
SCHWERPUNKTBEITRAG

https://doi.org/10.1007/s13222-021-00401-y
Datenbank Spektrum (2022) 22:23–43

Metrics and Algorithms for Locally Fair and Accurate Classifications
using Ensembles

Nico Lässig1 · Sarah Oppold1 · Melanie Herschel1

Received: 31 October 2021 / Accepted: 17 December 2021 / Published online: 17 January 2022
© The Author(s) 2022

Abstract
To obtain accurate predictions of classifiers, model ensembles comprising multiple trained machine learning models are
nowadays used. In particular, dynamic model ensembles pick the most accurate model for each query object, by applying
the model that performed best on similar data. Dynamic model ensembles may however suffer, similarly to single machine
learning models, from bias, which can eventually lead to unfair treatment of certain groups of a general population. To
mitigate unfair classification, recent work has thus proposed fair model ensembles, that instead of focusing (solely) on
accuracy also optimize global fairness. While such global fairness globally minimizes bias, imbalances may persist in
different regions of the data, e.g., caused by some local bias maxima leading to local unfairness.
Therefore, we extend our previous work by including a framework that bridges the gap between dynamic model ensembles
and fair model ensembles. More precisely, we investigate the problem of devising locally fair and accurate dynamic
model ensembles, which ultimately optimize for equal opportunity of similar subjects. We propose a general framework to
perform this task and present several algorithms implementing the framework components. In this paper we also present
a runtime-efficient framework adaptation that keeps the quality of the results on a similar level. Furthermore, new fairness
metrics are presented as well as detailed informations about necessary data preparations.
Our evaluation of the framework implementations and metrics shows that our approach outperforms the state-of-the art
for different types and degrees of bias present in training data in terms of both local and global fairness, while reaching
comparable accuracy.

Keywords Model Fairness · Bias in Machine Learning · Model Ensembles

1 Introduction

In decision support systems (DSS), machine learning mod-
els are frequently used to make recommendations or even
decisions. While these unquestionably simplify many pro-
cesses and tasks arising in modern life, critical situations
emerge in automatic classification scenarios such as credit
scoring, or predictive policing applications. There, critical

� Nico Lässig
nico.laessig@ipvs.uni-stuttgart.de

Sarah Oppold
sarah.oppold@ipvs.uni-stuttgart.de

Melanie Herschel
melanie.herschel@ipvs.uni-stuttgart.de

1 Institute for Parallel and Distributed Systems –
Data Engineering, University of Stuttgart,
Universitätsstr. 38, 70569 Stuttgart, Germany

DSS automatically assign people to classes that have the
possibility to deeply affect their lives in a positive or neg-
ative way. Recent real-life examples where the use of such
DSS had to be revoked due to underlying biased classi-
fiers include an algorithm that determined A-Level grades
of British students who were unable to take their exams
due to COVID-19 regulations [4]. Based on the teachers’
assessment of the student’s performance and the school’s
performance in subjects, each student was assigned A-Level
grades. Using these features, about 40% of British students
received lower grades than recommended by their teach-
ers, as the model indirectly favored students from private
schools and wealthy areas. After a public outcry, the algo-
rithmic decisions were revoked and replaced by the teach-
ers’ assessments. Another example is a recruitment tool
developed by Amazon [6]. The tool was supposed to au-
tomatically assign scores to job applicants based on their
application to support making hiring decisions. However,
it exhibited discrimination against women, a problem that

K

https://doi.org/10.1007/s13222-021-00401-y
http://crossmark.crossref.org/dialog/?doi=10.1007/s13222-021-00401-y&domain=pdf
http://orcid.org/0000-0002-6967-1203


24 Datenbank Spektrum (2022) 22:23–43

a

b

c

Fig. 1 Example binary classification scenario deciding about em-
ployee raises. a Decision boundary for a classifier using a single model
(solid line) and a model ensemble (dotted line), b training data statis-
tics, c model performance statistics. Accuracy of single model reaches
0.78, model ensemble reaches 0.82

could not be resolved, leading to the project being discarded
after several years of investment.

