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Abstract

Purpose

Understanding what constitutes normal walking mechanics across the adult lifespan is cru-

cial to the identification and intervention of early decline in walking function. Existing

research has assumed a simple linear alteration in peak joint powers between young and

older adults. The aim of the present study was to quantify the potential (non)linear relation-

ship between age and the joint power waveforms of the lower limb during walking.

Methods

This was a pooled secondary analysis of the authors’ (MT, KD, JJ) and three publicly avail-

able datasets, resulting in a dataset of 278 adults between the ages of 19 to 86 years old.

Three-dimensional motion capture with synchronised force plate assessment was per-

formed during self-paced walking. Inverse dynamics were used to quantity joint power of the

ankle, knee, and hip, which were time-normalized to 100 stride cycle points. Generalized

Additive Models for location, scale and shape (GAMLSS) was used to model the effect of

cycle points, age, walking speed, stride length, height, and their interaction on the outcome

of each joint’s power.

Results

At both 1m/s and 1.5 m/s, A2 peaked at the age of 60 years old with a value of 3.09 (95%

confidence interval [CI] 2.95 to 3.23) W/kg and 3.05 (95%CI 2.94 to 3.16), respectively. For

H1, joint power peaked with a value of 0.40 (95%CI 0.31 to 0.49) W/kg at 1m/s, and with a

value of 0.78 (95%CI 0.72 to 0.84) W/kg at 1.5m/s, at the age of 20 years old. For H3, joint

power peaked with a value of 0.69 (95%CI 0.62 to 0.76) W/kg at 1m/s, and with a value of

1.38 (95%CI 1.32 to 1.44) W/kg at 1.5m/s, at the age of 70 years old.

Conclusions

Findings from this study do not support a simple linear relationship between joint power and

ageing. A more in-depth understanding of walking mechanics across the lifespan may pro-

vide more opportunities to develop early clinical diagnostic and therapeutic strategies for

impaired walking function. We anticipate that the present methodology of pooling data
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across multiple studies, is a novel and useful research method to understand motor devel-

opment across the lifespan.

Introduction

Walking is a fundamental activity of daily living, the performance of which is required for

independent living, and exercise [1, 2]. Significant changes occur to walking mechanics over

the adult lifespan [3], that ultimately impinge on walking speed. Understanding what consti-

tutes normal walking mechanics across the adult lifespan is crucial to the identification and

intervention of early decline in walking function. Joint mechanical energetics (ME) (i.e. power

and work) [4–6] are some of the most well investigated variables in walking, given that they

reflect the muscular sources of energy required to walk [7, 8].

Older adults (average 69 years) have been reported to walk with 2.7 times greater hip posi-

tive work during early support, and 0.7 times less ankle positive work during push-off than

young adults (average 21 years) [4]. Another study reported that older adults (average 66

years) walked with 0.9 times lesser ankle push-off power, and 1.25 times greater hip power

during early support compared to young adults (average 26 years) during walking at 1 m/s [6].

Common statistical methods used to quantify age-related changes in joint ME during walking

are linear regression-based techniques, which include the Analysis of Variance (ANOVA) [4,

6].

A limitation of linear regression-based techniques is the assumption that walking mechan-

ics and performance changes linearly across the lifespan. A meta-analysis in healthy adults

describe an inverted “U” shaped relationship between age and walking speed, with speed peak-

ing in the 3rd decade of life [9]. Studies from the Baltimore Longitudinal Study of Aging

reported that ankle work during walking reduced most rapidly between 30 to 60 years old [10],

whilst hip work declined with multiple peaks and troughs between 60 to 92 years old [11].

Given the close relationship between joint ME and walking speed [12, 13], the evidence suggest

that relationships between age and joint ME may be non-linear. To model the nonlinear rela-

tionships, Ko et al. [10] used spline regression to partition the data into three age categories,

where data in each category received their own linear model fitting. A limitation of Ko et al.

(2012) was that similar non-linear effects of age on joint ME was assumed for all joints (hip,

knee ankle) [10].

