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ABSTRACT
Methods of super-resolving light microscopy (SRM) have found an exponentially growing range of
applications in cell biology, including nuclear structure analyses. Recent developments have proven
that Single Molecule Localization Microscopy (SMLM), a type of SRM, is particularly useful for
enhanced spatial analysis of the cell nucleus due to its highest resolving capability combined with
very specific fluorescent labeling. In this commentary we offer a brief review of the latest
methodological development in the field of SMLM of chromatin designated DNA Structure
Fluctuation Assisted Binding Activated Localization Microscopy (abbreviated as fBALM) as well as its
potential future applications in biology and medicine.
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Chromatin structure investigation constitutes
a challenge

The discovery that the genetic information within the
DNA is organized as a double helix has revolutionized
the understanding of its duplication and heredity.
This finding alone, however, did not account for how
the DNA with a total length of approximately »2 m
can fold in order to fit into a human cell nucleus of a
diameter 5 orders of magnitude smaller. In order for
this to happen, the formation of chromatin, a complex
of DNA and proteins, is necessary. The DNA is
wrapped around histone protein octamers to form
nucleosomes, having on average 146 base pairs (bp),
with a linker DNA ranging from 10 to 50 bp in
between the nucleosome complexes. However, at a
higher level of packaging and condensation the precise
higher order spatial organization of the chromatin is
still a subject to an ongoing debate [1,2]. After mitosis,
condensed chromosomes undergo decondensation
and the nuclei of daughter cells are formed. Here, they
form rather distinct chromosome territories and typi-
cally maintain their radial position in the nucleus
throughout the cell cycle [3].

Many models of chromatin organization and regu-
lation have been discussed previously [4–6]. Using
chromosome conformation capture methods [7], it
has been suggested that the genome is divided into
two nuclear compartments: compartment A is
enriched in active genes whereas compartment B
comprises sequences of limited transcriptional
potency [8,9]. Moreover, this technology has indicated
the existence of small self-interacting chromatin
domains, denoted as “topologically associated chro-
matin domains” (TADs). TADs are genomic regions
of kilo- to mega- base-pairs that undergo a high fre-
quency of local contacts while interacting infrequently
with sequences within adjacent TADs [8]. In turn,
using microscopic approaches, the DNA was demon-
strated to have a very heterogeneous distribution
across the cell nucleus with some regions essentially
depleted of it (reviewed in [1]). A- and B- nuclear
compartments were later demonstrated to spatially
segregate and occupy the interior or the periphery of
the cell nucleus, respectively [10]. Nonetheless, the
chromatin architecture at an intermediate length-scale
between a chromatin fiber and TADs (10 – 200 nm)
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remains elusive. Furthermore, the understanding of
how the chromatin structure responds to various
pathological situations and malfunctions is still
limited. This includes different conditions such as
Alzheimer’s Disease [11], senescence [12], cancer [13],
ischemia [14], and others. Hence the importance to
develop appropriate methodology able to visualize
tangled and complex chromatin arrangements at
enhanced resolution.

Super-resolution microscopy as a potent tool
in chromatin structure analysis

Super-Resolution Microscopy (SRM) is a family of
fluorescence-based methods that have enabled study-
ing biological structures (mostly in cell culture sam-
ples) at a level of detail so far inaccessible to
conventional light optical techniques [15–17]. Among
SRM, methods of Single Molecule Localization
Microscopy (SMLM) received major attention as they
probably require the least sophisticated instrumenta-
tion and provide very high resolution and a very good
signal-to-background ratio [18]. The general principle
of all SMLM approaches is to perform multiple regis-
trations of the same fluorescently labeled object. In
each frame, only a relatively small subset of fluoro-
phore signals is detected, in such a way that these sig-
nals appear isolated on the detector; i.e. the minimum
distance between the individual fluorescent sites is
larger than the conventional resolution (for micro-
scopes with high numerical aperture objective lenses
about half a wavelength, or ca. 200 nm); the positions
of these “optically isolated” fluorophore molecules are
determined with nanometer precision and juxtaposed
in a localization map. In most SMLM approaches, the
recorded subset of fluorophores is reverted to a non-
detectable state, and a different subset of fluorophores
is acquired in the following frame. This process is
repeated many times. Through combining the posi-
tions of the fluorophores obtained in a large number
(thousands) of individual frames, a joint localization
map (image) with a highly enhanced optical (smallest
distance measured between two fluorophore sites) and
structural resolution is obtained [19].

