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Abstract

Fungi in soil play pivotal roles in nutrient cycling, pest controls, and plant community suc-

cession in terrestrial ecosystems. Despite the ecosystem functions provided by soil fungi,

our knowledge of the assembly processes of belowground fungi has been limited. In partic-

ular, we still have limited knowledge of how diverse functional groups of fungi interact

with each other in facilitative and competitive ways in soil. Based on the high-throughput

sequencing data of fungi in a cool-temperate forest in northern Japan, we analyzed how

taxonomically and functionally diverse fungi showed correlated fine-scale distributions in

soil. By uncovering pairs of fungi that frequently co-occurred in the same soil samples, net-

works depicting fine-scale co-occurrences of fungi were inferred at the O (organic matter)

and A (surface soil) horizons. The results then led to the working hypothesis that mycor-

rhizal, endophytic, saprotrophic, and pathogenic fungi could form compartmentalized (mod-

ular) networks of facilitative, antagonistic, and/or competitive interactions in belowground

ecosystems. Overall, this study provides a research basis for further understanding how

interspecific interactions, along with sharing of niches among fungi, drive the dynamics of

poorly explored biospheres in soil.

Introduction

Fungi in soil constitute highly species-rich biological communities, playing pivotal functional
roles in various types of terrestrial ecosystems [1–3]. In forest and grassland ecosystems,
diverse mycorrhizal fungi promote the growth of host plants by providing soil nitrogen and
phosphorus [4–6], while many host-specific pathogenic fungi attack plants [7], potentially
promoting species coexistence in plant communities [8] (sensu [9]). Recent studies have also
shown that plants ubiquitously interact with root-endophytic fungi [10–12], which may
enhance host nutritional conditions and/or resistance to soil pathogens [13–15]. Moreover,
saprotrophic fungi control the pace of nutrient cycles in both natural and agricultural ecosys-
tems [3, 16] and entomopathogenic fungi (e.g., Beauveria spp.) inhibit the outbreaks of pest
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insects [17]. Thus, the knowledge of mechanisms organizing soil fungal communities is essen-
tial for managing agricultural ecosystems and restoring forests/grasslands. Due to the remark-
able diversity of soil fungi [18], however, our understanding of soil fungal assembly processes
has been limited.
Based on the emerging high-throughput sequencing technology [19, 20], recent studies

have come to reveal the complex community structure of soil fungi in natural and agricul-
tural ecosystems [21, 22]. Those studies have shown that community structure of soil
fungi could be determined by various edaphic factors such as pH, nitrogen/phosphorus con-
centration, and tillage practices [21, 23] as well as dispersal limitation at both small and large
spatial scales [24, 25]. Such researches based on high-throughput sequencing can further
enhance our knowledge by estimating how biotic factors, i.e., interspecific interactions [26,
27], can organize patterns in fungal communities in the wild [12]. Positive (facilitative)
and negative (competitive) interactions between species, in general, play pivotal roles in eco-
logical community processes [28–30], but those interactions are often difficult to uncover
especially in species-rich communities. Thus, although high-throughput sequencing is
providing rich data for understanding the assembly processes of complex soil fungal
communities [19, 20], we still have limited knowledge of the whole-community-scale pat-
terns organized by the sharing of environmental preferences (niches) and positive/negative
interspecific interactions.
In microbiological studies of human gut bacteria, however, researchers have tried to detect

signs of potential niche sharing and interspecific interactions based on large high-throughput
sequencing datasets [31–33]. Those microbiome studies focus on “co-occurrence” patterns of
species across sequenced samples: i.e., pairs of species sharing niches and those in positive
interactions are expected to co-occurmore frequently than expected by chance in the same
host (or environmental) samples [31–33]. These co-occurrenceanalyses have been applied also
to community ecological analyses of fungi in plant root systems, highlighting importance of
interspecific interactions in the fine-scale assembly processes of fungi [34, 35] (but see [36]).
Furthermore, such community-scale analyses allow us to infer how diverse taxonomic/func-
tional groups of fungi structure networks [37, 38] of potential interactions and how those net-
works are compartmentalized into “modules” [30, 39] of closely associated fungi [35].
Although pioneering studies have examined co-occurrencenetwork structure of soil fungal
communities [40, 41], it remains a major challenge to understand how functionally diverse
fungi are grouped into those co-occurrencenetwork modules.
In this study, we investigated the community-scale network structure of a soil fungal com-

