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Although exercise derived activation of Nrf2 signaling augments myocardial antioxidant

signaling, the molecular mechanisms underlying the benefits of moderate exercise

training (MET) in the heart remain elusive. Here we hypothesized that exercise training

stabilizes Nrf2-dependent antioxidant signaling, which then protects the myocardium

from isoproterenol-induced damage. The present study assessed the effects of 6 weeks

of MET on the Nrf2/antioxidant function, glutathione redox state, and injury in the

myocardium of C57/BL6J mice that received isoproterenol (ISO; 50 mg/kg/day for 7

days). ISO administration significantly reduced the Nrf2 promoter activity (p < 0.05) and

downregulated the expression of cardiac antioxidant genes (Gclc, Nqo1, Cat, Gsr, and

Gst-µ) in the untrained (UNT) mice. Furthermore, increased oxidative stress with severe

myocardial injury was evident in UNT+ISO when compared to UNT mice receiving PBS

under basal condition. Of note, MET stabilized the Nrf2-promoter activity and upheld the

expression of Nrf2-dependent antioxidant genes in animals receiving ISO, and attenuated

the oxidative stress-induced myocardial damage. Echocardiography analysis revealed

impaired diastolic ventricular function in UNT+ISO mice, but this was partially normalized

in the MET animals. Interestingly, while there was a marginal reduction in ubiquitinated

proteins in MET mice that received ISO, the pathological signs were attenuated along

with near normal cardiac function in response to exercise training. Thus, moderate

intensity exercise training conferred protection against ISO-induced myocardial injury

by augmentation of Nrf2-antioxidant signaling and attenuation of isoproterenol-induced

oxidative stress.
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INTRODUCTION

Nuclear factor erythroid 2 like 2 (NFE2L2/Nrf2) is the major
stress response transcriptional regulator for antioxidant
genes. Declined Nrf2-antioxidant signaling during aging
leads to accumulation of reactive oxygen/nitrogen species
(ROS/RNS) and oxidative stress, which is either causally
linked or associated with numerous health problems including
diabetes, cardiovascular disease, neurodegenerative conditions
(Alzheimer’s, Parkinson’s, and Huntington), and cancer
(1–4). Experimental or clinical outcomes with exogenous
supplementation of antioxidants yield mixed results in various
pathophysiologic settings (5–10). Also, the rationale for selection
and specific action of the given antioxidants remains unclear.
Hence, targeting endogenous antioxidant defense mechanisms
to enhance cytoprotection may be efficacious. However, genetic
approaches to augment Superoxide Dismutase (SOD, antioxidant
enzyme) through transgenic overexpression (11) or targeting
transcription factors (i.e., NFE2L2 or NRF2) responsible for
antioxidant genes (12) have resulted in their abundance, leading
to unusual redox shifts that fail to combat oxidative stress
mediated anomalies (13–15). Therefore, optimal approaches
that can exert transient and controlled activation of antioxidant
pathways in response to toxic insults or pathological conditions
are warranted. As induction of Nrf2-dependent antioxidant
signaling by pharmacological agents was associated with toxic
side effects (16–20), a non-pharmacologic approach may be
of greater value. With these approaches, we and others have
recently reported that sustained physical activity or routine
exercise training upregulates Nrf2-dependent cytoprotective
targets in human skeletal muscle and mouse heart (21–25). Here,
we tested a hypothesis that exercise based stabilization/activation
of Nrf2, and its transcriptional regulation of antioxidants
protects the heart from isoproterenol-induced myocardial
damage and dysfunction.

Isoproterenol (ISO), a β-adrenergic receptor agonist, has
been widely accepted as an inducer of cardiac remodeling
in experimental animals (26–29). Isoproterenol induces the
generation of excessive ROS, leading to antioxidant depletion and
oxidative stress, which cause alterations in cardiac metabolism,
progressive myocardial injury and dysfunction/heart failure (28,
29). Isoproterenol-induced cardiac remodeling involves injury,
necrosis, and disruption of energy reserves in cardiomyocytes,
leading to cardiac dysfunction and heart failure (28, 29).

We investigated whether exercise training activates Nrf2-
dependent antioxidant signaling and prevents oxidative stress
when challenged with isoproterenol. More specifically, our goal is
to investigate whether exercise mediated stabilization of Nrf2 can
ameliorate the isoproterenol induced oxidative stress and prevent
ubiquitination of proteins.