It is well established that joint ME in walking is influenced by walking speed [13] and step/

stride length [14]. Differences in joint ME with ageing could be confounded by age-related

alterations in speed [9], and step/stride length [3]. To control for such confounders age-related

differences in joint ME have been investigated at fixed experimental speeds [6, 15]. A limita-

tion of experimentally controlling confounders is that it may reduce the ecological validity of

the comparison. For example, fixing the walking speed of a 20-year-old to so that an 80-year-

old walked at the same speed, and vice-versa, may require the former to walk in an unnatural

way.

The aim of the present study was to quantify the relationship between age and joint power

during walking, across the adult lifespan. To achieve this aim, we pooled together the individ-

ual participant data of three publicly available datasets [16–18], and the data from one primary

research. To this end, we used a novel statistical technique called, Generalized Additive Models

for Location, Scale, and Shape (GAMLSS) [19]. An advantage of GAMLSS is that it can model

linear and nonlinear relationships between age and the entire joint power waveform, whilst
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adjusting for potential covariates, to parse out the “true” effect of age in joint power alterations

during walking. Given that the entire joint power waveform is modelled, we focus the statisti-

cal inference on three discrete parameters, namely: ankle push-off power generation (A2), hip

power generation during early support (H1), and hip power generation during pre-swing

(H3). These three parameters were selected due to their importance in influencing walking

speed, and based on prior investigations describing their importance towards distinguishing

older from younger adult gait. Between the speeds investigated presently, joint kinetics typi-

cally scale with speed—i.e. it increases in magnitudes at faster speeds [20]. Given that walking

speed appears to peak at 30 years old [9], we generated the following null hypotheses. 1) A2

would exhibit an inverse “U” shaped function across age, with peaks at approximately 30 years

old, similar to walking speed. Also, given that the hip and ankle power has a reciprocal rela-

tionship [4, 21], we also hypothesized that H1 and H3 would exhibit a “U” shaped function

across age, with a trough happening at the age where A2 peaks.

Methods

Design

This was a pooled secondary analysis of the author’s (MT) and three publicly available datasets

[16–18]. Hence, no ethical approval was required for the conductance of this secondary analy-

sis. Despite the presence of some methodological variations between the presently included

studies, data pooling was deemed appropriate to conduct based on several reasons. First, a pre-

vious meta-analysis [3] pooled data into a random-effects model despite methodological varia-

tions in the primary studies (e.g. barefoot walking [6] and shod walking [22]). The present

analysis also adopted a random effects modelling approach. Second, a previous study reported

no significant differences in A2 and H3 powers between treadmill and overground walking

[23]. Third, given that walking without shoes reduces step length compared to shoes [24], to

account for between-study variation in footwear presently, we included step length as a covari-

ate in our models. An overview of the methodologies of the included studies can be found in

S1 Table.

Study (KD, JJ, MT—Termed simply as “taylor”). All participants were recruited from

local communities. The inclusion criteria for this study were as follows; all participants had to

live independently, be independent walkers (able to walk at least 10 m unaided), with no surgi-

cal procedures occurring in the last six months, and aged fifty-five years of age or older. 140

community-dwelling older adults volunteered for the study. Ethical approval was granted by

the University Ethics Committee, and all participants provided written informed consent

prior to study enrolment.

Participants performed shod overground walking across a 10m walkway at their self-

selected spontaneous walking speed, over a single in-ground force plate (Kistler 9281CA, Win-

terthurm, Switzerland). Five successful trials (i.e. no observable targeting of force plate) were

captured for each participant. A 7-camera VICON T20 motion capture system (Vicon, Oxford,

UK, 100 Hz) synchronised to a force plate (1000Hz) was used. Sixteen reflective markers were

placed on the lower body (7 segments, each 3DOF) body in accordance with the Plug-In Gait

(PiG) marker set [25]. Processing was performed using Vicon Nexus (v 1.8.5, Oxford, UK).

Marker trajectories were filtered with a quintic spline filter (Woltring; mean square error of

10) [26], whilst force data were filtered using a low-pass 10Hz order Butterworth filter. A force

plate threshold of 10N was used to determine gait events of initial contact and toe-off. Walking

speed was measured via Brower Timing gates (Utah, USA) positioned 2.3 m apart, either side

of the force plate.
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Study (Fukuchi) [16]. These data came from a public dataset of 42 healthy adults walking

on a treadmill, the details of which can be found in the original open source publication [16].

