genes with the highest

correlation with thyroid differentiation score (TDS). Furthermore, 395 genes significantly

correlated with TDS in univariate logistic regression analysis were divided into 11 groups.

The areas under the ROC curve (AUCs) of the gene signature of group transcription and

epigenetic modification, signal and substance transport, extracellular matrix (ECM), and

metabolism in the training set [The Cancer Genome Atlas (TCGA) cohort] and validation

set (combined GEO cohort) were both >0.75. The gene signature based on group
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transcription and epigenetic modification, cilia formation andmovement, and proliferation

can reflect the patient’s disease recurrence state.

Conclusion: The dedifferentiation of DTC is affected by a variety of mechanisms

including many genes. The gene signature of group transcription and epigenetic

modification, signal and substance transport, ECM, and metabolism can be used as

biomarkers for DDTC.

Keywords: papillary thyroid cancer, dedifferentiation, functional grouping, gene signature, LASSO, WGCNA

INTRODUCTION

Papillary thyroid cancer (PTC) is the most common type of
thyroid cancer, and the majority of PTCs exhibit a relatively
good prognosis (1, 2). However, it has been observed recently
that some PTCs may dedifferentiate in some situations. When
PTC appears to be dedifferentiated, its prognosis becomes very
poor, and conventional surgical treatment cannot achieve good
therapeutic effects. Such patients often experience relapse or
metastasis in a short period of time (3–5). At present, the
treatment methods for poorly differentiated thyroid cancer
(PDTC) and anaplastic thyroid cancer (ATC) are limited, and
their progression mechanism is still unclear.

It has been shown that many ATC and PDTC result
from dedifferentiation of DTC (6). In addition, some genetic
abnormalities such as TERT and TP53 mutation may play an
important role (7, 8). A considerable number of studies have
shown that occurrence and development of PDTC and ATC
are closely related to immune microenvironment and epigenetic
changes (9–12). Our previous study also revealed that some
genes may have a significant impact on the initiation and
progression of dedifferentiated thyroid cancer (DDTC) through
metabolism-related pathways (13). However, considering that
dedifferentiation of DTC is accompanied by a great increase in
the degree of malignancy, it is likely that dedifferentiation must
involve more than one mechanism. The mechanisms of how
genes affect DTC dedifferentiation remain to be studied.

This study was oriented toward mining out differentially
expressed genes among PDTC, PTC, and normal thyroid (NT)
at the level of transcriptome and then classifying them into
different groups based on their biological functions to explore
possible dedifferentiation-related processes. We expect that our
findings could provide a plausible basis for further study of
PDTC, thereby helping to indicate prognosis and development of
PTC and exploring the possibility of reversing dedifferentiation
or re-differentiation.

METHODS

Sample Collection
Six NT, five PTC, and five PDTC specimens were obtained
from eight patients who underwent surgical management
in the Fudan University Shanghai Cancer Center (FUSCC)
(Supplementary Table 1). The information of the eight patients
and 16 samples was described in our previous study (13). These

16 samples were included in a discovery cohort and used for high-
throughput RNA sequencing (RNA-seq) to identify differentially
expressed genes. Written informed consent was obtained from
each patient before his/her specimens were used in this study,
and the study was approved by the Medical Ethics Committee
of the FUSCC. All procedures performed in this study were in
accordance with the Declaration of Helsinki.

RNA-Seq Analysis
Total RNA was extracted from all samples using TRIzol
reagent (Life Technologies, Carlsbad, CA). We used RiboMinus
eukaryote kit (Qiagen, Valencia, CA) to remove ribosomal RNA
of total RNA (∼3mg) before RNA-seq libraries construction.
Strand-specific RNA-Seq libraries were prepared using the
Illumina workflow (New England BioLabs, Beverly, MA).
Next, the samples were fragmented, reverse-transcribed, and
ligated to Illumina adaptors. We purified the ligated cDNA
products to remove second-strand cDNA. After 13–15 cycles of
amplification, libraries were controlled for quality and quantified
using with an Agilent 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA) and sequenced by a HiSeq 2000 sequencing
system (Illumina, San Diego, CA) on a 100-bp paired-end run.
Clustal Omega was used for sequence alignment. Human genome
version GRCh38.100 was used throughout. RNA-seq data were
normalized by fragments per kilobase per million (FPKM).
Significant differences were determined by Limma package
(version 3.11; https://bioconductor.org/packages/limma/).