The chromatin distribution within the cell nucleus
can be visualized through highlighting the DNA. This
has been done in several ways but the most precise
and efficient one employs DNA-binding dyes (interca-
lators or minor-groove binders) that may bind to the

DNA double helix even every 3.2 nm20. Previous
attempts that focused on SMLM of isolated DNA and
small structures (such as the genome of prokaryotes)
yielded spectacular results [21–23]. For example, iso-
lated DNA of λ-phage was imaged with a resolution
below 10 nm using Binding Activated Localization
Microscopy (BALM) [23]. However, despite the excel-
lent performance of the aforementioned techniques
on small DNA structures, they remained rather cum-
bersome when applied to study the organization of
chromatin within the nucleus of an eukaryotic cell
[24,25]. In this article we will highlight a novel meth-
odological solution.

DNA properties provide a mechanism for
fluorescence switching

SMLM is often implemented using fluorescent fusion
proteins or immuno-labeling with organic fluorophores
as reporter molecules. Control over the fluorescent prop-
erties of a molecular label and the potential for single
molecule detection, i.e. optical isolation, is usually pro-
vided by stochastic reduction and oxidation of the fluoro-
phore combined with appropriate laser frequencies and
intensities (photoswitching [26–28]) or by altering the
spectral properties via a change in themolecular structure
(photoactivation and photoconversion [29]). Unfortu-
nately, these mechanisms are rather ineffective when
applied to fluorescent DNA-binding dyes; hence the
need to search for alternative fluorescence switching solu-
tions. In our recent publication [30] the fluorescence
switching within the DNA-dye complex was conceived
differently: instead of relying on the photophysical prop-
erties of permanently DNA-associated fluorescent dye
directly, the properties of its binding partner, namely the
DNA double helix were targeted.

Under physiological conditions DNA can adopt a
set of different structural conformations among which
the most stable is prevalent. This phenomenon is ther-
mally driven and is known as “DNA breathing”. It is
believed that “breathing” in physiological conditions
serves as a mechanism which enables DNA-associa-
tion of various proteins of enzymatic activity such as
helicases [31]. In a physiological environment, DNA
“breathing” is manifested in reversible and stochastic
cycling within sub-milliseconds between conforma-
tional states of the native double-helix and some less
frequent ones [31]. Under DNA-denaturing condi-
tions, these latter states departing from the most stable
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conformation should become more abundant. In fact,
strong denaturation procedures may lead to an irre-
versible collapse of the double helix and the formation
of two single stranded DNA molecules [32,33].

Many DNA-binding dyes in aqueous solution are
essentially non-fluorescent due to additional competi-
tive decay channels of the excited state resulting from
rapid intra-molecular dynamics [34]. However, upon
binding to the DNA (irrespectively of the binding
mechanism), some DNA-binding dyes experience a
significant increase by a factor of 103 or more in their
fluorescence photon yield [34,35]. This increase in
quantum efficiency requires, however, binding to a
DNA site with stable local double stranded conforma-
tion (dsDNA). In its absence, e.g. when strong dena-
turing conditions are applied, the fluorescence of the
DNA-binding dye is significantly reduced [36]. To
summarize, the reversible transients between different
DNA conformations in a carefully adjusted denatur-
ing environment could be expected to indirectly
enable fluorescence intensity switching at single
DNA-binding site(s) in a controlled fashion.