munity based on high-throughput sequencing data of a cool-temperate forest in northern
Japan. From each of the soil samples collected across a soil profile (9.8 m [length] × 1.0 m
[depth]) in the forest, fungal community structure was revealed with Illumina sequencing.
The community data were then used to infer the structure of a network depicting potential
niche sharing and/or interspecific interactions at each sampling depth across the O (organic
matter) and A (surface soil) horizons. We then analyzed how taxonomically and functionally
diverse fungi constitute the networks of co-occurrences at fine spatial scales in soil. Specifi-
cally, the analysis allowed us to infer how mycorrhizal, endophytic, saprotrophic, and patho-
genic fungi formed network modules of closely associated fungi. Thus, the analysis provided
a basis for discussing, e.g., whether the fine-scale distribution of mycorrhizal fungi in soil
could be correlated with or independent from that of non-mycorrhizal fungi. Overall, this
study shows a way for detecting signs of possible niche sharing and/or interspecific interac-
tions in complex communities in soil based on rich information provided by high-through-
put sequencing.
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Materials and Methods

Terminology

This study was designed to infer spatial niche differentiation and/or interspecific facilitative/
competitive interactions in a soil fungal community. In general, DNA-barcoding-based analy-
ses do not provide any direct evidences of niche differentiation or interspecific interactions
[10, 42, 43]. Therefore, our aim was not revealing “common mycelial networks” linking fungal
(and host plant) individuals/species [5, 44] but detecting sings of potential niche differentiation
and interspecific interactions [42, 43]. Throughout this paper, we use the term “network” in a
broad sense [38] irrespective of physical (mycelial) connections among fungi.

Sampling and molecular analysis

The sampling was conducted in Teshio Experimental Forest, Hokkaido University, Japan
(AKAGAWA 44.985950°N, 142.009036°E) on November 5, 2012: sampling permission was
issued by Hokkaido University. The study site was located in a cool-temperate secondary for-
est, which consisted mainly of Abies sachalinensis, Betula ermanii, Betula maximowiczii, Acer
pictum, and Phellodendron amurense. At the study site, we made a 1-m-deep soil profile along
a 9.8-m horizontal line (S1 Fig) and sampled two replicate samples of 0.5 cm3 soil at each of 10
depth classes (2-cm above the boundary of the O and A horizons, the O-A boundary, and
3-cm, 5-cm, 10-cm, 15-cm, 20-cm, 30-cm, 50-cm, and 100-cm below the O-A boundary)with
20-cm horizontal intervals (i.e., 10 depths × 50 horizontal points = 500 sampling positions).
The soil samples were stored at -25°C and then DNA extractionwas conducted with a cetyltri-
methylammonium bromide (CTAB) method [45].
For each of the 1000 samples (500 × 2 replicates), the internal transcribed spacer 1 (ITS1)

region of fungi were PCR-amplified with the high-taxonomic-coverage primers ITS1-F_KYO1
and ITS2_KYO2 [46]. Each of the forward and reverse primers was fusedwith 3–6-mer Ns (for
improving Illumina sequencing quality) [47] and a Illumina sequencing primer region (forward,
5’- TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG- [3–6-merNs]–[ITS1-
F_KYO1]-3’; reverse, 5’- GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA G
[3–6-merNs]—[ITS2_KYO2]-3’). The PCR reaction was conducted using the buffer and
DNA polymerase system of Ampdirect Plus (Shimazu) with a temperature profile of 95°C for
10 min, followed by 37 cycles at 94°C for 30 s, 50°C for 60 s, 72°C for 60 s, and a final extension
at 72°C for 7 min. The ramp rate was set to 1°C/sec to prevent the generation of chimeric ampli-
cons [48]. P5/P7 Illumina adaptors were then added in the subsequent PCR using fusion prim-
ers with 8-mer index sequences for sample identification [49] (forward,5’- AAT GAT ACG
GCG ACC ACC GAG ATC TAC AC—[8-mer tag]—TCGTCG GCA GCG TC -3’; reverse, 5’-
CAA GCA GAA GAC GGC ATA CGA GAT—[8-mer tag]—GTCTCG TGG GCT CGG -3’). The
temperature profile was 95°C for 10 min, followed by 8 cycles at 94°C for 30 s, 55°C for 60 s,
72°C for 60 s, and a final extension at 72°C for 7 min (ramp rate = 1°C/sec). The PCR amplicons
of the 1000 samples and 8 PCR negative control samples were pooledwith equal volume after a
purification/equalizationprocess with AMPure XP Kit (BeckmanCoulter). The pooled library
was sequenced using the IlluminaMiSeq sequencer of Graduate School of Human and Environ-
mental Studies, Kyoto University (KYOTO-HE) (2 × 300 cycle sequencing kit) with 15% PhiX
spike-in.