The Cancer Genome Atlas and Gene
Expression Omnibus Cohorts
The Cancer Genome Atlas (TCGA) mRNA expression data
(FPKM) was sourced from the University of California Santa
Cruz (UCSC) Cancer Browser (14). The raw data of Gene
Expression Omnibus (GEO) combined GEO cohort including
the GSE29265 cohort (20 NTs, 20 PTCs, and 9 ATCs) (15),
GSE33630 (16), GSE53157 (17), GSE65144 (18), and GSE76039
(19) were obtained from the GEO database (20, 21) and were
background adjusted and normalized. The ComBat method was
performed to remove batch effects by the R package “sva.”
According to the annotation file, probes were matched with
gene symbol, and probes that were not matched to gene symbol
were deleted. When more than one probe matched the same
gene symbol, average value was calculated as the final expression
value. We performed a correlation analysis on expression matrix
of PDTC and ATC samples in the combined GEO cohort,
and we found that PDTC and ATC are highly correlated
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TABLE 1 | Function based differential gene grouping.

Group Genes

Cell differentiation and rhythm CIPC, HHEX, NFIA, TCTN1, ARNTL2

Substance and signal transduction ADCY9, ANK3, BMPR1A, CACNA1I, CHD6, CIRBP, CLIC3, DOP1A, DYNLL2, ERLIN2, FZD5, GPX3, ILDR1, KCNJ16,

KCNQ1, KLHDC1, LMBRD2, NEBL, OBSL1, PCYOX1, PEBP1, PLLP, RAB30, RALGPS1, RIC3, SEC11C, SELENBP1,

SLC20A2, SLC22A17, SLC48A1, TEF, TMEM50B, TOM1L2, TXNL1, AQP9, GAS2L3, GNA12, GPR173, KCNK6, KPNA2,

MSR1, MYO1F, PPP1R18, PSTPIP2, SLC36A1, WASF1

Transcription and epigenetic modification PRDM16, RORA, RORC, SALL2, SECISBP2L, SMAD6, SP4, TBX3, TPMT, ZBTB4, ZNF154, ZNF19, ZNF208, ZNF471,

ZSCAN18

Protein modification PTPN21, RNF146, RNF170, RNF180, USP51, USP54, ZNF10

Cilia formation and movement BBOF1, BBS1, CFAP70, DNAH7, IQCA1, MAATS1, PIFO, TAPT1, TEKT2

Extracellular matrix ADAM19, ANGPTL2, COLGALT1, PDGFA, RCN3, S100A3, SERPINH1, SH2D2A, SH3PXD2A, SLC8A1, SRPX2, TNC,