METHODS

Reagents
RNeasy kit, reverse transcription kit, and QuantiTect SYBR
Green PCR kit were purchased from Qiagen Inc., Valencia,
CA. qPCR primers were designed using Primer Bank (https://
pga.mgh.harvard.edu/primerbank/) or Primer BLAST website

and purchased from Integrated DNA Technologies, Coralville,
IA. Trans-AM Nrf2 kit (50296) for determination of Nrf2-
ARE binding activity was obtained from Active Motif, Carlsbad,
CA. GCLC (ab41463), NQO1 (ab34173), GSR (ab16801), and
Ubiquitin (ab7780) antibodies were procured from Abcam,
Cambridge, MA; rabbit anti-GAPDH (D16H11) from Cell
Signaling, USA. Anti-rabbit or mouse secondary antibodies for
immunoblots (horse radish peroxidase conjugated with IgG)
were purchased from Vector Laboratories, Burlingame, CA.
Protein Assay reagent (#500–0006) was procured from Bio-
Rad, Hercules, CA. All other chemicals including oxidized
glutathione, RNAlater,meta-phosphoric acid, and isoproterenol,
were purchased from Sigma-Aldrich unless otherwise stated.

Animals
Both male and female WT (C57BL/6J) mice at the age of 6–
8 months were used for the study. Mice were provided with a
regular rodent diet with water ad libitum and maintained under
a controlled temperature and humidity at 12 h light/dark cycle.
The Institutional Animal Care and Use Committee (IACUC) at
the University of Alabama at Birmingham approved all animal
experiments, in accordance with the standards established by the
US Animal Welfare Act.

Moderate Exercise Training
Age and sex-matched WT (C57/BL6J) mice (6–8 months old)
were subjected to moderate exercise training (MET) on a
treadmill for 6 weeks (60 min/day; 10 m/min; 0% grade). At
the beginning of the 6th week, mice from MET trained group
were selected to undergo isoproterenol administration. MET
continued during ISO administration (Figure 1A).

Isoproterenol Treatment
Dose selection is an important step in studying the isoproterenol
mediated cardiac damage. Since a low dose of ISO induces
hypertrophy (30–32) and a higher dose has been observed to
induce severe myocardial infarction (33–37), we aimed to use
a dose that induces moderate levels of oxidative stress and
progressive cardiac pathology. Moreover, the concentration of
isoproterenol used in this study has been previously reported
by other investigators (38–40). Randomly assigned, untrained
(UNT) and trained (MET) animals were subcutaneously
injected (at the beginning of 6th week) with 50mg of
isoproterenol/kg.bw/day for 7 consecutive days (38–40). All
the animals (UNT, UNT + ISO; MET + ISO) underwent
echocardiography evaluation 24 h following the last dose of
isoproterenol (22) (Figure 1A).

Autopsy and Sample Preparation
At the end of the 6th week of MET and 1 week of
isoproterenol treatment, mice were anesthetized using isoflurane
and euthanized by cervical dislocation. Hearts were immediately
perfused with ice cold phosphate buffered saline, removed
and appropriately stored for RNA, protein, biochemical, and
histological analysis. Tissues stored in RNAlater were used
for RNA isolation, and tissues were immediately flash frozen
in liquid nitrogen for proteins. A small piece of the heart
tissue (∼20mg) was immediately processed for GSH assay.
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TABLE 1 | List of primers used for the qRT-PCR.

Genes name Sequences (5′…..3′)