Bioinformatics

As the MiSeq Reporter program does not remove sequencing reads with low quality values at
index positions and it tolerates 1-base mismatches between input and output index sequences,
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default FASTQ files output by Illumina sequencers often contain “miss-indexed” sequencing
reads. To prevent the potential demultiplexing errors, demultiplexing was conducted using
the program Claident v0.2.2015.03.11 [50] after converting raw MiSeq BCL data into FASTQ
data using the bcl2fastq v1.8.4 program distributed by Illumina. In the demultiplexing pro-
cess, all the sequencing reads containing low quality (quality scores< 27) index sequences
were eliminated and no mismatch between input and output index sequences was tolerated.
The obtained forward and reverse sequencing reads were then fused with each other by the
program PEAR v0.9.6 [51]. Among the 4,726,706 merged reads obtained, 36,563 were dis-
carded because 10% or more of their nucleotides had low (< 27) quality values and/or because
they were less than 150 bp in length (data deposition: DDBJ BioProject, PRJDB4971). Poten-
tially chimeric reads were also eliminated with the program UCHIME v4.2 [52]. Noisy reads
were removed as well in this process by the approach introduced previously [53] using Clai-
dent. The 3,862,747 reads that passed the filtering processes were clustered with a cutoff
sequence similarity of 97% in a parallelized process of the Minimus for accurate assembling/
clustering [54] as implemented in Claident and the obtained consensus sequences were then
used as operational taxonomic units (OTUs) in the following statistical analyses. In the clus-
tering process, reads of each sample were clustered beforehand with a 98% cutoff similarity:
the results of the within-sample dereplication was used as guide information in order only to
accelerate the 97% clustering process [35, 43]. OTUs whose sequencing reads were less than
ten in all the samples were removed because their sequences could contain PCR/sequencing
errors [55].
The remaining OTUs were then subjected to molecular taxonomic identification using the

UCLUST consensus taxonomic assigner algorithm [56] with the UNITE ver.7 dynamic data-
base [57] as implemented in QIIME [58]. However, our manual BLAST search of the identifi-
cation results suggested that the fast but non-exhaustive database-search strategy of the
UCLUST algorithm and the underrepresentation of soil fungal taxa in the UNITE database
often resulted in erroneous identification at low taxonomic levels (e.g., family or genus levels).
Therefore, molecular taxonomic identification of OTUs was performed based on the data-

base search algorithm of the query-centric auto-k-nearest-neighbor (QCauto) method [50]
and subsequent taxonomic assignment with the lowest common ancestor (LCA) algorithm
[59] using Claident [35, 43]. A benchmark analysis has shown that the QCauto-LCA pipeline
allows the most accurate identification among the existing algorithms of automated taxo-
nomic identification [50]. We applied the QCauto algorithm to the obtained OTUs using the
databases provided by filtering out unreliable sequence entries from the NCBI “nt” database
(downloaded from ftp://ftp.ncbi.nlm.nih.gov/ on January 27, 2015) [35, 43, 50]. The taxo-
nomic identification results of both QCauto-LCA and UCLUST-UNITE approaches are
shown in S1 Data.
Based on the molecular taxonomic identification results, non-fungal OTUs and 13 samples

that contained possible laboratory contaminants were removed from the dataset. As two of the
eight negative control samples contained fungal OTUs, the OTUs found from the two negative
control samples were discarded (107 of 1887 OTUs). By combining sequencing reads of two
replicate samples per sampling position, we obtained a sample (row) × fungal OTU (column)
data matrix, in which a cell entry depicted the number of sequencing reads of an OTU at a sam-
pling position. Presumably due to the presence of PCR inhibitors in soil samples, the number
of obtained reads varied considerably among sampling positions (S1 Data). Therefore, the data
matrix was rarefied to 1000 reads per sampling position (S2 Fig) using the “rrarefy” command
of the vegan v2.2–3 package [60] of R v3.2.3 [61]. As a consequence, a matrix containing 1,221
OTUs from 303 sampling positions was obtained (S1 and S2 Data)). The functional group
(guild) of the OTUs was inferred using FUNGuild v1.0 [62].

Fungus-to-Fungus Networks in Soil
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Fungal OTU richness and community structure

We first examined how fungal diversity changed depending on the depth of sampling positions
by calculating the mean number of fungal OTUs at each depth. Effects of sampling depth on
fungal community structure were then evaluated by the permutational analysis of variance
(PERMANOVA; 10,000 permutations) [63] using vegan. We also examined the homogeneity
of dispersions over sampling depths with the permutational analysis for the multivariate homo-
geneity of dispersions (PERMDISP) [64]. Before the PERMANOVA and PERMDISP analysis,
the β-diversity of the fungal compositions was calculated based on the Raup-Crickmetric [65].
The differentiation of fungal community structure among sampling depths was inferred also
with the nonmetricmultidimensional scaling (NMDS). Because samples from 30-cm, 50-cm-,
and 100-cm-deep positions includedmany outlier sampling positions in the NMDS ordina-
tion, data from these deepest three sampling depths were excluded from the NMDS visualiza-
tion.We also analyzed how fungal community structure was spatially auto-correlated along
the 9.80-m horizontal line based on a Mantel correlogram analysis using vegan (Raup-Crick
β-diversity; 10,000 permutations).
To reveal patterns in the habitat differentiation of fungi across the soil profile in more detail,

the vertical distribution of each fungal OTU was analyzed. Specifically, the habitat preference
(HP) of a fungal OTU (j) for a sampling depth (i) was evaluated as follows:

HPði; jÞ ¼ ½Nobservedði; jÞ � Mean ðNranodomizedði; jÞÞ� = SD ðNranodomizedði; jÞÞ;

whereNobserved (i, j) was the number of samples from which a focal combination of a sampling
depth and a fungus was observed in the original data, and the Mean (Nranodomized (i, j)) and SD
(Nranodomized (i, j)) denoted the mean and standard deviation of the number of samples for a
focal depth–fungus combination across randomizedmatrices. Randomizedmatrices were
obtained by shuffling the depth-labels of the 303 samples in the data matrix (10,000 permuta-
tions). A larger positiveHP value indicated a stronger preference of a fungus to a focal sam-
pling depth, while a larger negative value represented stronger avoidance.

Network structure

Using the fungal community data, we evaluated co-occurrencesof soil fungi. In the community
data matrix, more/less sequencing reads of a fungal OTU can be observed in the sampling
points in which another OTU has more reads. To reveal such sings of potential positive/nega-
tive interactions in each pair of fungal OTUs, we used two statistical methods: the sparse
correlations for compositional data (SparCC)method [31] and the sparse inverse covariance
estimation for ecological association inference (Spiec-Easi) method [32]. The former method
relies on correlations between species in compositional data matrices [31] and the latter uses
sparse neighborhoodand inverse covariance selection algorithms [32]. In a previous study
comparing statistical methods for inferring co-occurrencenetworks, the SparCC and Siec-Easi
methods and an additional method returned qualitatively consistent results [35]. For each sam-
pling depth, an input matrix was prepared by selecting fungal OTUs that appeared in 1/3 or
more sampling positions at each depth. As the use of rarefiedmatrices (i.e., matrices in which
the total number of sequencing reads per sample is equalized) can introduce artifacts in the co-
occurrence analyses [32], read-count data before rarefaction was used (S1 Data). Sampling
depths below 3 cm were not examined in this analysis due to the small number of sampling
positions from which enough number of sequencing reads were obtained (S1 Data). In the
SparCC analysis, the cutoff value of absolute correlation coefficientswas set to 0.4. In the
Spiec-Easi analysis, the Meinshausen and Bühlmann (MB) algorithm [66] was applied. For
each sampling depth, networks of potential positive and negative associations were drawn
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based respectively on the results of the SparCC and Spiec-Easi analyses using the igraph v.1.0.1
package [67] of R. The Fruchterman-Reingold algorithm [68] was used for the layout of fungal
OTUs in the networks. Although various statistical tools for detecting network modules have
been available, as previously applied to a co-occurrencenetwork analysis of root-associated
fungi [35], the network structure revealed in this study was too fragmented to be subjected to
statistical modularity analyses. Therefore, we focused on how multiple functional groups of
fungi constituted discrete clusters in the network of each sampling depth.

Results

Fungal OTU richness and community structure

The mean number of fungal OTUs per sample significantly decreased in deeper sampling posi-
tions (F1,8 = 11.2, P = 0.01; Fig 1a). Although the number of sampling positions from which
1000 or more sequencing reads were obtained decreased at deeper positions, the total number
of fungal OTUs observedwas saturated with a smaller number of horizontal sampling posi-
tions in deeper vertical positions (Fig 1b). The PerMANOVA analysis suggested that the fungal
community structure varied among sampling depths (df = 1, Fmodel = 47.7, P< 0.0001; Fig 1c).
The subsequent PERMDISP analysis further indicated that the observeddifferentiation of
community structure was attributed, at least partly, to the heterogeneity of dispersions among
sampling depths (df = 9, F = 21.0, P< 0.0001). Spatial autocorrelations among horizontal sam-
pling points disappeared within 2 m in the sampling site (S3 Fig).
The taxonomic composition of detected fungi is shown in Fig 2a. The samples from the O