TRPV2, AMIGO1, CPQ, CRHBP, NPNT, PARM1, PEF1, RGN, STX12

Apoptosis ARL4C, BRIP1, EME1, EXO1, FANCI, FEN1, FHL3, GNA15, LMNB1, LMNB2, MAP4K4, MCM10, MELK, RAD51,

SLC20A1, SPOCD1, TOP2A, TPX2, AKTIP, ARHGEF5, BCL2, BEX4, BTG2, C2orf40, CDS1, GABARAPL2, GPRASP1,

LAMTOR3, MPPE1, STK33, TENT5C, TERF2IP, TMEM192,

Proliferation ANLN, ASF1B, ASPM, AURKB, BUB1, CDC45, CDCA5, CDCA8, CDK2, CDT1, CENPF, CENPI, CENPL, CENPW, CEP55,

CHEK1, CHTF18, CLIP2, DIAPH3, DNMT1, DTL, E2F1, E2F7, E2F8, ECT2, FOXM1, GINS1, GINS4, GTSE1, HASPIN,

HJURP, IQGAP3, KIF11, KIF14, KIF23, KIF2C, KIF4A, MAD2L1, MARVELD1, MCM2, MCM4, MCM5, MIS18A, MKI67,

NCAPG, NCAPG2, NCAPH, NDC80, NEK6, NTMT1, NUF2, NUSAP1, ORC1, ORC6, PDCD11, PHF19, PIMREG,

PPP1R14B, PRC1, RACGAP1, RNASEH2A, SCO2, SGO1, SKA3, SMC4, SNRPB, SPC24, TCF19, TRIO, TRIP13,

TUBA1B, TUBB6, UBE2C, UBE2T, UHRF1, WDHD1, ZWILCH, ZWINT, NAP1L5, NEK11, RCBTB1, RPRD2, STRBP,

TMEM30B, VEZT

Invasion ANPEP, COL1A2, COL7A1, CORO1C, CTHRC1, EZH2, FMNL1, GREM1, LGALS1, NHSL1, PLAUR, PLXNA1, TPBG,

TPM4, TWIST1, CD164, DMTN, EPB41L4B, EPB41L5, HOOK2, ID4, MARVELD2, MPP5, OCLN, PIK3CB, RBM47,

RUFY3, SFTA3, SLIT3, ZFP3

Metabolism ACOT7, ADAMTSL1, ARSI, B4GALT2, ENO1, GALNT6, HK3, KIF20A, MTHFD2, PKM, PLPP4, PYGL, RALA, RRM2,

SLC7A5, TK1, TYMS, UGCG, ACE2, ACOX2, ADHFE1, AK8, AK9, ALDH5A1, ALDH9A1, CCDC28A, CERS4, CHPT1,

CROT, CYP2C8, ENOSF1, EPHX2, EPM2AIP1, ETFRF1, FAM174B, GKAP1, GPD1L, HSD17B8, IDNK, INPP5J, ITM2B,

IYD, LHPP, LPCAT2, MAN1C1, MDH1B, MTMR10, NAPEPLD, NME5, NT5C2, PDE1A, PLPP3, RALGAPA2, SLC16A11,

SLC25A23, SLC25A4, SORD, ST3GAL1, ST6GAL2, TM7SF2

Immunity ADGRE2, C5AR1, CCR1, CD276, CD300A, CEACAM4, CSF1R, CXCL1, CXCL5, ELF4, FCGR2A, FCGR2B, FPR2,

LILRB2, MICB, NCF2, NFKBIE, NLRC4, NOD2, OSCAR, PSMD2, RAP2B, RELB, SECTM1, SIGLEC1, SIRPA, SIRPB2,

SLAMF8, SPHK1, TNFAIP6, VSIG4, BMP7, CRBN, DUOXA1, METTL7A, PBXIP1, PRKCQ, SASH1, TRIM2, TXNDC11

Ungrouped C12orf75, CMSS1, C11orf71, C15orf56, C16orf46, C1orf210, CCDC191, CCDC85A, ZNF273, ZNF334, ZNF415, ZNF483,

ZNF518B, ZNF585B, ZNF626, ZNF680, ZNF763, CYB5D1, ERMP1, FAM189A2, FAM8A1, FBXO16, IGSF22, IQCK,

KIAA1671, KLHDC2, KLHL14, LNX1, LYRM9, PLEKHB1, PLEKHH1, PPIL6, PPP1R21, PXK, SPATA6L, THAP6,

TMEM132B, TMEM245, ZMAT1, ZMYND12, KIAA0930, TCP11L1, TMEM51, VMO1, ARMCX4

(Supplementary Figure 1). Therefore, we used the GSE29265
cohort and GSE33630 cohort as verification cohorts to verify
the effectiveness of gene signatures. All patients were staged by
the 8th edition of the TNM staging system published by the
American Joint Committee on Cancer. Only samples for which
all clinical data and thyroid differentiation score (TDS) could be
obtained were included in the analysis.

Gene Function Annotation and Interaction
Analysis
Gene Set Enrichment Analysis (GSEA) was performed using
GSEA software. C5 collection [Gene Ontology (GO)] was utilized
to identify GO terms that were differentially regulated in
different comparisons. GO and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analysis were performed by DAVID
online function annotation tool (22, 23) to classify differentially
expressed genes into functional categories. The enriched group
was ranked by p-value (p < 0.05) and false discovery rate

(FDR < 0.25). The GeneMANIA prediction server was used for
interaction analysis between genes (24).