Arbp1F TGAGATTCGGGATATGCTGTTGG

Arbp1R CGGGTCCTAGACCAGTGTTCT

Cat F GGAGGCGGGAACCCAATAG

Cat R GTGTGCCATCTCGTCAGTGAA

Gapdh F TGACCTCAACTACATGGTCTACA

Gapdh R CTTCCCATTCTCGGCCTTG

Gclc F GGACAAACCCCAACCATCC

Gclc R GTTGAACTCAGACATCGTTCCT

Gclm F CTTCGCCTCCGATTGAAGATG

Gclm R AAAGGCAGTCAAATCTGGTGG

Gsr F CACGGCTATGCAACATTCGC

Gsr R GTGTGGAGCGGTAAACTTTTTC

Gst-µ F CTGAAGGTGGAATACTTGGAGC

Gst-µ R GCCCAGGAACTGTGAGAAGA

Gsta F TGATTGCCGTGGCTCCATTTA

Gsta R CAACGAGAAAAGCCTCTCCGT

G6pd F TCAGACAGGCTTTAACCGCAT

G6pd R CCATTCCAGATAGGGCCAAAGA

Nqo1 F AGGATGGGAGGTACTCGAATC

Nqo1R TGCTAGAGATGACTCGGAAGG

Nrf2 F CTGAACTCCTGGACGGGACTA

Nrf2 R CGGTGGGTCTCCGTAAATGG

Sod-1 F AACCAGTTGTGTTGTCAGGAC

Sod-1 R CCACCATGTTTCTTAGAGTGAGG

Sod2 F TGGACAAACCTGAGCCCTAAG

Sod2 R CCCAAAGTCACGCTTGATAGC

Middle region of myocardial sections were embedded in paraffin
and sectioned for histological evaluation. Slides were stained
with hematoxylin and eosin to determine cardiac damage and
picrosirius red (PSR) stain for collagen accumulation. Images
were captured using an Olympus BX43 upright microscope.

Non-invasive Echocardiographic Analysis
of Cardiac Function
Twenty four hours after the last dose of isoproterenol, UNT,
UNT+ISO, MET, and MET+ISO mice were anesthetized using
1–2% isoflurane, supplemented with oxygen and the chest area
was shaved in preparation for echocardiography analyses (n= 5–
6) using the Vevo2100 Imaging System (FujiFilm VisualSonics
Inc., Ontario, Canada). A 38 MHz probe was used to capture
images at maximum (50µM) resolution. Long axis B-mode was
employed for strain analysis to calculate ejection fraction and
end diastole/systole left ventricular mass. The parasternal short
axis M-mode was utilized in the determination of fractional
shortening, wall thickness, and chamber dimension during
systole and diastole. Three consecutive cardiac cycles from B
and M-mode images were used for measuring for each variable
(23, 41). Pulse wave Doppler imaging was performed in apical
four chamber view by capturing the mitral valve blood flow to
measure the diastolic function of the left ventricle. All these

images were processed/analyzed using Vevolab 3.1 software to
obtain the cardiac systolic and diastolic function (41).

Trans-AM DNA Binding Activity for Nrf2
Efficiency of Nrf2-ARE binding activity was measured using
a commercial Trans-AM Nrf2 kit from Active motif. Briefly,
wild-type or mutated competitor oligonucleotides bearing the
antioxidant response element (ARE) consensus sequence were
incubated with nuclear extract (10 µg) for Nrf2 and the bound
Nrf2 was incubated with an anti-Nrf2 primary antibody (100 µl
of a 1:1000 dilution) for 1 h. Further, HRP-conjugated secondary
antibody (100 µl of a 1:1000 dilution) was added in each well
and incubated for 1 h prior to chromogenic reaction with TMB
substrate and the absorbance was measured at 450 nm with a
reference wave length of 655 nm using a BioTek Epoch plate
reader. Incubation with normal rabbit polyclonal IgG was also
performed separately to confirm the specificity of the Nrf2
antibody (12, 42).

Isolation of RNA and Real-Time qPCR
Analysis
Myocardial tissues stored in RNA-later from UNT, UNT+ISO,
and MET+ISO mice (n = 3–4) were used and RNA was
extracted using RNeasy mini kit (Qiagen, 74106). Then using
QuantiTect reverse transcription kit (Qiagen, 205313), cDNA
was synthesized using 1.25 µg RNA. Quantitative RT-PCR
(qPCR) was performed using 25–50 ng cDNA with 1 pmol gene
specific primer (Table 1) in a 10 µl SYBR green reaction mix
(Qiagen, 204056) and amplified in a Roche Light Cycler 480
(Roche, Basel, Switzerland). Relative expression was quantified
using Ct values, and expression fold-change was calculated by
normalization to the Ct of housekeeping genes Gapdh or Arbp1
according to the 2−11Ct methods (12, 23, 42, 43).