horizon, which consisted of organic matters, had higher proportions of Capnodiales, Helo-
tiales, Hypocreales, and Chaetosphaeriales fungi than those from the A horizon. In contrast,
Archaeorhizomycetales fungi were found mainly from samples at the lower part of the A hori-
zon (10-30-cm-deep samples). Among Basidiomycete orders encompassing ectomycorrhizal
fungi, Russulales were found mainly from the A horizon, while Agaricales, Sebacinales, and
Thelephorales appeared at both O and A horizons. The fungal community of the B horizon
(subsurface layer reflecting physical and chemical properties of parental material) was charac-
terized byMalassezia OTUs (Malasseziales), which are commonly detected from animal skins
but are reported also from forest soils and plant roots (e.g., [69]). Regarding functional group
(guild), the O and A horizons were dominated by ectomycorrhizal fungi (Fig 2b) as expected
by the dominance of ectomycorrhizal plants (Abies and Betula) in the forest.
The five most commonly observed fungal OTUs at each sampling depth had strong signs

of preferences for soil horizons (Fig 3a). Basically, fungal OTUs whoseHP scores exceeded 3
displayed statistically significant preferences for certain sampling depth(s) (Fig 3b). The fungi
that dominated the O horizon had very strong preferences for their habitat, while the fungi
frequently observed from the A horizon displayed weaker but statistically significant prefer-
ences for the soil horizon (Fig 3a). The fungi that dominated the B horizon (e.g.,Malassezia
sp. [F_601; Malasseziales] and Cladosporium sp. [F_1099; Capnodiales]) showed strong pref-
erences for the horizon, forming a fungal community distinct from that of upper horizons
(Fig 3a).

Network structure

The co-occurrencenetwork of each sampling depth was compartmentalized into some discrete
modules (clusters) of closely associated fungi, which were expected to share environmental
preferences (niches) and/or interact with each other in positive (facilitative) ways (Fig 4).
Between the two statistical methods applied, the Spiec-Easi method returnedmore conservative
results as discussed previously [32]: i.e., the modules inferred in the SparCC analysis were
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Fig 1. Variation in the diversity and community structure of soil fungi along sampling depth. (a)

Number of fungal OTUs per sampling position. A box indicates the first and third quartiles and a thick line

shows the median of a focal sampling depth. (b) Relationship between the number of sampling positions and

that of fungal OTUs at each sampling depth. The number of sampling positions from which 1000 or more

sequencing reads were obtained decreased along sampling depth. (c) NMDS visualization of fungal

community structure.

doi:10.1371/journal.pone.0165987.g001
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further compartmentalized in the Spiec-Easi analysis (Fig 4). Hereafter, we definemodules as
fungal OTU sub-communities with two or more positive co-occurrence links in the SparCC
analysis.
Partly due to the differences in fungal community structure (Figs 2 and 3), the compositions

of fungi forming network modules differed among sampling depths. For example, both the

Fig 2. Variation in fungal community compositions across sampling depths. (a) Taxonomic composition at the order level. (b) Compositions

of fungal functional group (guild) inferred by FUNGuild.

doi:10.1371/journal.pone.0165987.g002
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SparCC and Spiec-Easi analyses inferred positive associations between an ectomycorrhizal fun-
gus in the genus Amphinema (F_24) and unidentifiedAscomycota and Dikarya fungi (F_5 and
F_34) at the O-A boundary, while such modules involving ectomycorrhizal fungi were not
observed at the 3-cm-deep positions (Fig 4). Instead, a module including an arbuscularmycor-
rhizal fungus was inferred with the SparCC analysis (but not with the Spiec-Easi analysis) at
the A horizon (3-cm-deep) (Fig 4).
Althoughmany of the fungi analyzed in this study were unable to be identified at the genus

or family levels, the detected network modules involved fungal OTUs belonging to various

Fig 3. Habitat preferences of soil fungi. (a) Habitat preferences of top-5 fungi with the largest sample

counts at each sampling depth. The ID of each fungal OTU (F_xx) corresponds to that in S1 Data. (b)

Relationship between z-standardized habitat preferences and the P values (false discovery rate) obtained

from a randomization analysis.

doi:10.1371/journal.pone.0165987.g003
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Fig 4. Positive co-occurrence networks. Based on the SparCC (left) and Spiec-Easi (right) methods, pairs of

fungi that co-occurred frequently in the same soil samples were indicated. Fungal OTUs for which neither

positive nor negative (Fig 5) interactions with other OTUs were inferred do not appear in the networks. Discrete

network modules (clusters) are indicated by dotted lines. The ID and the lowest taxonomic information are

shown for each fungal OTU. (a-b) O horizon (+2 cm). (c-d) O-A boundary (0 cm). (e-f) A horizon (-3 cm).