Weighted Gene Co-expression Network
Analysis
Weighted gene co-expression network analysis (WGCNA) was
performed by the R WGCNA package (25) (v1.66) to identify
TDS-relatedmodules and their genemembers. Themodules were
identified by Dynamic Hybrid Tree Cut algorithm. We chose the
yellow module with the highest correlation coefficient to screen
out hub genes.

Statistical Analysis
A comparison of categorical variables was performed using
chi-square test and Fisher’s exact test. Descriptive statistics are
presented in the tables. TDS was proposed by TCGA project. It
summarizes the expression of 16 genes (DIO1, DIO2, DUOX1,
DUOX2, FOXE1, GLIS3, NKXX2-1, PAX8, SLC26A4, SLC5A5,
SLC5A8, TG, THRA, THRB, TPO, and TSHR) related to thyroid
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FIGURE 1 | Identification of deregulation of genes in DDTC. (A) Volcano maps: left map, 1,728 downregulated genes (green dots) and 988 upregulated genes (red

dots) in PDTCs compared with NT tissues; right map, 2,630 downregulated genes (green dots) and 1,246 upregulated genes (red dots) in PDTCs compared with

PTCs; fold change (FC) ≥ 2, p < 0.05. (B) Compared with PTC and NTs, overlap of abnormal expressed genes in PDTC. (C) The Venn diagram showed that 1,465

genes abnormally expressed in the FUSCC cohort were validated into GSE29265 and GSE33630, and 313 downregulated genes and 307 upregulated genes were

screened out. (D–F) The heat map shows the expression data of 620 dysregulated genes in the FUSCC cohort, GSE29265 cohort, and GSE33630 cohort. DDTC,

dedifferentiated thyroid cancer; PDTC, poorly differentiated thyroid cancer; NT, normal thyroid; PTC, papillary thyroid cancer; FUSCC, Fudan University Shanghai

Cancer Center.

metabolism and function, which can be an index to determine
the degree of thyroid-specific differentiation.We have eliminated
these genes in subsequent calculations to avoid bias (26).
According to median of TDS, TCGA dataset was divided into
two groups: highly differentiated and poorly differentiated. Least
absolute shrinkage and selection operator (LASSO) regression
was performed on each function group to reduce the number of
variables. Multivariate logistic regression was used to determine
genes to be finally included in the signature; expression levels
of the differential genes as signatures in each patient were

integrated into a risk score fitted by logistic regression (Table 1).
Non-parametric receiver operating characteristic (ROC) analysis
was performed for each signature, and we calculated area
under the ROC curve (AUC) to test its indicative power
for dedifferentiation. The Kaplan–Meier method was used to
construct the disease-free survival (DFS) curve. Two-side p <

0.05 was considered statistically significant. Statistical analysis
and visualization were carried out through SPSS (v25.0; IBM
Corporation, Armonk, NY) and R (v3.6.3; R Foundation for
Statistical Computing, Vienna, Austria) software.
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FIGURE 2 | Gene modules identified by weighted gene co-expression network analysis (WGCNA) and indicative ability of hub gene signature constructed by logistic

regression for PTC differentiation and disease free survival rate. (A) Cluster the gene dendrograms according to topological overlap and assign different colors to each

module. Finally, seven co-expression modules were constructed. The size of these modules varies according to the number of genes they contain. (B) Module–TDS

associations. Each row corresponds to a module eigengene; each column corresponds to TDS. Each cell contains the corresponding correlation and p-value. (C)

Using heat map plots to visualize gene networks. The heat map depicts the topological overlap matrix (TOM) between all genes in the analysis. (D) Heat map of

module adjacency. Red indicates high adjacency (positive correlation), and blue indicates low adjacency (negative correlation). (E) The receiver operating characteristic

(ROC) shows indicative ability of hub gene signature for TDS. (F) Hub gene signature fails to distinguish DFS well. PTC, papillary thyroid cancer; TDS, thyroid

differentiation score; DFS, disease-free survival.