Protein Isolation and Immunoblotting
Heart tissues from UNT, UNT+ISO, and MET+ISO (n = 3–
6/group) mice at >6 months of age were homogenized using
cytosolic extraction buffer [1:6 ratio, (tissue wt (mg): buffer
(µl)) 10mM HEPES, 10mM KCl, 0.1mM EDTA, 0.5mM
MgCl2, with freshly prepared 0.1mM phenylmethylsulfonyl
fluoride (PMSF), 1mM dithiothreitol and 1% Triton X-100,
pH 7.9] and centrifuged at 5,000 rpm for 5–6min. Proteins
were normalized and equal amount of cytosolic proteins from
all groups were resolved on 10% SDS-PAGE and transferred
to PVDF membranes and blocked in Tris Buffered Saline-
Tween 20 (TBST) containing 5–10% non-fat dry milk for 2 hrs.
Individual blots were then incubated overnight at 4◦C or at room
temperature for 2 hrs with the respective primary antibodies for
GCLC, NQO1, GSR, ubiquitination, and GAPDH diluted with
2% bovine serum albumin in TBST. After two 5min washes
with TBST, the blots were incubated with horseradish peroxidase
IgG (Vector Laboratories, Burlingame, CA, USA) conjugated
secondary antibodies (anti-rabbit or mouse) for 1 h. Blots were
then washed thrice for 10min with TBST and treated with ECL
(Pierce, Rockford, IL, USA), imaged on Amersham Imager 600
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FIGURE 1 | Exercise protected the heart from Isoproterenol induced cardiac injury. (A) Schematic diagram explaining the exercise protocol and isoproterenol

administration, (B) Graph illustrates the heart weight/bodyweight ratio in all groups (n = 10/group), (C) Heart sections stained by hematoxylin eosin stain (n =

6/group), (D) Picrosirius red stain was used to determine the collagen deposition in isoproterenol treated hearts using Olympus light microscope at 20X magnification.

n = 3–4/group, values are represented as mean ± SD. Significance: *p < 0.05; **p < 0.01; ***p < 0.001.

(GE Healthcare Life Sciences, Chicago, IL, USA). The immune-
reactive signals were quantified by densitometry using ImageJ
software and density values were normalized to GAPDH (12, 23).

Myocardial Glutathione Levels
Myocardial levels of reduced GSH and oxidized GSH (GSSG)
were assessed by a GSH detection kit from Cayman (Ann
Arbor, MI, USA). In brief, heart tissues were homogenized
with MES buffer and the homogenates were centrifuged at
5,000 rpm for 5min at 4◦C. An aliquot of the supernatant
was used for protein estimation. An equal amount of 10%
meta- phosphoric acid (MPA) was added to the remaining
samples to precipitate the proteins; 100 µl of the MPA extracts
were treated with triethanolamine (TEAM). After treating with
TEAM, samples were mixed with 150 µl of reaction mixture

cocktail (MES buffer, NADPH, glutathione reductase, DTNB)
and the enzymatic-recycling assay was performed as per the
manufacturer’s instruction using a plate reader. GSH and GSSG
standards were prepared and processed similarly to generate a
standard graph (12, 23).

Dihydroethidium Fluorescence Staining
Dihydroethidium (DHE), a lipophilic, cell permeable fluorogenic
dye was used to measure the level of ROS. This dye gives off
a red fluorescent signal during oxidation. Briefly, the frozen
heart sections (10µm) were incubated with 5µg/ml of DHE in
PBS in a light protected chamber maintained at 37◦C incubator
for 30min. Slides were then fixed with fluoroshield mounting
medium mixed with DAPI (a nuclear stain) and the images
were captured by randomly selecting 3–5 fields/section which
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were obtained using an Olympus BX43 fluorescent microscope
(12, 22).

Statistical Analysis
All data are represented as mean ± SD. One-way ANOVA with
post-hoc Tukey multiple comparison tests were performed. All
analyses were performed using GraphPad Prism 7. Differences
were considered significant at the values of ∗p < 0.05, ∗∗p < 0.01,
and ∗∗∗p < 0.001.