Nine out of the 42 participants from the walking dataset were excluded from the present study.

These participants had simultaneous bilateral foot contacts on the same force plate, resulting

in an absence of consecutive good foot contact strides which lasted >50% of the walking dura-

tion. The 50% threshold was determined by the authors to minimize manual identification of

foot contact events, to increase processing replicability [27].

Participants performed unshod walking on a dual-belt, force-instrumented treadmill (300

Hz, FIT; Bertec, Columbus, OH, USA), and motion was captured with 12 opto-electronic cam-

eras (150Hz, Raptor-4; Motion Analysis Corporation, Santa Rosa, CA, USA) [16]. Walking

occurred over eight controlled speeds: 40%, 55%, 70%, 85%, 100%, 115%, 130%, 145% of each

participant’s self-determined dimensionless speed (Froude number). The associated absolute

walking speeds for all eight conditions for each participant were reported by the authors. Only

data from the speed condition of “100%” were extracted from the present analysis. Marker tra-

jectories and ground reaction force (GRF) were low passed filtered at a matched frequency of

6Hz (4th Order, zero-lag, Butterworth) [27]. A seven segment lower limb, 6DOF joint model

was developed in Visual 3D software (C-motion Inc., Germantown, MD, USA) [27]. A force

plate threshold of 50N was used to determine gait events of initial contact and toe-off.

Study (Horst) [17]. These data came from a public dataset on overground walking, the

details of which can be found in the original open source publication [17]. Fifty-seven partici-

pants performed unshod walking on a 10-m level walkway across two in-ground force plates

(1000 Hz, Kistler, Switzerland), and motion was captured with 10 opto-electronic cameras

(250 Hz, OQUS 310, Qualisys, Sweden). Participants were instructed to walk at their self-

selected spontaneous speed. Walking speed was extracted by the mean anterior velocity of the

modelled centre of mass (COM) during the periods when the participant was walking over the

force plates. Marker trajectories and GRF data were low passed filtered (4th Order, zero-lag,

Butterworth), at 6Hz and 18Hz, respectively. A 13-segment full body, 6DOF joint model was

developed in Visual 3D software (C-motion Inc., Germantown, MD, USA) [17]. A force plate

threshold of 20N was used to determine gait events of initial contact and toe-off.

Study (Schreiber) [18]. These data came from a public dataset on overground walking,

the details of which can be found in the original open source publication [18]. Fifty partici-

pants performed unshod walking on a 10-m level walkway across two in-ground force plates

(1500 Hz, OR6-5, AMTI, USA), and motion was captured with 10 opto-electronic cameras

(100 Hz, OQUS4, Qualisys, Sweden). Participants were instructed to walk at five speeds: 0–0.4

m/s1, 0.4–0.8 m/s, 0.8–1.2 m/s, self-selected spontaneous, and fast speeds. Only data from the

self-selected spontaneous speed condition were extracted from the present analysis. Walking

speed was extracted by the mean anterior velocity of the modelled COM during the periods

when the participant was walking over the force plates. Marker trajectories and GRF data were

low passed filtered (4th Order, zero-lag, Butterworth), at 6Hz and 18Hz, respectively. A 12-seg-

ment full body, 6DOF joint model was developed in Visual 3D software (C-motion Inc., Ger-

mantown, MD, USA). A force plate threshold of 20N was used to determine gait events of

initial contact and toe-off. Two participants were excluded after exploratory plots of the raw

power waveforms revealed larger outlier values relative to the participants across all four

studies.

Common processing across four studies. Scalar joint power was calculated by the dot

product of joint moment and angular velocity. Joint power from each joint and limb was time

normalised to 101 cycle points, between two consecutive initial contacts of each limb; and was

subsequently normalised to body mass (kg). For each participant and speed, the average joint

power across multiple strides was calculated.
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Approach to statistical analyses

All analyses were conducted in R software, with associated codes and results found online

(https://doi.org/10.5281/zenodo.5618838).