BALM in the cell nucleus

In our latest publication [30] we presented a novel sin-
gle molecule-based method that advances DNA-
BALM [23] to imaging the chromatin within the cell
nucleus and enables studying nuclear architecture at
an unprecedented level of structural resolution. This
methodology termed as DNA structure fluctuation
assisted BALM (fBALM) relies on a moderate nuclear
membrane permeabilization followed by the delivery
of a fluorescent DNA-binding dye inside the fixed cell
nucleus (for scheme see Fig. 1A). Once cells are
labeled and thoroughly washed, the pH in the tightly
sealed microscopic sample is gradually decreased over
the course of a few hours using a suitable imaging
medium to slowly introduce local instabilities into the
DNA structure. This takes place with simultaneous
maintenance of native overall chromatin configura-
tion as evaluated with a dedicated quantitative assay
based on a chromatin-associated reference point-like
signals (for details see [ref. 30]). In such an
experimental setup, the pH eventually is lowered to a
value of »3.7, i.e. a value that introduces reversible
conformational changes to the dsDNA via ionization
of the bases [33,37]. Due to a this instability intro-
duced to the dsDNA, the fluorescence emission of the

DNA-binding dye is rather transient as it can only
originate efficiently from the DNA sequence that is
stable (as presented in Fig. 1B). This is manifested
well in single frames extracted from an unprocessed
fBALM movie where bright flickering signals show up
for tens to hundreds of milliseconds (Fig. 1C). These
bright fluorescent signals correspond to local DNA
sequences that underwent a transient conformational
stabilization in a given moment (see inset in Fig. 1C).
Such temporary fluorescence emissions from distinct
locations in a sample and the thus achieved optical
isolation are prerequisites for successful ‘blinking’
based super-resolution single molecule localization
microscopy [15].

In Fig. 1D we demonstrate the behavior of a fluo-
rescence signal of a Sytox Orange DNA-binding probe
in the presence of cellular DNA exposed to 8 cycles of
high and low intensity laser excitation light. The high
intensity excitation cycle results in rapid signal decay
whereas the low excitation cycle enables monitoring
the signal recovery over a period of »2 min. We dem-
onstrate that within approx. 24 min the DNA-binding
dye signal recovers with an efficacy of »80% for
8 times pointing to adequate reversibility of the pro-
cess [26].

The structural resolution in all SMLM techniques
depends on the density of localized signals detected
from the underlying fluorescently labeled structure
and on the precision with which these signals can be
localized [19]. In fBALM the number of signals avail-
able to capture is limited virtually only by the total
acquisition time of the experiment (i.e. the total num-
ber of acquired frames) and this can be freely
increased due to an efficient protection of the DNA-
binding dye from photobleaching (Fig. 1D). Moreover,
usage of small DNA-specific probes provides the best
achievable labeling density among many other chro-
matin labeling techniques (compared in [30]). Fur-
thermore, due to the relatively high number of
photons emitted per event [38], the average localiza-
tion precision inside the nucleus was »11 nm in the
fBALM experiments reported. Thanks to these advan-
tageous features of fBALM we were capable of discern-
ing chromatin structures smaller than 50 nm30

(Fig. 2), outperforming significantly SMLM techni-
ques of DNA-binding dye imaging in a cell nucleus
based on in situ photoconversion [24,25]. Recently,
similar attempts have been pursued using a custom
designed fluorophore (Hoechst-JF646) and a SMLM
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technique termed point accumulation in nanoscale
topography (PAINT) [19]. In fBALM, however, a
number of conventional commercially available fluo-
rophores can be used without the need for a complex
chemical synthesis.