Classification tasks performed by DSS are, by them-
selves, not trivial to solve. For instance, consider Fig. 1,
which summarizes a simple classification problem when
deciding on employee salary raises. We visualize the train-
ing data in Fig. 1a, where we place similar employees close
to each other and use different shapes to distinguish male
(circle) and female (triangle) employees. The goal of the
trained classifier is to divide in two classes, which we dis-
tinguish by color: employees in blue have a positive out-
come and get a raise, while employees labeled in red are
associated to the negative class (no raise). Opting for a sim-
ple classifier, let us assume we obtain the decision border
shown as solid black line in Fig. 1a. It classifies all em-
ployees below the line into category “blue” and all per-
sons above the line into category “red”. Using this simple
classifier, a number of people are assigned to the wrong
class (see Fig. 1c). We see that the simple classifier yields
an accuracy of 0.78, computed as the fraction of correctly
classified points vs all data points. To obtain a classifier
that more faithfully reflects the complex decision boundary
in our example and thus improves accuracy, we can resort
to model ensembles. There, different (simple) models are
trained and then combined, e.g., to reach a classifier with
the decision border shown as a dashed line in Fig. 1a. This

allows us to improve the accuracy from 0.78 to 0.82 in our
example.

While the above example illustrates one means to boost
the accuracy of classifiers, it leaves aside any consideration
of fairness. The term fairness is often used in the literature
to refer to non-discrimination. In the introductory exam-
ples, we see that not all students or job applicants were
treated equally and some discrimination was unintention-
ally introduced to the classifiers. Such unfair behavior is
commonly linked to some bias. There are many different
kinds of bias that can be introduced through the data or hu-
man decisions. For instance, while it may seem reasonable
to consider student’s past performance as a feature, e.g.,
on mock-exams to assign a final grade, wealthy students
who benefit from regular tutoring may be at an advantage
over students that learn for exams on their own. In case of
automatic resume analysis, having a training dataset with
CVs predominantly from male applicants possibly causes
models that favor terms more commonly used by men than
women while penalizing terms associated to women.

Returning to our fictional example, based on the num-
bers reported in Fig. 1b, we see that the training data are
reasonably balanced in terms of men and women being as-
signed a positive or negative label, which is a good starting
point. To assess the classifiers in terms of fairness, we can
use one of many available bias metrics. The American Title
VII of the Civil Rights Act of 1964 prohibits employment
discrimination and, for example, states that there is discrim-
ination when the probability of a woman getting a positive
outcome divided by the probability of a man getting a pos-
itive outcome is less than 0.8. In the case of the single

a

b

Fig. 2 Example binary classification scenario deciding about em-
ployee raises (Fig. 1 continued). a Decision boundary for a fair model
ensemble that combines classifiers for male (left) and female employ-
ees (right) and illustration of a locally unfair situation (circle), bmodel
performance statistics

K



Datenbank Spektrum (2022) 22:23–43 25

classifier and model ensemble, the value is 0.76 and 0.66
respectively (see Fig. 2b) and thus below the threshold. So
using these classifiers would be against the law in the US.

With metrics quantifying bias being available, recent ap-
proaches have considered these to prevent bias. In particu-
lar, Dwork et al. [9] have introduced fair model ensembles.
Given a pre-defined set of sensitive groups (e.g., women),
their approach learns classifiers dedicated to these groups
and then calculates the best combination of classifiers ac-
cording to a metric that combines both fairness and accu-
racy. By training classifiers specialized to different groups,
the approach can better capture different patterns exhibited
by different groups. Optimizing for both fairness and ac-
curacy compromises between fair treatment of the different
groups and model performance. Fig. 2 illustrates the ef-
fect of using the method for fair model ensembles in our
example. It combines two classifiers, for which we show
the decision borders: one trained for male employees (left
hand side) and one for women (right hand side). Instead of
a fairness of 0.66, the positive classification of negatively
labeled women by the dedicated classifier raises fairness to
0.81 and therefore (at least according to American law) no
longer exhibits discrimination.

While the approach illustrated above comes closer to
the goal of treating members of different predefined groups
(e.g., male, female) equally, it does so from a global per-
spective. Thus, localized inequalities remain. For instance,
looking again at Fig. 2a, while the goal of non-discrimina-
tion between women and men is met, the subregion within
the depicted circle exhibits local unfairness. As a reminder,
we have placed persons in the 2-dimensional representation
close to each other when they have similar features, e.g., all
persons in the circled region may have similar age and num-
ber of sick days. Clearly, despite similar features, women
in this region are significantly less likely to get a raise than
men. This corresponds to a local bias. The approach pre-
sented in this paper aims at solving this issue.