RESULTS

Identification of Genes Related to
Differentiation Status in Dedifferentiated
Thyroid Cancer
To identify genes that may relate to dedifferentiation of DTC,
we first analyzed changes in high-throughput transcriptome
expression profile of five PDTCs, five PTCs, and six NTs
from the FUSCC cohort. Then, 1,465 deregulated genes (690
upregulated and 775 downregulated, fold change ≥ 2, p <

0.05) were found among three groups (Figure 1A). Then we
found out the corresponding expression values of these genes
in two GEO datasets (GSE29265 and GSE33630) and confirmed
their differential expression (307 upregulated genes and 313
downregulated genes, fold change ≥ 1, p < 0.05), as shown in
Venn diagrams and heat maps, which finally validated our target
gene set for an in-depth study (Figures 1B–F).

Weighted Gene Co-expression Network
Analysis Obtained a Co-expression Module
Containing Seven Hub Genes
The WGCNA of 620 valid genes was carried out. Seven gene
co-expression modules were detected. WGCNA assigned colors

to name each module, and the yellow module showed the
highest correlation with TDS (Figures 2A–D). Then we screened
genes by direct correlation between genes and specified traits,
module identity, and weighted correlation; METTL7A, KCNQ1,
ALDH9A1, C16orf46, PLAUR, BCL2, and TPMT were defined
as the hub genes. The expression levels of these seven hub
genes in each patient were fitted to a dedifferentiation risk
score through logistic regression. The AUC value of this risk
score in TCGA cohort reached 0.91(Figure 2F) and 0.73 in GEO
combined cohort (Supplementary Figure 2). However, after the
patients were divided into two groups based on the risk score,
the difference in DFS between two groups was not significant
(Figure 2E).

Functional Classification of Differentially
Expressed Genes
The seven hub genes obtained by WGCNA showed no good
results in functional enrichment and thus cannot fully reflect
the impact of abnormally expressed genes on differentiation.
Therefore, we screened 620 genes through univariate logistic
regression analysis and found 396 genes that significantly
correlated with TDS. Next, we tried to group these genes
into functional groups based on the results of GSEA. We
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TABLE 2 | Risk score for each functional group.

Group Risk score

Cell differentiation and rhythm Risk score = (0.006 × HHEX ) + (0.057 × CIPC) + (−0.381×NFIA) + (−0.506 × TCTN1) + (0.056 × ARNTL2)

Substance and signal transduction Risk score = (−0.497 × KLHDC1) + (−0.006 × PEBP1) + (−0.363×FZD5) + (−0.106 × KCNQ1) + (0.048 × SLC48A1)

+ (0.529 × ILDR1) + (−0.729 × ANK3) + (−0.248 × TOM1L2)

Transcription and epigenetic modification Risk score = (−0.079 × TMPT ) + (0.087 × ZSCAN18) + (−0.405 × SMAD6) + (−0.660 × PRDM16) + (0.029 × TBX3)

Protein modification Risk score = (−0.091 × USP54) + (−0.194 × RNF180) + (−0.251 × ZNF10)

Cilia formation and movement Risk score = (−0.854 × TAPT1) + (−9.068 × DNAH7) + (3.525 × BBS1)

Extracellular matrix Risk score = (−0.200 × SH3PXD2A) + (0.112 × SLC8A1) + (−0.056×CPQ) + (−0.067 × PEF1) + (0.023 × TNC)

Apoptosis Risk score = (0.721 × TMEM192) + (−0.412 × ARHGEF5) + (−0.381 × BCL2) + (0.240 × SLC20A1)

Proliferation Risk score = (0.245 × CLIP2) + (−0.724 × NEK11) + (0.648 × NTMT1) + (4.155 × IQGAP3)

Invasion Risk score = (1.278 × NHSL1) + (0.327 × OCLN) + (−0.075 × EPB41L4B) + (0.096 × PLAUR) + (0.201 × PIK3CB) +

(−0.192 × EPB41L5) + (−0.019 × ID4) + (−0.050 × TPM4) + (−0.525 × MARVELD2)

Metabolism Risk score = (0.131 × CHPT1) + (−0.054 × PDE8B) + (−0.110 × HSD17B8) + (−1.226 × ADAMTSL1) + (−0.052 ×

ST3GAL1) + (0.074 × SLC7A5) + (0.900 × ACOT7) + (−0.225 × PYGL)

Immunity Risk score = (0.059 × SECTM1) + (−0.125 × RAP2B) + (0.121 × ELF4) + (0.131 × CRBN) + (−0.140 × NFKBIE) +

(−0.030 × SASH1) + (1.109 × CEACAM4) + (0.032 × OSCAR)

Ungrouped –

found that the results of GSEA were mostly concentrated in
proliferation, immunity, metabolism, and other related pathways
(Supplementary Tables 2, 3). The most significant phenotype of
tumor cells after dedifferentiation was the proliferation ability
(27, 28); as a result, some phenotypes of interest may have been
masked by proliferation during GSEA.