Different protein factors are known to occupy dis-
tinct compartments within the cell nucleus effectively
determining its local functionality [1]. It would there-
fore be important to integrate fBALM with SRM of
another spectrally distinguishable fluorescent probe to
study the distribution of e.g. replication factories or
DNA repair sites or FISH-labeled genomic loci with
respect to the DNA density distribution. Presently,
fBALM requires imaging in low pH; hence the combi-
nation with other photoswitchable fluorescent probes,
which operate best at neutral pH values, is rather lim-
ited. As an alternative, fBALM may be combined with
another super-resolution technique such as 3D Struc-
tured Illumination Microscopy (3D-SIM) [39]. Such
a combination would enable imaging up to 2 other

intra-nuclear targets with a resolution improved by a
factor of 2 using SIM principles and produce an over-
lay with a high resolution DNA density map produced
by fBALM (resolution improved by »5x).

Future applications – future perspectives

In a first application of fBALM to study nuclear chro-
matin structure [30], we have demonstrated that in
contrast to standard widefield microscopy it is capable
of distinguishing quantitatively differences in the
DNA density distribution in cells subjected to ische-
mic treatment: The chromatin of the cells deprived of
oxygen and nutrients is known to bear decreased sus-
ceptibility to endonuclease digestion and decreased
dynamic interaction of H1 histone [14]. Our fBALM
experiments demonstrated that the chromatin in such
ischemic conditions undergoes a vast condensation
towards the nuclear periphery and that chromatin dis-
tribution in ischemia differs significantly from its

Figure 1. DNA structure fluctuation binding activated localization microscopy (fBALM). A) Scheme demonstrating the sample prepara-
tion protocol including nuclear membrane permeabilization and DNA-binding probe delivery followed by gradual pH decrease. B) Local
DNA sequences undergoing stochastic conformational changes in a denaturing environment in fBALM and corresponding local fluores-
cence emission (pseudo-gray shades) of a DNA-binding dye (red dots) occurring upon sequence stabilization. The stochastic behavior of
the DNA sequences is depicted for several time points (t1, t2,…,tN). C) Raw fBALM frames acquired using a CCD camera with a 20 ms
exposure time. The small inset indicates a part of a cell nucleus that was stained with Sytox Orange where no signal appears prior the
first 60 ms of the acquisition, corresponding to a denatured DNA site [36]. In the following frame a transiently fluorescent signal appears,
as an underlying DNA sequence present at this site gains a stable double stranded conformation (inset for 60 ms frame). D) Time-course
photobleaching experiment in fBALM conditions. The single cell nucleus shown in C was exposed repetitively to a high intensity exciting
light (“bleach”, »1 kW/cm2, depicted in red) and low exciting light (»20 W/cm2, no color) every »3 min. This was monitored by total
nuclear fluorescence signal quantification (upper panel). Low intensity excitation fluorescence recovery profiles are enlarged and pre-
sented in the lower panel. The DNA-binding probe’s fluorescence undergoes fast bleaching when exposed to high intensity excitation
and recovers rapidly within only »2 min time period, suggesting the reversibility of the process underlying fluorescence switching, in a
similar way as reported before [26]).
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Figure 2. An example of an fBALM super-resolution image. A) Conventional image of the DNA labeled with YOYO-130. B) fBALM image
reconstructed based on SMLM principles of optical isolation. Nucleolus indicated with “nu”. C and D are zoomed-in insets of regions of
interests embracing a part of the cell nucleus next to the nuclear periphery depicted in A and B, respectively. Domain-like chromatin
organization becomes apparent due to enhanced resolution in fBALM (dense signal clusters are indicated with dashed circles in D). Vast
parts of the cell nucleus indicate very low DNA densities only, in line with a previous interchromatin compartment model derived from
3D-SIM and electron microscopy images (reviewed in Cremer et al., 20151). The single molecule localization density within the clusters
reaches a value of 10,000/mm2, whereas at DNA-poor sites at most approx. some hundreds/mm2were detected.
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native configuration [30]. The observed dramatic
changes in chromatin configuration are largely revers-
ible upon restoration of normal conditions (normoxia
and normoglycemia).