doi:10.1371/journal.pone.0165987.g004
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functional guilds. For example, fungi in the order Helotiales, which encompassed diverse fungi
interacting with plants as endophytes and decomposing dead plant materials [70], were fre-
quently observed in the modules observed in our data. Some of those Helotiales fungi (e.g.,
F_202 in module 1 at the O horizon and F_6 in module 1 at the A horizon) co-occurredwith
ectomycorrhizal, pathogenic, and/or saprotrophic fungi at each sampling depth (Fig 4). There
were somemodules including fungi in the genus Cryptococcus, whose teleomorphs (fungi in
the genus Filobasidiella), were known as parasites of entomopathogenic fungi in the genus
Lecanicillium [71, 72]. Indeed,Cryptococcus (= Filobasidiella) (F_3 and F_7) and Lecanicillium
(F_44) fungi were detected in the same module at the A horizon (3-cm-deep) in the SparCC
analysis (Fig 4).
The SparCC and Spiec-Easi analyses also suggested potential negative interactions between

fungal OTUs (Fig 5). An ectomycorrhizal fungus in the genus Russula (F_28), for example, dis-
played patterns negatively correlated with those of an unidentifiedAscomycota fungus (F_34)
at the A horizon (3-cm-deep). Likewise, an arbuscular mycorrhizal fungus (F_40) had a net-
work link of potential negative interactions with aMortierella fungus (F_13) at the O-A bound-
ary in the SparCC analysis.

Discussion

We analyzed herein how taxonomically and functionally diverse fungi form networks of fine-
scale co-occurrences in soil. Although saprotrophic, mycorrhizal, endophytic, and pathogenic
fungi are often analyzed separately in studies of belowground fungi (but see [21]), they can
share niches and positively/negatively interact with each other in natural and agricultural eco-
systems. Such a viewpoint of correlated (and interdependent) ecological processes of function-
ally diverse fungi is expected to enhance our understanding of the “whole ecosystem functions”
governed by soil microbial communities [73]. Ecosystemmanagement programs optimized for
the use of mycorrhizal fungi, for example, may increase/decrease entomopathogenic fungi
throughmicrobial interaction networks, resulting in the suppression/outbreaks of pest insects.
Thus, in establishing frameworks for predicting whole fungal community dynamics in soil, the
combination of high-throughput sequencing and co-occurrencenetwork analyses provides an
invaluable research basis.
Although our data included fungi without detailed taxonomic and natural history informa-

tion, the detected network modules represented characteristic associations among different
functional groups of fungi (Fig 4). The presence of modules consisting of mycorrhizal fungi
and taxonomically diverse soil-inhabiting fungi suggests that the status of plant–fungus mycor-
rhizal symbioses can be influenced by external biotic interactions in soil and vice versa. While
previous studies on root-associated fungal communities have suggested facilitative interactions
betweenmycorrhizal and endophytic fungi within host root systems [34, 35], this study illumi-
nates the potential impacts of poorly explored soil fungi on mycorrhizal symbioses. Ecolog-
ically intriguing patterns were observed also in the modules that did not involve mycorrhizal
fungi. Potentially myco-parasitic fungi in the genus Filobasidiella (= Cryptococcus), for
instance, co-occurredwith its potential host fungus in the genus Lecanicillium [72], which was
known as an entomopathogenic taxon [71]. This finding suggests that positive co-occurrence
patterns do not necessarily represent facilitative or mutualistic interactions but also antagonis-
tic (i.e., exploiter–victim) interactions. In contrast to such possible antagonistic interactions
shown in positive co-occurrencenetworks, mutually exclusive (competitive) interactions are
expected to appear in the networks of negative co-occurrences (segregated patterns). The nega-
tive co-occurrencenetworks included potential competitive interactions between poorly inves-
tigated soil-inhabiting fungi and those involving mycorrhizal fungi (Fig 5).
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Fig 5. Negative co-occurrence networks. Based on the SparCC (left) and Spiec-Easi (right) methods, pairs of

fungi displaying segregated distributions across the soil samples were indicated. The ID and the lowest taxonomic

information are shown for each fungal OTU. (a-b) O horizon (+2 cm). (c-d) O-A boundary (0 cm). (e-f) A horizon (-3

cm).

doi:10.1371/journal.pone.0165987.g005
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The co-occurrence analysis allows us to raise working hypotheses on interactions among
different functional groups of fungi, but the observedpatterns may be explained, at least partly,
by sharing of niches in soil environments [74] (but see [75]). One possible way for evaluating
potential effects of niche sharing is to use new lines of statistical methods, which divide effects
of direct interspecific interactions from those of shared environmental preferences [76–78].
Although these methods have been used to analyze data collected in observational community
ecological studies, our preliminary analysis on human gut microbiome datasets [79] has shown
that the new statistical approach is applicable to high-throughput sequencing-baseddatasets if
data of physical/chemical environmental conditions are available (Toju et al., in review).How-
ever, because this study was designed to reveal fine-scale co-occurrencesof soil fungi, we did
not have enough volume of samples for the measurements of soil environmental conditions
(e.g., pH and nitrogen concentrations). Therefore, evaluating the relative contributions of
niche sharing and direct interspecific interactions remains important challenges for under-
standing mechanisms organizing soil fungal communities.
As expected by the vertical gradient in OTU richness (Fig 1) and taxonomic compositions