The fact that optimization goals are only fulfilled glob-
ally and not locally is not a peculiarity of fairness. Dynamic
model ensembles tackle this problemwhen optimizing accu-
racy. Intuitively, a model or model ensemble is dynamically
selected for each new decision based on model performance
in similar situations. This paper uses a similar rationale to
optimize the overall local fairness of a model ensemble by
combining ideas of both fair model ensembles and dynamic
model ensembles. The contributions presented in this paper
can be summarized as follows:

� We present a framework addressing the novel problem of
mitigating locally unfair decisions. In an offline phase,
it trains a diverse set of models to get accurate and fair
models for different groups. In an online phase, it dynam-
ically selects the model ensemble best suited for the dif-

ferent groups when focusing on group members similar
to the subject to be classified. This combines ideas pre-
viously devised for (static) fair model ensembles and dy-
namic model ensembles specialized on accuracy.We also
provide a runtime-efficient framework adaptation which
attempts to reduce the number of computation needed for
the online phase.

� We present FALCES(standing for Fair and Accurate
Local Classifications using EnsembleS), which imple-
ments our framework using several algorithms. It comes
in different variants, depending on whether the train-
ing data are further split before training classifiers or
if trained classifiers are further pruned based on an ini-
tial assessment of their global combined performance in
terms of fairness and accuracy. We now also present run-
time optimized implementations based on our runtime-
efficient framework adaptation.

� We propose a metric that quantifies, in a combined way,
both fairness and accuracy. We study three different vari-
ants that differ in how fairness is quantified.

� We implement our algorithm variants and evaluate them
on both synthetic and real data. Our results show that
while we cannot fully eliminate bias, FALCES typically
outperforms the state-of-the-art in both global group
fairness and local group fairness, the latter quantified
using a newly defined metric for local fairness. At the
same time, our solution does not jeopardize accuracy.
The implementations of the new runtime-efficient frame-
work adaptation show they improve the runtime, while
keeping the quality of the results on a similar level as
algorithm variants implementing the original framework.
Furthermore, some limits of our approach in terms of
usability on different types of datasets have been found
and discussed in this paper.

Note that this paper extends a previously published con-
ference paper [14]. In particular, the new contributions of
this paper include that we (i) consider alternative metrics for
the accuracy and fairness measurement, (ii) devise runtime
optimizations, (iii) provide some additional background on
data preparation, and (iv) extend our evaluation by study-
ing the influence of parameters and incorporating the new
alternative metrics and the runtime optimized algorithm.

The remainder of this paper is structured as follows.
Sect. 2 reviews related work. We present our framework in
Sect. 3 and discuss algorithms implementing the framework
in Sect. 4. The new runtime-efficient framework adaptation
is explained in Sect. 5. Our implementation and experimen-
tal evaluation are presented in Sect. 6. The paper concludes
with a summary and outlook on future research in Sect. 7.

K



26 Datenbank Spektrum (2022) 22:23–43

2 Relatedwork

Our proposed solution builds on previous work on model
ensembles and fairness in machine learning, in particular
fair model ensembles and dynamic model ensembles.

2.1 Model ensembles

The idea of model ensembles is to train multiple models and
select or combine the best of these models [16]. Hereby, the
optimization goal typically is the improvement of the ac-
curacy of predictions [8, 17, 20]. Combining the outputs
of several models has proven to be preferable compared to
single-model systems. By combining the results of several
models, model ensembles can, for example, reduce the risk
of choosing a model that performs poorly, which reduces
the overall risk of a bad decision, or overcome complex de-
cision borders that may not be able to be implemented by
a chosen model because they lie outside the functional space
of the model. The same rationale underlies fair model en-
sembles (discussed further below), which set an additional
optimization focus on increasing fairness.

2.2 Fairness inmachine learning

As already described in the introduction, the term fairness in
machine learning commonly refers to the fact that models
must not discriminate against people because of bias(es).
Based on various laws, social definitions and understood
meanings, different measures to quantify fairness have been
defined [13, 15, 21]. They can be broadly classified into
two categories. A group of metrics for individual fairness
(or equality or equality of treatment) focuses on providing
equal treatment to equal people [10]. However, we will fo-
cus on the second notion of fairness: group fairness. It is
also known as equality of outcome or equity. Here, groups
with different preconditions are treated differently, so that
in the end everyone, despite their differences, has the same
opportunities. This is intended to overcome social inequal-
ities and offer equal opportunity to different groups [10].