Analysis of nuclear texture features as a measure of
nuclear chromatin changes using conventional
microscopy has been proven to be a highly effective
tool to quantitatively describe changes in chromatin
architecture associated with malignancy [40]. It is
anticipated that the discrimination power of nuclear
texture analysis will be substantially improved when
nuclear chromatin structures are imaged at enhanced
resolution. In line with this, another super-resolution
microscopy technique termed 3D-SIM has already
been employed to quantitatively assess differences in
nuclear structure in Hodgkin’s lymphoma [41,42],
Multiple Myeloma (MM) [43,44], and in Alzheimer’s
disease [45], all obtained from patients. Whereas 3D-
SIM of DAPI labeled DNA provides resolution in the
order of 100 nm, fBALM could improve it further by
another factor of »2 (i.e. enabling » 50 nm structural
resolution), increasing the precision of such chroma-
tin texture studies taking advantage of already existent
patients’ sample preparation pipelines.

The application of 3D-SIM to cancer specimens has
taught us a few important lessons; 1) cancer cells have
a nuclear DNA architecture that is different from that
of normal cells, and this difference can be quantified
[41,42,44]. 2) Primary patient-derived cancer cells
may be different depending on the stage of the disease.
For example, myeloma cells of patients with monoclo-
nal gammopathy of undetermined significance
(MGUS), a precursor lesion to myeloma, show altered
nuclear profiles of DNA organization compared to
normal lymphocytes and to multiple myeloma [44]. It
is of note that the amount of DNA-poor/free space
increases from normal to MGUS, and from MGUS to
MM. Similarly, its level significantly increases in
Hodgkin’s lymphoma (HL) from normal lymphocyte
to mono-nucleated Hodgkin’s (H) cell, and from H
cells to bi-, tri- and tetra-nucleated Reed-Sternberg
(RS) cell [42]. Importantly, bi-nucleated RS cells have
less DNA-poor or DNA-free spaces than tri-nucleated
RS cells, and tri-nucleated have less than tetra-nucle-
ated RS cells. Thus, as HL progresses from H to RS
cell and as RS cells increase their multinuclearity,
DNA-poor/free space is increased.

These findings support an essential aspect of the
interchromatin domain model [1] rather than the

interchromosomal network model (reviewed in
Branco & Pombo, 2006 [46]). The former model pre-
dicts a nuclear chromatin structure consisting of
highly condensed inactive nuclear compartments
(INC) as well as active nuclear compartments (ANC)
with a substantially lower DNA content. This basic
nanostructural feature is apparent in both SIM and
fBALM images. In the interchromosomal network
model, a much more homogeneous DNA distribution
is expected, due to the high degree of intermingling
assumed. Further, the ANC-INC model’s assumptions
remain in line with our observations on the reversible
increase in interchromosomal space after ischemic
stress [14,30]; again, a feature not assumed in the
interchromosomal network model. Interestingly,
recent 3D-genome reconstructions based on single
cell Hi-C data demonstrated the spatial segregation of
chromatin into A- and B-compartments [10]. It turns
out that the genome’s B-compartment localizes to the
nuclear periphery and surrounds the nucleoli. With
the help of fBALM we demonstrated that these chro-
matin regions bear a high DNA-density (Fig. 2B).

The clinically-relevant data summarized above are
considered first insights into multiple possible medical
applications that super-resolution technologies may
provide us with in the foreseeable future. Thinking in
terms of a near future for these technologies, one may
easily imagine the value of these novel approaches for
the exact staging of a patient’s level of genomic insta-
bility, for the exact analysis of his/her tumor cell het-
erogeneity, and one may even consider the multi-
faceted super-resolution applications for both diagno-
sis and monitoring, including their use as companion
diagnostic tools. To achieve this future goal, larger
cohort studies are required.

Current limitations to this powerful application
include its computer-intensive and time-consuming
image acquisition and analysis. It is, however, feasible
to develop faster and more automated approaches to
this powerful technology [47]. Only when these steps
are achieved, can one think of future clinical applica-
tions using super-resolution as a tool to define struc-
tural biomarkers of disease.
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