Overview. In statistics, classical mean regression is used to model the expectation of an

outcome variable through linear effects of the covariates (also termed in the literature as pre-

dictors/independent variables). This class of models is known as Generalized Linear Models

(GLMs; [28]). Generalized Additive Models (GAMs) are a more flexible class of models which

allows the outcome to be modelled against the non-linear effects of the covariates [29]—a

more realistic model assumption in practice. While GAMs explicitly model the expectation of

the mean of the outcome, it generally does not consider the dependency of other distribution

characteristics of the outcome (e.g. variance) on the available covariate information. The out-

come might, for example, exhibit a larger variance (i.e. heteroscedasticity) for different

observed values in time and an appropriate model must account for this by also specifying a

relationship between the time information and the scale (e.g. variance) of the distribution (and

not only the mean). An extension of GAMs that also accounts for uncertainty about the scale

of distribution of the outcome are GAMs for location, scale and shape (GAMLSS) [19].

Model definition. For each of the three joints we use a GAMLSS model, where we model

the mean (μ) and variance (σ), of the distribution using an additive predictor:

yij � D m ¼ Zm;ij; s ¼ exp Zs;ij

� �� �
;

where yij is the power value of the respective joint of the ith subject and jth gait cycle point, D
the chosen distribution and ημ,ij, ησ,ij the respective linear predictors for the two distribution

parameters. For the mean of each joint power’s distribution, we choose the distribution D
based on the predictive performance and the linear predictor ημ using Bayesian optimization

(BO; [30], see details below). For the variance of each joint power’s distribution, exploratory

plots suggest that the cycle covariate (i.e. time normalized points) is mainly responsible for the

heterogeneity in residuals when fitting GAMs with a constant variance assumption. We thus

use a smooth effect of cycle for the linear predictor, i.e., ησ,ij = βσ + fσ(cycleij), with intercept βσ
and cubic regression spline fσ(cycleij) for all joints.

Bayesian optimization. In the present study, the outcome represented power, whilst the

following variables were used as covariates:—sex (male or female), age (years), speed (m/s),

height (m), stride length (m). For the knee and hip joints, the entire stride cycle (101 data

points) was included as a covariate. For the ankle, we included only a subset of data points

(points 21 to 69) of the stride cycle, as a covariate. The inclusion of a reduced subset of the

cycle covariate for the ankle was due to the ankle power values between 0–20% and 70–100%

of the stride cycle being close to zero, which causes the model’s estimates to be biased towards

zero.

In order to find a suitable distribution and linear covariates for the distribution’s mean, we

defined a complex covariate with univariate smooths, bi-variate and tri-variate tensor product

smooth for each joint (details below). Apart from the smooth effects, we included sex as

dummy-encoded linear effect, a study-specific random effect, and a subject-specific random

effect into the models. The study-specific random effect accounts for study specific differences

in experimental protocols and processing. We then use Bayesian Optimization (BO) for covar-

iate selection by searching through all possible combinations of basis dimensions for each of

the smooth effects using a scaled t-distribution working assumption. We also allow smoothing

terms to be removed completely from the linear covariate. We excluded bivariate effects only if

one of the corresponding univariate effects is removed by the BO and exclude the tri-variate

PLOS ONE Lifespan walking mechanics

PLOS ONE | https://doi.org/10.1371/journal.pone.0259817 November 12, 2021 5 / 16

https://doi.org/10.5281/zenodo.5618838
https://doi.org/10.1371/journal.pone.0259817


effect if one of the corresponding bivariate or univariate effects is not in the linear covariate.

The data were partitioned into a model training set (two-thirds of sample size) for model train-

ing, and into a testing set (one-third of sample) for performance evaluation for the BO. As per-

formance criterion, we choose the relative root mean squared error (relRMSE) between the

observed and predicted power waveform [31]. After choosing the relRMSE-optimal covariates,

we compared 29 available location, scale, shape (LSS) distributions using the BO-optimal ημ,ij

and ησ,ij as defined in the previous section, again on the basis of the relRMSE (see S2 Table for

distributions used).

For BO we choose a maximum of 300 samples from the objective function, which were

then used to find an optimal setting using Gaussian Processes. Computations were performed

on 2 Servers with 64GB RAM and 16 Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz cores each

and took up to 3 days.