Based on these fairness metrics, methods have been de-
veloped which allow the development of individual fair
models using fair data, new machine learning algorithms,
or techniques for modifying existing models [11, 13, 15].

2.3 Fair model ensembles

While there is now a visible body of research on mea-
suring fairness and learning single fair models, only few
works leverage multiple models in order to achieve fairness,
thereby bringing the advantages of using model ensembles
to the the realm of improving fairness.

Calders and Verwer [3] create fair naive Bayes model en-
sembles. To this end, they split the dataset according to the
favored and discriminated groups and learn a naive Bayes
model on each subset with the intention to classify indepen-
dently of a given sensitive attribute. An overall naive Bayes
model chooses the decision of either model depending on
the group of incoming data tuples to be classified. While
this approach yields fairer models, it is specialized to and
does not extend beyond naive Bayes models.

Dwork et al. [9] combine multiple machine learning clas-
sifiers to improve group fairness. They provide different
versions of their algorithm, where the models are either
learned on the different subgroups as in [3] or on larger data
subsets in order to prevent accuracy loss. Their approach
uses a joint loss metric that optimizes for both accuracy and
fairness in order to assess which model should be used for
which group of the dataset. While this approach does con-
sider both accuracy and fairness at group level using any
type of classifier, it may suffer from local unfairness.

2.4 Dynamic model ensembles

Dynamic classifier selection [5] selects one classifier dur-
ing runtime for each new sample which has to be classified.
This is based on the rationale of model ensembles that not
every classifier is an expert in all local regions of the feature
space. Usually, for each new sample the local region is first
identified, for example using k-nearest-neighbors (kNN).
Then, the quality of available classifiers is determined and
the best one(s) are selected. Dynamic ensemble selection
is similar, it merely selects ensembles instead of classifiers.
One example is the Dynamic Classifier Selection by Local
Accuracy (DCS-LA) algorithm by Woods et al. [19]. First,
it uses kNN to identify the local region. Then, local accu-
racy of classifiers is evaluated as percentage of correctly
classified samples in the local region. Alternatively, it uses
local class accuracy, which is the accuracy of classifiers in
the local regions with respect to the class the classifiers as-
sign to the new sample. Only the most accurate classifier is
then used to classify the unknown sample.

3 Framework for fair and dynamic model
ensembles

As motivated in the introduction, our goal is to combine
the benefits of fair model ensembles on the one hand and
dynamic model ensembles on the other hand to devise a so-
lution that resolves not only global bias among different
groups, but also local bias, while not compromising overall
accuracy. The rationale is that, while it is typically possible
to define groups that should be treated fairly (and that are of-
ten defined by law), it is quite challenging to fully anticipate

K



Datenbank Spektrum (2022) 22:23–43 27

Fig. 3 Framework for locally
fair classifications by combin-
ing fair and dynamic model
ensembles

variations (sub-groups) within these groups that indirectly
cause local bias. Techniques to counter local bias can po-
tentially help in reaching equal opportunity among groups
with similar features or similar trajectory. In this section,
we first formalize our problem statement to counter locally
unfair decisions. We then present a framework where we
combine the ideas of fair and dynamic model ensembles to
solve this problem.

3.1 Locally unfair decisions

As illustrated in Fig. 2a, the problem with locally unjust de-
cisions is that while existing solutions (reviewed in Sect. 2)
are optimized to make globally fair and accurate decisions,
there are still local regions where data points of different
groups are treated unfairly. To address this problem, the
decision should be optimized so that the optimal (i.e. fair
and accurate) decision can be made at a local level. Our
emphasis in this paper is on group fairness, i.e., equal op-
portunities between groups.

Formally, we consider as given a labeled dataset D,
a similarity metric s, a positive integer k indicating a local
region sample size, an optimization metric af combining
fairness and accuracy, and a set of machine learning mod-
els (classifiers) M for the same classification task. Further-
more, D can be partitioned into groups G, for which equal
opportunity is relevant. We further assume a new test sam-
ple t that belongs to one of the groups G. Then, we define
our goal of locally fair and accurate classification as a clas-
sification task that classifies t using a model m 2 M with
the best performance according to the af metric in the lo-
cal region of D around t . This local region includes the k

items in D most similar to t according to s.