RESULTS

Exercise Training Protects the Myocardium
From ISO Induced Cardiac Injury
The UNT and MET mice received 50 mg/Kg bw subcutaneous of
isoproterenol for 7 days and were assessed for myocardial
remodeling, necrosis, and fibrosis using heart weight,
hematoxylin-eosin, and picrosirius red staining. Administration
of isoproterenol for 1 week period (7 days) in the UNT mice
showed a significant increase in heart weight (HW) to body
weight (BW) ratios (HW/BW) compared to the UNT control
group. As expected, exercise training markedly prevented
isoproterenol-mediated increase in HW/BW ratios (Figure 1B).
The hematoxylin eosin (H&E) stained images from the
UNT mice treated with isoproterenol displayed widespread
myocardial necrosis with degeneration and obvious leukocyte
infiltration (Figure 1C), whereas the MET mice treated with
isoproterenol showed minimal cell death foci and diminished
leukocyte infiltration. Further, we quantitatively measured the
isoproterenol mediated cardiac fibrosis in all groups using
picrosirius red (PSR) staining. The isoproterenol treated mice
showed increased collagen in the myocardium, whereas the MET
mice that received isoproterenol displayed decreased levels of
collagen (Figure 1D) compared to the UNT mice. These data
demonstrated that 6 weeks of exercise training protects the
myocardium from isoproterenol mediated cardiac hypertrophy
and damage.

Chronic Moderate Exercise Training
Ameliorates the Isoproterenol Induced
Structural and Functional Changes
As exercise training protects the myocardial structure from
isoproterenol induction, we assessed the cardiac function by
transthoracic echocardiography. Representative parasternal
short axis M-mode images displayed an abnormal cardiac
structure and function in UNT+ISO mice (Figure 2A).
Ejection fraction was highly increased in the UNT+ISO
mice with a decrease in end-systolic ventricular volume
compared to the UNT control mice. Mice subjected for
exercise alone (MET) showed increased EF and LVV d (µl)
(Supplemental Figures 1A,B). Exercise training significantly
mitigated isoproterenol impact on end systolic volume and
led to normal cardiac function (Figures 2A,B). Further, the
LVIDs (left ventricular internal dimension, end-systolic), IVSd
IVSd (Interventricular Septal Thickness at Diastole), and IVSs
(Interventricular Septal Thickness at Systole), were significantly
elevated in the UNT+ISO group compared to UNT control mice.

Six weeks of chronic exercise training significantly prevented
these changes induced by isoproterenol administration. These
results suggest that chronic exercise training can protect
the myocardium from isoproterenol induced pathological
cardiac damage.

Moderate Intensity Exercise Improves
Isoproterenol Mediated Diastolic
Dysfunction
Isoproterenol administration reduced the late left ventricular
filling velocity (MV A) and early left ventricular filling
velocity (MV E) was unchanged, leading to an increase in
the atrial filling wave velocity (E/A) ratio when compared
to UNT-control and MET mice treated with isoproterenol.
Increased E/A ratio in UNT—isoproterenol group suggested
that isoproterenol administration lead to diastolic dysfunction
compared to UNT control mice. MET only subjected mice
didn’t show any significant changes in atrial filling velocities
(Supplemental Figures 2A,B). However, the exercise trained
mice receiving isoproterenol exhibited significantly reduced both
MV E and MV A waves, leading to a stabilized atrial filling wave
velocity (E/A) ratio equal to the UNTmice (Figures 3A,B). These
results indicate that exercise training prevented the functional
remodeling induced by isoproterenol administration.