Inference. The flexibility of GAMLSS modelling comes at a cost of losing the simplicity of

reporting P-values—like in ANOVAs. The recommended approach for statistical inference is

visualizing the 95% confidence interval (CI) of the partial effect of each smooth on the out-

come, and predicted mean at given values of each covariate. In the present study, we reported

the partial univariate effect of age with 95%CI on joint power. In addition, we also report the

predicted mean joint power waveform given the following values of the varying covariates: two

speeds (1, 1.5 m/s), age (20, 30, 40, 50, 60, 70, 80 years), and at a fixed stride length (1.5 m).

The speeds (1, 1.5 m/s) and stride length used for prediction were selected to match the speeds

and stride length observed in previous studies [4, 6, 22], to facilitate comparisons. Lastly, as

specified in our hypotheses, we reported the mean and 95%CI of the age-associated peak val-

ues of A2, H1, and H3.

Results

A total of 278 participants from all four studies were included in the present analysis. Basic

descriptive summaries of the cohort can be found in Table 1 and in Fig 1. The optimal basis

dimensions for each of the smooth effects, and the selected smoothing effects from the BO is

reported in Table 2. For the comparison of distributions, the normal distribution turned out to

be the relRMSE-optimal choice for each joint. The average relRMSE and correlation between

the fitted and observed powers were 0.11 and 0.94 for the ankle, 0.13 and 0.79 for the knee,

and 0.17 and 0.80 for the hip.

Fig 2 depicts the modelled smooth effect of age against joint power, which can be inter-

preted as the main effect of age on the average power marginalized across the gait cycle. The

clearest trend with age was the knee, which saw a shift from an average positive power at 19

years old, to an average negative value peaking at -0.09 (95%CI -0.12 to -0.06) which occurred

at 68 years of age, followed by a shift back to an average positive power thereafter. The smooth

effect of age on power had no clear trends for the ankle and hips joints, where the 95%CI

included the zero value across the age spectrum investigated.

The predicted mean joint power waveforms can be found in Fig 3. At both 1m/s and 1.5 m/

s, A2 peaked at the age of 60 years old with a value of 3.09 (95%CI 2.95 to 3.23) W/kg and 3.05

(95%CI 2.94 to 3.16), respectively (Fig 4). For H1, joint power peaked with a value of 0.40

(95%CI 0.31 to 0.49) W/kg at 1m/s, and with a value of 0.78 (95%CI 0.72 to 0.84) W/kg at

1.5m/s, at the age of 20 years old (Fig 4). For H3, joint power peaked with a value of 0.69 (95%

CI 0.62 to 0.76) W/kg at 1m/s, and with a value of 1.38 (95%CI 1.32 to 1.44) W/kg at 1.5m/s, at

the age of 70 years old (Fig 4).

PLOS ONE Lifespan walking mechanics

PLOS ONE | https://doi.org/10.1371/journal.pone.0259817 November 12, 2021 6 / 16

https://doi.org/10.1371/journal.pone.0259817


Discussion

An early decline in normal walking function may result in an undesirable early loss of social

independence [32]. Understanding normal age-related alterations in walking mechanics across

the lifespan, is fundamental towards the development of early diagnostic and therapeutic strat-

egies for impaired walking function. We hypothesized that A2 would exhibit an inverse “U”

shaped function across age; and that H1 and H3 would exhibit a “U” shaped function across

age. Our hypotheses were partially supported with H1 demonstrating a “U” shaped function

Table 1. Descriptive characteristics (mean [standard deviation] for continuous variables) of participants.