Therefore, we combined the results of GSEA and data from
the literature to divide all deregulated genes into 11 groups
including cell differentiation and rhythm, substance and signal
transduction, transcription and epigenetic modification, protein
modification, cilia formation and movement, extracellular
matrix (ECM), apoptosis, proliferation, invasion, metabolism,
and immunity (Table 2). In addition, there were 44 genes
that cannot be clearly functionally classified (Table 1;
Supplementary Table 4).

Gene Signatures of Signal and Substance
Transport, Transcription and Epigenetic
Modification, Extracellular Matrix, and
Metabolism Group Can Indicate
Dedifferentiation of Papillary Thyroid
Cancer
Among the 396 genes obtained in multivariate regression
analysis, many genes have been extensively studied. For example,
EZH2, a methyltransferase, is closely related to tumor metastasis
and proliferation (29, 30). TNC, an extracellular matrix protein,
plays an important role in tumor cell invasion and metastasis
(31, 32). PRDM16, which also plays an important role in protein
modification, is also closely related to fat metabolism and tumor
growth (33, 34). In addition, there are many important tumor-
related genes. We have further screened them in each group to
construct a functionally related gene signature.

We first used LASSO regression to screen each group of genes
(Supplementary Figure 3) and then performed multivariate

logistic regression analysis adjusted by T stage, lymph node
metastasis (LNM), and BRAFV600E on each group of genes
selected to determine genes to be incorporated into the signature,
and we evaluated the indicative ability of each signature by
calculating the AUC value in the training set (TCGA cohort)
and validation set (GEO combined cohort). We found that
the AUC value in the group signal and substance transport,
transcription and epigenetic modification, ECM, andmetabolism
was >0.75 in both the training set and validation set (Figure 3).
It was worth noting that in two datasets, the AUC values of
the invasion group reached 0.919297 and 0.746622, and the
cilia formation and movement group also reached 0.805777 and
0.709767 (Supplementary Figure 4).

Correlations of the Gene Signatures With
Clinical Features of Papillary Thyroid
Cancer
In further analyses, we investigated the clinicopathological
significance of the gene signatures associated with
dedifferentiation to reveal their further research priority
and translational potential.

Based on the gene signature of each group, we divided all
TCGA patients into high-risk and low-risk groups, and we
analyzed their survival differences. We found that although
some risk score of gene signatures can reflect degree of
differentiation well, they cannot accurately reflect the patient’s
tumor recurrence status. Among all gene signatures, there
were significant differences in DFS between the high-risk
and low-risk groups including transcription and epigenetic
modification, cilia formation and movement, and proliferation
(Figure 4; Supplementary Figure 5). Next, we further analyzed
the relationships between high or low risk and clinical parameters
in TCGA cohort (Table 3), and we found significant differences
in BRAFV600E mutation, TNM stage, T stage, and TDS. In
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FIGURE 3 | The AUC of four signatures of metabolism, signal and substance transport, transcription and epigenetic modification, and extracellular matrix. (A–D) The

AUC of the group metabolism, signal and substance transport, transcription and epigenetic modification, and extracellular matrix was >0.75 in both the training set

and validation set. AUC, area under the receiver operating characteristic curve.

FIGURE 4 | Gene signatures were tested for DFS analyses in patients with thyroid cancer. (A–C) There were significant differences in DFS between the high-risk

group and low-risk group in cilia formation and movement, transcription and epigenetic modification, and proliferation groups. DFS, disease-free survival.

addition, in the cilia formation group, the risk score and LNM
also had a significant correlation (Figure 5).