Exercise Stabilizes Nrf2 and Its
Transcriptional Activity in
Isoproterenol-Induced Hearts
We assessed the Nrf2/antioxidant response element (ARE) DNA-
binding ability to determine whether exercise stabilizes the
Nrf2 transcriptional activity in isoproterenol induced hearts
using the Trans-AM-Nrf2 binding activity. Untrained mice
induced with isoproterenol showed decreased Nrf2 binding
activity, whereas the exercised mice receiving isoproterenol
displayed a stable Nrf2 binding activity equal to that of the
untrained control mice (Figure 4A). These results confirmed
that exercise induced Nrf2 was active. To confirm the Nrf2-
mediated regulation of antioxidant protein expression, we
measured the levels of key Nrf2-target proteins GCLC, NQO1,
and GSR, using immunoblotting. Isoproterenol administration
significantly reduced the expression of GCLC and NQO1 in
untrained mice; however, there was no significant difference
in GSR protein levels. The exercise mice receiving ISO
showed significant increase in all these proteins compared to
UNT and UNT-ISO groups. Additionally, to confirm Nrf2-
mediated transactivation of antioxidant genes, we measured
antioxidant gene expression levels by qPCR. Untrained mice
receiving isoproterenol presented a significant decrease in Nrf2,
glutamate-cysteine ligase, catalytic subunit (Gclc), glutathione
reductase (Gsr), NAD(P)H dehydrogenase quinone 1 (Nqo1),
glutathione S-transferase, mu (Gst-µ,), Glucose-6-phosphate
dehydrogenase (G6pd), Superoxide dismutase 1 (Sod1) and Sod2
(Figure 4C). Exercise trained mice were able to maintain
similar levels of expression for antioxidant genes as seen
in PBS-controls, while isoproterenol treatment significantly
downregulated expression of most of these genes. Although the
G6pd level was not changed in the MET+ISO group when
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FIGURE 2 | Exercise preserved the heart function from Isoproterenol induced cardiac injury. Echocardiography was performed in all the three groups on the day of

sacrifice using Vevo2100 high-resolution (38 MHz) imaging system. (A) Representative M-mode (SAX) images from untrained control, untrained+ISO and trained+ISO

mice, (B) cardiac functions were analyzed using LAX B-mode and SAX M-mode images and represented as a bar graph. n = 5–6/group, values are represented as

mean ± SD. Significance: *p <0.05; **p <0.01; ***p <0.001; ns, no significance.

compared to the UNT+ISO group, Glutamate-cysteine ligase,
modifier subunit (Gclm), and glutathione S-transferase alpha (Gst-
α) were similar in all groups. These results provide evidence that
exercise mediated Nrf2 stabilization tightly regulates antioxidant
networks and protects the myocardium from isoproterenol
mediated cardiac injury.

Chronic Exercise Training Preserves
Isoproterenol-Induced Glutathione
Depletion in the Myocardium
As exercise training restored Nrf2-antioxidant signaling genes,
including the genes that are involved in glutathione metabolism,

we assessed glutathione, its redox ratio (GSH/GSSG), and
DHE staining to measure total ROS levels in the isoproterenol
induced myocardium. In response to isoproterenol induction,
untrained mice showed decreased GSH and GSH/GSSG levels
(Figures 5A,B), whereas the exercise training stabilized the GSH
and GSH/GSSG levels in isoproterenol injected mice. Further,
DHE staining showed increased ROS signals in UNT mice
receiving isoproterenol; however, exercise training decreased
the ROS levels induced by isoproterenol treatment (Figure 5C).
These results demonstrated that exercise mediated stabilization
of Nrf2-antioxidant signaling facilitates glutathione synthesis
and protects the myocardium from isoproterenol mediated
oxidative injury.
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FIGURE 3 | Exercise training preserved normal diastolic function in the heart treated with Isoproterenol. (A) The mitral valve flow pattern was recorded by pulse wave

Doppler mode using Vevo2100 high-resolution echocardiography, (B) Mitral valve filling velocities (MV E and A) were measured using Mitral valve images and

represented as bar graph, C) The representative B-Mode of SAX image displaying the level of contraction, n = 5–6/group, values are represented as mean ± SD.

Significance: **p < 0.01; ns, no significance.

Moderate Exercise Training Reduces
Protein Ubiquitination in the Isoproterenol
Induced Myocardium
As isoproterenol treatment showed increased ROS/oxidative

stress in UNT+ISO hearts, and oxidative stress has been

reported to induce post-translational modifications (PTMs) in

proteins (ubiquitination) (44–46), we investigated these protein

modifications using western blotting and role of exercise

mediated Nrf2 stabilization in these PTMs. While increased

ubiquitination of proteins were evident in UNT mice with

isoproterenol (Figure 5D), when compared to UNT control

mice, MET mice treated with isoproterenol showed decreased
ubiquitination. These results confirmed that exercise induced
Nrf2-signaling potentially reduces oxidative stress, thereby
decreasing the PTMs.