3.2 Framework

To address the problem defined above, we combine the
rationales underlying both fair and dynamic model ensem-
bles described in Sect. 2 into a new framework for fair and
dynamic model ensembles. The main components of this
framework are visualized in Fig. 3. We distinguish between
an offline phase (bottom part), where suited model ensem-
bles are trained and selected, and an online phase (upper
part), where a previously unseen test sample t is classified
by dynamically selecting the model ensemble most appro-
priate for t .

Offline phase. The first step of the offline phase, named
model training, is a step common to model ensemble ap-
proaches. Here, using training data taken from the labeled
dataset D, a diverse set of classifiers is trained. Given
that we target both fair and accurate decisions, model
training can benefit from using different subsets of data
based on the different groups G present in D, which
has for instance been proposed for fair model ensembles
(see Sect. 2). We denote the set of classifiers resulting
from model training considering different groups G as
M = f.m1; g1/; .m2; g2/; :::; .mn; gn/g, where each mi is
a model and gi identifies the group it is trained for. Among
these classifiers, not all may be suited to make both fair
and accurate decisions. Also, too many classifiers to be
considered during the online phase (further discussed be-
low) can be computationally prohibitive. Therefore, during
model pruning, the framework assesses all model combi-
nations or ensembles possible with the classifiers in M

that use exactly one classifier per group gi . Assessment
is done with respect to the global performance metric af

that considers both accuracy and fairness. Only the best
classifier combinations are retained after model pruning,

K



28 Datenbank Spektrum (2022) 22:23–43

resulting in the model candidates MC = {[((m11, g1) ..., (m1n,
gn)], ..., [((me1, g1) ..., (men, gn)]}, a set of model ensembles
(in square brackets) s.t. for each ensemble, gi ¤ gj when
i ¤ j and n = jGj.

Online phase. When a new test sample t is to be clas-
sified, the framework determines the local region t belongs
to as part of local region determination. To this end, it per-
forms a kNN search of t on each gi , where gi is a group
in G = fgi ; :::; gng. The framework specifically selects an
equal number of members similar to t of each group, to have
a locally balanced data region with respect to the different
groups. Then, for this particular region, dynamic ensemble
selection assesses which ensemble E 2 MC achieves the
best local performance with respect to af . Intuitively, this
dynamically selects the optimal model ensemble compris-
ing a dedicated model for each group for the region most
relevant to t . With this approach, our framework combines
previous techniques separately devised for fair and dynamic
model ensembles. The identification of the locally best
model is performed according to dynamic model ensemble
techniques using fair model ensemble metrics. Therefore
the classifiers are tested on the local region of the test sam-
ple using an af metric. Finally, the best classifier mct such
that .mct ; gt / 2 E and gt corresponds to the group t be-
longs to is used in the final step of locally fair classification
to classify t .

4 Algorithms implementing the framework

Sect. 3 discussed the general framework that we propose for
locally fair and accurate classifications. There are a variety
of techniques from both fair and dynamic model ensemble
research, which can be applied or extended to implement
its components. In the following, we discuss the algorithms
we consider to implement the framework that stand behind
our FALCES system.

4.1 Model training

As mentioned before, the set of classifiers should be diverse
in order to benefit from combining them to model ensem-
bles. To this end, we vary both the set of machine learning
techniques used to train classifiers as well as the data from
D that are considered for training.

In principle, any machine learning technique suited for
classification tasks can be considered as a candidate tech-
nique. In our evaluation, we will resort to simple techniques,
e.g., decision trees, logistic regression, or nonlinear support
vector machines [12].

Concerning the data, following previous research on fair
model ensembles [3, 9], we consider splitting the input
dataset D on pre-defined sub-datasets that correspond to

the different groups for which we aim to achieve group fair-
ness (e.g., we divide by sex (male, female) and race (white,
others) in our experiments which creates four subgroups).
This effectively partitions D into G = fg1; :::; gng, assum-
ing n distinct groups. Then, models are trained separately
for the different partitions. Different training datasets have
the advantage of learning different models that exhibit their
strengths in certain areas of the feature space. However, as
shown in Calders et al [3], splitting up the input dataset
does not necessarily improve the quality of the results. In
addition, complex decision borders between the two groups,
which originate from different behavioral patterns, can be
better modeled, thus increasing accuracy [9].