DISCUSSION

Undifferentiated thyroid cancer is relatively rare, but it
has a very high degree of malignancy, which brings great

difficulties in exploring its pathogenesis. In recent years, many
studies have explored undifferentiated thyroid cancer at pre-
transcription, transcription, and translation levels, revealing
that a considerable number of undifferentiated cancers develop
from dedifferentiation of DTC. Studies have shown that
dedifferentiation of colorectal cancer is closely related to
TGF-β, Wnt, and Hedgehog signaling pathways (35), while
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TABLE 3 | Clinicopathologics of PTC patients in TCGA cohort.

TCGA (N = 354)

Variables N %

Age, years, mean ± SD (range) 47.53 ± 15.79 (15–89)

Gender

Male 91 25.71

Female 263 74.29

ETE

Yes 100 28.25

No 254 71.75

T stage

T1/T2 229 64.69

T3/T4 125 35.31

LNM

N0 208 58.76

N1 146 41.24

TNM stage

I/II 340 96.05

III/IV 14 3.95

BRAFV600E

Yes 210 59.32

No 144 40.68

TDS

Low 177 50.00

High 177 50.00

PTC, papillary thyroid cancer; TCGA, The Cancer Genome Atlas; ETE, extrathyroidal

extension; LNM, lymph node metastasis.

dedifferentiation of glioblastoma is closely related to hypoxia
(36). Our previous studies have also shown that metabolic
pathways play an important role in dedifferentiation of thyroid
cancer (13). Most of these studies focused on a certain pathway
or mechanism; however, according to previous experience, the
occurrence and development of malignant tumors, including
dedifferentiation, involve multiple mechanisms and a large
number of abnormal gene expressions. Moreover, research
on the mechanism of dedifferentiation of DTC is still not
comprehensive. In order to explore the potential mechanism
of dedifferentiation of DTC from a broader perspective, we
retrospectively obtained 16 samples of eight patients with DDTC
who had undergone surgical treatment in our institution (FUSCC
cohort). We used intermittent sampling to obtain tissue samples
with a gradient of differentiation. Through the joint analysis of 16
samples of high-throughput sequencing data, TCGA cohort, and
GEO chip data, we obtained 620 differentially expressed genes
related to dedifferentiation of PTC, and all of themwere subjected
to further analysis.

First, we performed WGCNA on all 620 genes and divided
them into seven modules according to their expression.
Among them, the yellow module demonstrated the strongest
correlation with TDS. After screening genes by direct correlation
between genes and specified traits, module identity, and
weighted correlation, seven genes includingMETTL7A, KCNQ1,

FIGURE 5 | Correlation of risk score with clinical parameters in TCGA cohort.

(A) The risk score in cilia formation and movement group was significantly

correlated with TDS, BRAFV600E mutation, LNM, T stage, and extrathyroidal

extension (ETE). (B) The risk score in the transcription and epigenetic

modification group was significantly correlated with TDS, BRAFV600E mutation,

LNM, T stage, and ETE. (C) The risk score in the proliferation group was

significantly correlated with TDS, BRAFV600E mutation, T stage, and ETE. *p <

0.05, **p < 0.01, and ***p < 0.001. TCGA, The Cancer Genome Atlas; TDS,

thyroid differentiation score; LNM, lymph node metastasis.

ALDH9A1, C16orf46, PLAUR, BCL2, and TMPT have been
certified as hub genes. Through analysis of GeneMANIA
prediction server, we found that these seven hub genes and
their interacting genes directly or indirectly interact and
co-localize, but they were not functionally enriched together
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(Supplementary Figure 6). Thus, we believe that the results
of WGCNA cannot fully explain the dedifferentiation process
of DTC.

In order to reflect the differentiation status more
comprehensively from multiple angles, we first performed
GSEA on all genes and found that the pathways related to TDS
were mostly enriched on proliferation and apoptosis, which
is consistent with the biological performance of PDTC. Many
studies also focused on pathways related to cell proliferation,
invasion, and immunity (26, 37–39); but also many new
tumor-related phenotypes, such as ECM, cilia formation and
movement, and epigenetic modification, have attracted our
interest (40–43). However, these phenotypes have been rarely
studied in thyroid cancer, so there is a certain value for further
research (9, 44, 45).