Variables fukuchi (N = 33) horst (N = 57) schreiber (N = 48) taylor (N = 140)

Age (yo) 39.42 (17.87) 23.12 (2.73) 38.17 (13.97) 65.40 (6.47)

Age (min) 21 19 19 55

Age (max) 84 30 67 86

Height (m) 1.67 (0.12) 1.74 (0.10) 1.74 (0.09) 1.68 (0.09)

Mass (kg) 67.66 (12.44) 67.93 (11.26) 71.96 (12.19) 74.03 (14.92)

Sex-F 15 (45%) 29 (51%) 23 (48%) 90 (64%)

Sex-M 18 (55%) 28 (49%) 25 (52%) 50 (36%)

Speed (m/s) 1.23 (0.17) 1.45 (0.10) 1.16 (0.14) 1.41 (0.19)

Stride length (m) 1.22 (0.14) 1.51 (0.06) 1.28 (0.12) 1.47 (0.16)

https://doi.org/10.1371/journal.pone.0259817.t001

Fig 1. Descriptive characteristics by age stratum. a–e reflects the mean (standard deviation) of the variables for individuals within the age bracket; f

reflects the number of participants by sex in each age bracket.

https://doi.org/10.1371/journal.pone.0259817.g001
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across age, but the minimum value did not occur in the younger age group. In contrast, H3

had a minimum value at the age of 30 years old in support of our hypothesis. Lastly, A2 did

not demonstrate a clear maxima at a younger age.

The most surprising finding of the present study was that A2 peaked at 60 years old, which

challenges the conventional thinking of a simple age-related linear decline in ankle push-off

power [4, 6, 33, 34]. Differences between studies in the age-A2 relationship may be primarily

attributed to the differences in statistical approaches. Existing studies that investigated the age-

related decline in joint powers performed statistical inference on discrete values (e.g. A2) [4, 6,

35]. A limitation of discrete value inference techniques is that it does not consider that a signal

at one cycle point can be influenced by the same signal at a prior cycle point [36]. Accounting

for the time-dependency of biologic signals may be particularly important for ankle power

given that a significant proportion of A2 power arises from the stretch-shortening behaviour

of the Achilles tendon [37]. Given that Achilles tendon stiffness has been reported to decline

with age [38], the age-related reductions in A2 could be confounded by a lower A1 power

absorption in the older than younger participants [6]. The present technique, GAMLSS, was

able to account for the time-dependency of the joint power waveforms by adjusting for the

confounding effect of different time points.

Qiao and Jindrich proposed that joints/muscle groups could take on four different mechan-

ical functional roles—spring, motor, damper, and strut [39]. It may be that a within-cycle

adjusted A2 power has a different mechanical functional representation from the unadjusted

raw A2. A joint’s total positive power could be derived from recycling energy from the elastic

components of the muscle-tendon unit (i.e. joint as a spring), and/or purely from the concen-

tric activity of a muscle (i.e. joint as a motor) [39]. Speculatively, the raw A2 variable may rep-

resent the ankle’s total power. Also, the within-cycle adjusted A2 may present power derived

from the motor-function of the joint, since what is left after adjusting away for negative power,

is the main effect of peak positive power. As previously mentioned, given the decline in Achil-

les tendon stiffness with age [38], our results could be interpreted as an augmentation of ankle

motor-function with age for propulsion. If aging results in an elevation of ankle motor-

Table 2. Predictors and associated basis dimension, k, of the smooths for each variable selected by Bayesian

optimization.

Ankle Knee Hip

f(cycle) 23 14 24

f(age) 18 7 18

f(speed) 9 20 10

f(ht) 12 13 10

f(strlen) 14 14 15

f(cycle, age) 12, 9 14, 6 14, 11

f(cycle, speed) 10, 4 NA 21, 6

f(age, speed) 5, 3 NA NA

f(cycle, ht) 19, 4 16, 8 20, 4

f(cycle, strlen) 12, 12 11, 11 14, 14

f(cycle, age, speed) NA NA NA

Entries with “f()” correspond to smooth effects, the subject-specific smooth of cycle is denoted with an index

“subject”. NA values indicate that the corresponding term was removed from the predictor. Values separated with

comma indicate the different dimensions for bi- or tri-variate smooths with order corresponding to the respective

term listed in the left column.

https://doi.org/10.1371/journal.pone.0259817.t002
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function, at the expense of spring-function, this could explain the decline in mechanical effi-

ciency in walking with increasing age [40].