As a result, similar to [3, 9], we obtain classifiers that
are “specialized” on some group. More precisely, in this
variant, we obtain M = f.m1; g1/; :::; .mk ; gn/g where
each .mi ; gj / associates a classifier mi to a group gj . For
any two .mi ; gj /; .mi 0 ; gj 0/, it holds that mi ¤ mi 0 , and
gj ; gj 0 2 G, but it is possible that gj = gj 0 .

Example1 As a simple example, consider we spilt a sample
dataset following the gender of employees, which results in
a group for each gender, e.g., gF for female employees and
gM for male employees. Assuming m1; m2; m3 are trained
on gM and m4; m5; m6 on gF , we obtain M = {(m1, gM),
(m2, gM), (m3, gM), (m4, gF), (m5, gF), (m6, gF)}.

On the downside, splitting the data as described above
can lead to a too small dataset to train on, which often
results in loss of accuracy for the classifiers. Hence, we
further consider the option of training models on the com-
plete dataset D rather than on individual partitions of G. In
this setting, we have M = f.m1; gD/; :::.mn; gD/g, where
gD = D.

To distinguish the two variants for implementing model
training described above in FALCES, we will append a suf-
fix SBT (for Split Before Training) for the first option, while
absence of this suffix indicates training is performed on the
full training dataset.

4.2 Model pruning

In the offline phase, the number of classifiers can already
be reduced based on their global performance in order to
improve the efficiency of the online phase later. Indeed, the
less classifiers need to be considered in the online phase, the
faster the classification of a new test item is. As we shall see
in the evaluation (Sect. 6.8), this has only little impact on
making locally fair and accurate decisions, while runtime
may improve significantly. In this section, we first present
metrics we consider for model pruning, to then describe
how these are used for model pruning.

K



Datenbank Spektrum (2022) 22:23–43 29

4.2.1 Metrics

To assess the performance of a model when considering
both accuracy and fairness, we rely on a metric that com-
bines these two dimensions, denoted as af . To the best of
our knowledge, the state-of-the art metric that accounts for
both accuracy and fairness is the metric proposed by Dwork
et al. [9] for fair model ensembles, defined as follows.

bL =
�

jDj
X

ti2D

jyi − zi j
„ ƒ‚ …

Inaccuracy

+

1 − �

jDj
X

gj 2G

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

X

ti2DWgti
=gj

zi −
1

jGj
X

ti2D

zi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

„ ƒ‚ …

Unfairness

(1)

Here, the number of tuples in a labeled dataset D is de-
noted as jDj, each tuple ti 2 D has an actual and predicted
label denoted as yi and zi respectively, jGj represents the
number of different groups in G, gti 2 G represents the
group a tuple ti belongs to, and 0 � � � 1 balances the
relative weight of the accuracy and the fairness part of the
equation. Intuitively, in the first part of the metric, accuracy
is measured by comparing the predicted and actual label
for each data tuple (also known as L1 loss). The second
part of the metric determines the fairness of the classifier
combination that associates a classifier to each group. It
sums up the difference between the sum of predicted val-
ues of each group and the overall sum of labels divided by
number of groups. Note that for both sides, higher values
actually mean a poorer performance, we thus qualify them
as inaccuracy and unfairness.

This metric combines both accuracy and fairness, how-
ever, the fairness-part is sensitive to differences in the rel-
ative size of groups. Assume for instance there is a larger
group gL and a smaller group gS with equal sum of zi ,
i.e. equal number of positively classified tuples. Indeed, the
metric considers the situation to be fair among these two
groups (unfairness-part drops to 0), even though the prob-
ability that a member of gL is assigned a positive label
is smaller than the probability of a member of gS being
assigned a positive label. While this may well serve mi-
norities that are considered protected groups and are thus
indirectly favored by being part of the smaller group, it does
not accurately reflect equal opportunity.

Therefore, we introduce three alternatives to Eq. 1, that
address this shortcoming. They all differ in the fairness part
of the equation. Eq. 2 is based on mean-difference, Eqs. 3
and 4 are adaptations of the impact ratio and elift ratio [21]
respectively and substitutes for the fairness part of Eq. 2.