DISCUSSION

Benefits of exercise have been widely reported to be cardio-
protective (22, 23, 47–50), but the specific molecular mechanisms
associated with Nrf2-dependent cytoprotection remain
elusive. Here, we tested whether a non-pharmacological
stabilization of Nrf2 signaling protects the myocardium
from oxidative stress injury. In particular, the present
investigation demonstrated that exercise training for 6
weeks stimulates Nrf2-antioxidant signaling and suppresses
the isoproterenol-induced oxidative damage in the mouse
myocardium. Exercise mediated Nrf2 stabilization preserves
myocardial glutathione redox (GSH/GSSG) levels, reduces
the ROS/oxidative stress induced by isoproterenol, and
diminishes the protein modification (PTMs) in response to
isoproterenol injury.
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FIGURE 4 | Exercise stabilized the Nrf2 binding activity and antioxidant gene expression in the heart of Isoproterenol treated mice. (A) Nrf2-ARE binding activity was

measured in heart nuclear lysates of untrained control, untrained+ISO and trained+ISO mice using Active motif TransAM Nrf2 assay kit (n = 4–6/group),

(B) Immunoblots for key antioxidants using cytosolic heart extracts of UNT, UNT-ISO and MET-ISO mice (n = 6/group). (C) Antioxidant gene levels were determined

using gene specific primers by qPCR and relative gene expression was analyzed by normalizing with Gapdh/Arbp1, n = 4–6/group, values are represented as mean

± SD. Significance: *p < 0.05; **p < 0.01; ***p < 0.001; ns, no significance.
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FIGURE 5 | Moderate intensity exercise training improved the glutathione redox levels, reduced the ROS and ubiquitination of proteins in Isoproterenol treated hearts.

(A,B) Tissues from all three groups (n = 4/group) were processed to prepare the MPA extracts and used for determining the myocardial glutathione (GSH) and

oxidized glutathione levels (GSSG) by enzymatic recycling assay, (C) Hearts sections stained with specific fluorescence stain (DHE) for reactive oxygen species (ROS)

and captured in Olympus light microscope at 40X magnification. (n = 4/group). (D) Immunoblots for ubiquitination of proteins in the Isoproterenol induced

cardiomyocytes. n = 3–4/group, values are represented as mean ± SD. Significance: *p < 0.05; **p < 0.01; ***p < 0.001; ns, no significance.

Under basal conditions, Nrf2 is redundant, but it is
required in stress conditions for the transactivation of
cytoprotective/antioxidant genes (51, 52). Down-regulation
of Nrf2 is coupled with impaired redox-status and vascular
dysfunction under hypertension (53). We previously reported
that exercise mediated Nrf2 activation augments antioxidant
gene expression and protects the heart from age-induced
oxidative stress (22). In the present study, we have shown that
exercise mediated stabilization of Nrf2 enhances antioxidant
enzymes and reduces isoproterenol-induced oxidative stress
and cardiac hypertrophy (Figures 4, 5). Others have reported
that sulforaphane and broccoli-based Nrf2 activation protects
the myocardium from Ang-II toxicity (54) and diabetes-
induced cardiac dysfunction (55). MG132, a small molecule

proteasome inhibitor, increases Nrf2 expression and protects
the myocardium from pressure-overload-induced hypertrophy
(56, 57). In the present study, we tested whether isoproterenol
(ISO), a known β-AR agonist, could induce oxidative stress and
cause hypertrophy and fibrosis. In particular, we investigated
whether exercise mediated Nrf2 activation preserves redox levels
and prevents isoproterenol-induced oxidative stress, thereby
protecting the myocardium from pathological remodeling.

Isoproterenol treatment resulted in infiltration of leukocytes
along with significant structural remodeling (i.e., hypertrophy)
in the untrained mice. Interestingly, we observed an increased
fractional shortening (FS), left ventricular cavity dimensions at
diastole and systole, along with profound fibrosis in the UNT
mice, suggesting an adaptive remodeling of the myocardium
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in response to isoproterenol induction. However, a significant
decrease in LV diastolic volume in the isoproterenol-treated
hearts leads to pathological remodeling (Figure 2). We also
observed a significant increase in MV E/A ratio in untrained
ISO mice indicating diastolic dysfunction in the myocardium
(Figure 3). Taken together, the pathological cardiac remodeling
(functional and structural) in ISO-treated mice are coupled with
increased ROS accumulation and ubiquitination of proteins, as
shown in immunoblots along with downregulation of mRNA
and protein levels of major antioxidants (Figure 4), suggesting
the role of isoproterenol-induced oxidative stress in pathological
cardiac remodeling.