The knee has not been thought of as an active energy source for propulsion in walking [41],

but is important for shock absorption, joint stability, and inter-segmental energy transfer. The

shift in knee power from an average positive from 19 years old to an average negative value

peaking at 68 years old (Fig 2), potentially reflects an age-related biasing of muscle absorption

over muscle generation. Greater negative than positive work with aging could suggest that the

knee is behaving more like a damper with age [39], with the ensuring result that more positive

work has to be performed by adjacent muscles to maintain walking speed. After 70 years old,

the shift in knee average power from negative to positive coincides with the decline in A2

power (Fig 4), suggesting that the knee may be compensating for age-related propulsive defi-

cits from the ankle. Evidently, research into how age influences the different mechanical func-

tions within the lower-limb joints may provide a better understanding of what impairments

drive a decline in walking performance.

In addition to adjusting for potential confounding of different time points within a wave-

form signal, different joint power-age relationships from the literature could arise from the

presence of statistical adjustment of covariates. The present study statistically adjusted for the

covariates of sex, stride length, speed, and height during all analyses. One study reported that a

significantly greater A2 observed in younger than older adults was removed after adjusting for

step length [14]. Another study also reported that ankle positive work in stance was greater in

younger than older adults but was removed after adjusting for leg strength [42]. It may be

Fig 2. Partial smooth effect of age on joint power for each joint with 95% confidence intervals of effects as shaded areas.

https://doi.org/10.1371/journal.pone.0259817.g002
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argued that appropriate consideration of confounders is required in future research to accu-

rately parse out the true relationship between joint power and age.

Differences between the present study and that of the wider literature on the age-A2 rela-

tionship could be attributed to the differences in the physical capacity of the population inves-

tigated. In the present cohort, individuals between 20–30 years walked at a self-selected mean

speed of 1.30 m/s, whilst those between 50–60 years walked at a self-selected mean speed of

1.37 m/s. These speeds were comparable to Cofre et al. [6] (self-selected speed of 1.38 m/s for

younger [mean 26.6 years] and 1.39 m/s for older [mean 66.8 years] groups); slower than

Fig 3. Predicted mean joint power waveform from the GAMLSS model at two walking speeds (1 and 1.5m/s), at each of the seven age groups, at a

fixed stride length of 1.5m. (a) Ankle power, (b) Knee power, (c) Hip power.

https://doi.org/10.1371/journal.pone.0259817.g003
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Kulmala et al. [22] (1.6m/s for all three age groups [“young” mean 26 years; “middle-aged”

mean 61 years, and “old” 78 years], and partially faster than McGibbon and Krebs [35] (1.32

m/s for individuals “< 50” [mean 29.7 years] and 1.16 m/s for those “> 50” [mean 71.1 years]).

Interestingly, Kulmala et al. [22] reported that A2 power declined only in their old cohort com-

pared to both their young and middle-aged cohorts, without significant difference between

Fig 4. Predicted mean and 95% confidence interval of A2 ankle push-off power, H1 hip power generation at early support, and H3

power generation at pre-swing from the GAMLSS model at two walking speeds (1 and 1.5m/s), at each of the seven age groups, at

a fixed stride length of 1.5m.

https://doi.org/10.1371/journal.pone.0259817.g004
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their young and middle-aged cohort—a finding partially consistent with the present findings.

Surprisingly, individuals in their 3rd and 4th decade of life in the present study walked at a

slower speed (mean 1.17, and 1.15 m/s) than those in their 2nd and 5th decade (Fig 1). Data of

individuals from the 3rd and 4th decade of life came largely from two studies [16, 18], and the

slower speeds in these cohorts could have influenced the present findings of a peak A2 power

at 60 years old.

It has been commonly thought that in compensation for reduced A2 power, hip power gen-

eration is greater in older than younger adults [4]. However, no studies to date have reported

the age-related trajectory of joint powers across the adult lifespan. Presently, we observed a

“U” shaped function between age and H1, where H1 decreased between 20 to 50 years old at 1

m/s walking and increased in magnitude thereafter (Fig 4). At a faster walking speed of 1.5 m/

s, the H1 continued to decline to reach a minimum at 70 years old (Fig 4). Our findings were

in partial contrast to previous studies where one study found that H1 was greater in older than

younger adults across speeds (1.0 to 1.6 m/s) [6]; whilst two others reported no age-related dif-

ferences [22, 35]. In the present study, we found that the “U” shaped function observed for H1

was also observed with H3. The lowest magnitude of H3 was observed at 30 years old (Fig 4).