(Figs 2 and 3), the complexity of co-occurrencenetworks varied across the O and A soil hori-
zons (Figs 4 and 5). However, given the number of sampling positions analyzed at each sam-
pling depth (� 50), the number of network links might be underestimated even at the O
horizon. In general, small number of samples can lead to pseudo-negative results in the esti-
mation of potential positive/negative co-occurrencepatterns [34]. Therefore, discrete mod-
ules (clusters) observed in the present analysis may be recognized as parts of larger modules
when we increase the number of samples in future studies. It should be also taken into
account that our present analysis did not detect negative co-occurrence links betweenmycor-
rhizal fungi despite the fact that strong competitive interactions betweenmycorrhizal fungi
have been reported repeatedly in studies of root-associated fungi [26, 27, 80]. In addition to
sample size, the choice of methods for co-occurrence analyses is expected to affect statistical
results. Although a benchmark test has reported that the Spiec-Easi method, which depends
on algorithms for sparse neighborhood and inverse covariance selection, performs better
than other methods used in human microbiome studies (e.g., SparCC) [32], it would be pro-
ductive to find patterns (network links) consistent among results based on multiple statistical
methods [35].
In ecology and mycology, high-throughput sequencing has become a standard tool for com-

munity ecological analyses, but utmost care is required when designingmolecular experimental
protocols and interpreting results. Specifically, becauseDNA barcoding analyses do not provide
any direct information of the natural history or life cycles of detected fungi, complementary
microscopic observations and experimental investigations are awaited for further understanding
niche differentiation and interspecific interactions in soil fungal communities. In addition, con-
tinual efforts to improve the molecular experimental and bioinformatic procedures are neces-
sary. When sequencing-read counts are used as quantitative information representing relative
abundance of OTUs, compositional bias resulting frommolecular experimental steps may influ-
ence community data analyses [81]. In PCR, for example, index sequences in fusion primers
could cause template-sequence-specific bias of amplification across samples [82]. Thus, in this
study, the PCR amplification of template DNA was conducted with PCR primers without index
sequences and, subsequently, index sequences were added to the amplicons in the 2nd PCR pro-
cess with a small number of cycles in order to avoid such potential PCR bias. Taxonomic cover-
age of PCR primers and the gene copy number of marker regions can also introduce bias to
read-count data [81], but their influence to SparCC and Spiec-Easi analyses may be limited
if consistent experimental conditions were applied to all samples throughout the PCR and
sequencing procedures.
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If continuous attention is paid to potential pitfalls in molecular experimental and statistical
procedures, the combination of high-throughput sequencing and co-occurrencenetwork
analyses will provide new options for investigating complex community dynamics in nature.
Although ecological inferences of this study is based entirely on the spatially restricted sam-
pling in a cool-temperate forest, the molecular experimental and statistical methods can be
applied to any soil microbial communities. Knowledge of microbe–microbe co-occurrencenet-
works will help us design new lines of studies for further understandingmechanisms organiz-
ing species-rich communities. By sequencing the genomes of multiple fungal species in the
same network modules, for example, we may be able to examine how those frequently co-
occurring fungi have complementary sets of functional genes. Another important extension of
the network theoretical approach is to analyze potential facilitative/competitive interactions
among different taxa of organisms. That is, by obtaining the community compositional data of
not only fungi but also bacteria in a high-throughput sequencing run, we can infer how the two
groups of soil microbes interact with each other in natural and agricultural ecosystems. Further
studies based on high-throughput sequencing and co-occurrence analyses will help us explore
poorly investigated biosphere in soil.
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3. Wardle DA, Bardgett RD, Klironomos JN, Setälä H, Van Der Putten WH, Wall DH. Ecological linkages

between aboveground and belowground biota. Science. 2004; 304(5677):1629–33. doi: 10.1126/

science.1094875 PMID: 15192218

4. Smith SE, Read DJ. Mycorrhizal symbiosis: Academic press; 2010.

5. Nara K. Ectomycorrhizal networks and seedling establishment during early primary succession. New

Phytol. 2006; 169(1):169–78. doi: 10.1111/j.1469-8137.2005.01545.x PMID: 16390428

6. Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, et al. Reciprocal rewards

stabilize cooperation in the mycorrhizal symbiosis. Science. 2011; 333(6044):880–2. doi: 10.1126/

science.1208473 PMID: 21836016

7. Mills KE, Bever JD. Maintenance of diversity within plant communities: soil pathogens as agents of

negative feedback. Ecology. 1998; 79(5):1595–601.