We evaluated the gene signature of each group by calculating
AUC, and we verified it in the combined GEO cohort.
Finally, we identified gene signatures in group signal and
substance transport, transcription and epigenetic modification,
ECM, invasion, and metabolism groups, which showed
very good indicative performance. In the gene signature
of signal and substance transport group, PEBP1, FZD5,
KCNQ1, and TOM1L2 play a role in protein kinase binding
together (Supplementary Figure 7A), while PEBP1 is also
associated with autophagy and ferroptotic death (46). In the
transcription and epigenetic modification group, SMAD6 and
PRDM16 showed a high degree of consistency in function
(Supplementary Figure 7B), as functions of these two genes are
concentrated on TGF-β/SMAD (47, 48), a pathway that plays an
important role in cell differentiation. SMAD6 is a component
of this pathway; and its importance is self-evident, as PRDM16,
an important methyltransferase and transcription factor, has
also been reported as a repressor of the TGF-β/SMAD pathway
(49). In the ECM group, TNC was in a central position, and
its main interaction target was Integrin Alpha V (ITGAV), a
protein expressed in thyroid tissues higher than in other tissues
in the human body, suggesting that it specifically influences
the differentiation of thyroid cancer through the phenotype of
extracellular matrix (Supplementary Figure 7C). As a traditional
malignant tumor phenotype, the gene signature of the invasion
group consisted of NHSL1, OCLN, EPB41L4B, PLAUR, PIK3CB,
EPB41L5, ID4, TPM4, and MARVELD2. TPM4 showed the
opposite effects in colon cancer and lung cancer. In our analysis,
its high expression corresponded to better differentiation,
which is consistent with the research results in colon cancer
(50, 51). In the metabolism group, CHPT1, PDE8B, HSD17B8,
ADAMTSL1, ST3GAL1, SLC7A5, ACOT7, and PYGL were
combined to make up a signature. PDE8B, HSD17B8, ST3GAL1,
and ACOT7 also appeared in a signature constructed in our
previous study (13).

Through the STRING database, we found that some genes
have an interaction relationship, including intra-group and
inter-group interactions (52) (Supplementary Figure 8). In the
transcription and epigenetic modification group, there are gene
fusion and co-expression between TBX3 and SMAD6 (53).OCLN
andMARVELD2 are both invasion-related genes, and they share
a protein homology (54). MARVELD2 also has a co-expression

relationship with the signal and substance transport gene ILDR2
(54). KLHDC1 in the signal and substance transport group, and
IQGAP3 in the proliferation group also has co-expression (55).
These possible interactions indicate that the joint effect of these
genes may have a more important impact on differentiation of
DTC. Since they have not been studied in thyroid cancer, it is
worthy of further investigation.

At the same time, we also paid due attention to the
relationship between risk scores and other clinical parameters.
We found that the cilia formation group could better reflect
the condition of LNM than other groups. Other studies have
shown that cilia formation is closely related to autophagy (56);
therefore, high expression of cilia formation-related proteins
(DNAH7, TAPT1, and BBS1) in the low-risk group may be due
to exuberant autophagy activity (Supplementary Figure 7D).
Additionally, the formation and movement of cilia are also
very important to the movement of cells, which in turn affect
the tumor cell migration and invasion (57). In recent years,
studies have found that the sensitivity of ATC to chemotherapy
drugs is closely related to autophagy (58–61); therefore, we
believe that genes involved in cilia formation and movement
are promising as targets for drug therapy and should be
further researched.

Our research also had certain limitations. First, we selected
traditional malignant tumor-related phenotypes and some
phenotypes that we were interested in as groupings, so this
method is not very objective. There may be some important
phenotypes that we did not include in the groups. This has
also led to 44 genes that could not be included in specific
group. At the same time, it should be noted that a more
detailed and comprehensive grouping may divide the genes too
finely, resulting in some interactions that cannot be reflected in
intergroup. Second, limited by the number of cases and difficulty
of obtaining material, the distinction between PDTC and PTC
in the sequenced samples is not fine enough. We plan to collect
more samples and use more precise microdissection methods for
the next step of research.

In conclusion, we analyzed the genes that may affect the
differentiation of thyroid cancer from 11 different perspectives
and constructed gene signatures, revealing the possibility of
multiple mechanisms that lead to dedifferentiation of DTC.
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