H3 then peaked and plateaued at 40 years old at a speed of 1 m/s but continued increasing till

70 years old at a faster speed of 1.5 m/s (Fig 4). One study reported greater H3 in older than

younger adults at faster speeds (> 1.4 m/s), but the age-related differences in H3 were not rep-

licated by another where participants walked with a similar speed of 1.6 m/s [22].

The present study has several limitations. The secondary analysis nature of the present

study means that the conclusions of our analysis are only as robust as the studies included.

From Fig 1, it can be observed that individuals between 30 to 50 years old and 70 years and

beyond were relatively underrepresented. The underrepresentation of individuals in these age

groups explains the larger confidence intervals in mean value estimates, compared to age

groups with greater sample sizes. Future research collaboration opportunities which augment

data in the underrepresented age groups would be useful to provide an updated revised esti-

mate of the relationship between age and joint power. A second limitation of the present analy-

sis was the inclusion of studies with heterogeneous experimental set-ups, such as overground

[18] versus treadmill walking [16], shod (taylor data) versus unshod conditions [18]. However,

between-study heterogeneity in experimentation and indeed between-subject heterogeneity is

a common occurrence in secondary analysis studies, such as in a meta-analysis [3]. We miti-

gated this issue by including study-specific and subject-specific random effects into our mod-

els. This meant that our predictive estimates were marginalized over different experimental

study protocols and participants.

Much research has been undertaken to develop strategies to augment A2 power to optimize

walking speed in older adults. Strategies such as ankle exoskeletons [43], muscle power train-

ing [44, 45], and even gait biofeedback training [46] have been developed to either overcome

or augment a deficient A2 power. Based on the present study, healthy adults may not require

additional therapeutic interventions to replace/augment A2 given that it is not deficient per se.

We are keenly aware that this is antagonistic to current clinical recommendations, and that

given the limitations on potential underrepresentation of participants in some age groups, our

findings need to be replicated and augmented by future research. Although the present study

did not quantify elastic energy recovery and metabolic cost, speculatively a greater A2 power

in older than younger adults may reflect a less efficient movement strategy to walk at an identi-

cal speed [47]. In addition, a greater A2 power could contribute to greater dynamic postural

instability in older than younger adults [48], which could explain why healthy older adults

walk at a slower speed than younger adults [49].
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Conclusions

Findings from this study do not support a simple linear relationship between joint power and

ageing, after adjusting for the covariates of cycle points, speed, stride length, and height. In

contrast to most studies, ankle push-off power peaked at 60 years old when walking at speeds

between 1 to 1.5 m/s. In addition, hip power generation at early-stance (H1) peaked at 20 years

old, whilst hip power generation at pre-swing (H3) peaked at 70 years old. We adopted a novel

statistical technique to model the lifespan alterations of joint power waveforms on four data-

sets—the largest and most in-depth analysis to date. A more in-depth understanding of walk-

ing mechanics across the lifespan may provide more opportunities to develop early clinical

diagnostic and therapeutic strategies for impaired walking function.
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15. Waanders JB, Hortobágyi T, Murgia A, Devita P, Franz JR. Advanced Age Redistributes Positive but

Not Negative Leg Joint Work during Walking. Med Sci Sports Exerc. 2019; 51:615–623. https://doi.org/

10.1249/MSS.0000000000001828 PMID: 30395049

16. Fukuchi CA, Fukuchi RK, Duarte M. A public dataset of overground and treadmill walking kinematics

and kinetics in healthy individuals. PeerJ. 2018; 6:e4640. https://doi.org/10.7717/peerj.4640 PMID:

29707431

17. Horst F, Lapuschkin S, Samek W, Müller K-R, Schöllhorn WI. Explaining the unique nature of individual
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Effects of Power Training on Mobility and Gait Biomechanics in Old Adults with Moderate Mobility Dis-

ability: Protocol and Design of the Potsdam Gait Study (POGS). Gerontology. 2016; 62:597–603.

https://doi.org/10.1159/000444752 PMID: 27028612
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