Previously, others and we have shown that exercise mediated
Nrf2 activation increases the antioxidant expression in the
myocardium (21–25). However, when the exercise trained
heart experienced oxidative stress, the role of Nrf2 and
antioxidant signaling in the context of cardiac structure
and functional remodeling (systolic vs. diastolic) were not
investigated. This study demonstrates decreased Nrf2-ARE
binding activity associated with impaired Nrf2/antioxidant
signaling in response to isoproterenol administration. Of note,
exercise training preserves the transcriptional role of Nrf2 and
the trained mice developed resistance to isoproterenol treatment.

Nrf2 increases tolerance against oxidative stress and increases
the life span of Drosophila by preserving redox homeostasis
(58) and also enhances the proliferation of intestinal stem
cells (59). Several other studies have also documented that
increased oxidative stress leads to decrease in Nrf2 antioxidant
cytoprotective mechanisms and increases the progression of the
diseases (60–63). In this study, in conjunction with declined
Nrf2-signaling, myocardial GSH levels were depleted in response
to isoproterenol administration. Furthermore, subsequent to
consequences of GSH depletion, increased levels of myocardial
ROS were noted. As expected, exercise training stabilized
Nrf2/antioxidant signaling, preserving myocardial glutathione
levels and prevented ROS accumulation from isoproterenol stress
(Figures 5A,C). Thus, prophylactic stabilization of Nrf2 activity
and glutathione redox conditions by exercise training facilitates
protection against oxidative stress.

Oxidative stress is known to cause various biochemical
and conformational modifications in proteins (64–67). Such
post-translational modifications (PTMs) of proteins, including
the ubiquitination of proteins (68) might result in myocardial
toxicity and pathological remodeling. We and others have
previously reported that age-associated oxidative stress is
coupled with decreased Nrf2/antioxidant signaling and increased
oxidative stress and ubiquitination of proteins in the skeletal
muscle, atria, and other organs (69–72). However, the role
of isoproterenol in protein modifications and subsequent
ubiquitination in response to exercise is not well-understood.
Here, we show that while isoproterenol increases ubiquitination
of proteins, exercise training curtails these anomalies, thereby
protecting the myocardium from isoproterenol-induced
pathological structural and functional remodeling (Figure 5D).
Therefore, a non-pharmacological activation of Nrf2 signaling
is likely to protect the heart from oxidative stress induced
by isoproterenol.

In conclusion, experiments at 24 h of the last dose of the
isoproterenol, the hemodynamics of UNT+ISO demonstrated
that increased cardiac output is not inferior to that of
MET+ISO mice. Future experiments are planned to test
the hypothesis that longer follow-up with UNT+ISO will
show significant hemodynamic deterioration compared to
MET+ISO. Furthermore, the present study demonstrated that
exercise mediated stabilization of functional Nrf2 augments
the expression of antioxidant genes and glutathione levels,
and protects the myocardium from isoproterenol-induced
injury in mice. A major outcome of this study is that
chronic, but moderate exercise mediated stabilization of
Nrf2 activity enhances endogenous cytoprotective mechanisms,
including glutathione redox levels in the myocardium and
prevents oxidative stress mediated myocardial injury. Thus,
promoting physical activity in human subjects has potential to
uphold Nrf2/antioxidant signaling and enhance endogenous
cytoprotective mechanisms; this hypothesis warrants
further investigation.
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Supplemental Figure 1 | Exercise stabilizes the systolic heart function.

(A) Representative m-Mode images from UNT and MET mice. (B) Cardiac

functional parameters were analyzed using Vevo 3.1 software and represented as

a bar graph. n = 5–6/group, values are represented as mean ± SD. Significance:
∗p < 0.05;∗∗ p < 0.01; ns, no significance.

Supplemental Figure 2 | Exercise stabilizes the diastolic heart function.

(A) Representative Doppler images captured in pulse wave doppler mode from

UNT and MET mice. (B) Mitral valve filling velocities (MV E and A) were analyzed

using mitral valve images and represented as a bar graph. n = 5–6/group, values

are represented as mean ± SD. ns, no significance.
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