8. Mangan SA, Schnitzer SA, Herre EA, Mack KM, Valencia MC, Sanchez EI, et al. Negative plant-soil

feedback predicts tree-species relative abundance in a tropical forest. Nature. 2010; 466(7307):752–

5. doi: 10.1038/nature09273 PMID: 20581819

9. Janzen DH. Herbivores and the number of tree species in tropical forests. Am Nat. 1970; 104:501–28.

10. Toju H, Guimarães PR, Olesen JM, Thompson JN. Assembly of complex plant–fungus networks.

Nature Commun. 2014; 5:5273.

11. Zhang Y, Ni J, Tang F, Pei K, Luo Y, Jiang L, et al. Root-associated fungi of Vaccinium carlesii in sub-

tropical forests of China: intra-and inter-annual variability and impacts of human disturbances. Sci

Rep. 2016; 6:22399. doi: 10.1038/srep22399 PMID: 26928608

12. Toju H, Guimarães PR, Olesen JM, Thompson JN. Below-ground plant–fungus network topology is

not congruent with above-ground plant–animal network topology. Sci Adv. 2015; 1(9):e1500291. doi:

10.1126/sciadv.1500291 PMID: 26601279

13. Newsham KK. A meta-analysis of plant responses to dark septate root endophytes. New Phytol. 2011;

190(3):783–93. doi: 10.1111/j.1469-8137.2010.03611.x PMID: 21244432

14. Rodriguez R, White J Jr, Arnold A, Redman R. Fungal endophytes: diversity and functional roles. New

Phytol. 2009; 182(2):314–30. doi: 10.1111/j.1469-8137.2009.02773.x PMID: 19236579

15. Jumpponen A, Trappe JM. Dark septate endophytes: a review of facultative biotrophic root-colonizing

fungi. New Phytol. 1998; 140(2):295–310.

16. Hättenschwiler S, Tiunov AV, Scheu S. Biodiversity and litter decomposition in terrestrial ecosystems.

Ann Rev Ecol Evol Syst. 2005; 36:191–218.

17. Meyling NV, Eilenberg J. Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium

anisopliae in temperate agroecosystems: potential for conservation biological control. Biol Control.

2007; 43(2):145–55.

Fungus-to-Fungus Networks in Soil

PLOS ONE | DOI:10.1371/journal.pone.0165987 November 18, 2016 15 / 18

http://dx.doi.org/10.1111/j.1461-0248.2007.01139.x
http://dx.doi.org/10.1111/j.1461-0248.2007.01139.x
http://www.ncbi.nlm.nih.gov/pubmed/18047587
http://dx.doi.org/10.1126/science.1094875
http://dx.doi.org/10.1126/science.1094875
http://www.ncbi.nlm.nih.gov/pubmed/15192218
http://dx.doi.org/10.1111/j.1469-8137.2005.01545.x
http://www.ncbi.nlm.nih.gov/pubmed/16390428
http://dx.doi.org/10.1126/science.1208473
http://dx.doi.org/10.1126/science.1208473
http://www.ncbi.nlm.nih.gov/pubmed/21836016
http://dx.doi.org/10.1038/nature09273
http://www.ncbi.nlm.nih.gov/pubmed/20581819
http://dx.doi.org/10.1038/srep22399
http://www.ncbi.nlm.nih.gov/pubmed/26928608
http://dx.doi.org/10.1126/sciadv.1500291
http://www.ncbi.nlm.nih.gov/pubmed/26601279
http://dx.doi.org/10.1111/j.1469-8137.2010.03611.x
http://www.ncbi.nlm.nih.gov/pubmed/21244432
http://dx.doi.org/10.1111/j.1469-8137.2009.02773.x
http://www.ncbi.nlm.nih.gov/pubmed/19236579


18. Hibbett DS, Ohman A, Glotzer D, Nuhn M, Kirk P, Nilsson RH. Progress in molecular and morphologi-

cal taxon discovery in Fungi and options for formal classification of environmental sequences. Fungal

Biol Rev. 2011; 25(1):38–47.

19. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AF, Bahram M, et al. Towards a unified para-

digm for sequence-based identification of fungi. Mol Ecol. 2013; 22(21):5271–7. doi: 10.1111/mec.

12481 PMID: 24112409

20. Smith DP, Peay KG. Sequence depth, not PCR replication, improves ecological inference from next

generation DNA sequencing. PLOS ONE. 2014; 9(2):e90234. doi: 10.1371/journal.pone.0090234

PMID: 24587293

21. Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, et al. Global diversity and geog-

raphy of soil fungi. Science. 2014; 346(6213):1256688. doi: 10.1126/science.1256688 PMID:

25430773
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