Unfairness based on mean-difference. Our first metric
for af modifies the fairness-related part of Eq. 1 to also
consider the number of tuples jgj j in a group gj 2 G. This
results in the following metric.

bLmean =
�

jDj
X

ti2D

jyi − zi j+

1 − �

jGj
X

gj 2G

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

X

ti2DWgti
=gj

zi

jgj j −
1

jDj
X

ti2D

zi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(2)

While the accuracy part still determines L1 loss, the fair-
ness part has slightly changed. For each group, its mean
value is set in relation to its group size and compared to
the overall mean value of positive predicted labels. These
are then again summed up and divided by the number of
groups to allow for an arbitrary number of groups.

Unfairness based on impact ratio. The impact ratio
metric [21] measures the ratio of the probabilities of posi-
tively predicted labels of an unfavored group to the favored
group. An impact ratio of 0 indicates unfairness, while an
impact ratio of 1 indicates complete fairness. In this metric,
the result can exceed 1, if the unfavored group has a higher
chance of a positive outcome than the favored group. To
ensure the range of the impact ratio, we inverse the fraction
when the unfavored group has favored values. We do this as
we aim to achieve total equality among all groups. Hence,
to retain a quantification of unfairness over all described af

metrics, we subtract the impact ratio value, ensured to be
between 0 and 1, from 1. Thus, the impact ratio adaptation
denoted as impact� is formally defined as follows. Here, g0

denotes the favored group.

impact� =
8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

1 −

P

ti2DWgti
=gj

zijgj j
P

ti2DWgti
=g0

zijg0j
; if

P

ti2DWgti
=gj

zijgj j <
P

ti2DWgti
=g0

zijg0j

1 −

P

ti2DWgti
=g0

zijg0j
P

ti2DWgti
=gj

zijgj j
; if

P

ti2DWgti
=gj

zijgj j >
P

ti2DWgti
=g0

zijg0j

0 otherwise

(3)

Similarly to the mean difference, impact� has to be
summed up over all groups. Thus, we define bLimpact� as
Eq. 2 where impact� substitutes the content between the
absolute values bars.

Unfairness based on elift ratio. The elift ratio fairness
metric [21] is based on the same underlying idea as the im-
pact ratio, but instead of measuring the ratio to the favored
group, it measures the ratio to the overall average probabil-

K



30 Datenbank Spektrum (2022) 22:23–43

ity of positive predicted labels. Analogously to the impact
ratio, we “convert” it to an unfairness metric in the range
Œ1,0�. We denote our adaptation as elift�, which is defined
by the following equation.

elift� =
8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

1 −

P

ti2DWgti
=gj

zijgj j

1
jDj

P

ti2D

zi

; if
P

ti2DWgti
=gj

zijgj j < 1
jDj

P

ti2D

zi

1 −

1
jDj

P

ti2D

zi

P

ti2DWgti
=gj

zijgj j
; if

P

ti2DWgti
=gj

zijgj j > 1
jDj

P

ti2D

zi

0 otherwise

(4)

Similarly to bLimpact� , we define bLelift� as Eq. 2 where
elift� substitutes the contents between the absolute values
bars.

4.2.2 Pruning procedure

Using a combined accuracy and fairness metric as defined
in the previous section, model pruning aims at retaining
only a “good” selection of ensembles formed by models
of M obtained during model training. Given that we are
using model ensembles, this evaluation of model quality
is performed by considering all possible combinations of
classifiers in M when choosing one classifier per group,
and keeping only the best ones. In our implementation, we
keep ensembles up to a predefined rank. Another possibility
would be to use a threshold for the maximally acceptable
af score.

Example 2 Continuing our previous example, given that
we have three classifiers dedicated to gF and gM , re-
spectively, we have a total of 9 combinations to test us-
ing af . Let us assume that the top-2 ensembles accord-
ing to af are .m1; m4/; .m2; m5/. Assuming FALCES is
configured to the top-2 combinations, we obtain MC =
fŒ.m1; gM /; .m4; gF /�; Œ.m2; gM /; .m5; gF /�g.

Similarly to model training, we consider running FAL-
CES with or without model pruning enabled. When active,
we append PFA to the algorithm name.

4.3 Local region determination

Moving on to the online phase, the task is to classify a new
tuple t in a locally accurate and fair manner. Our frame-
work defines locality relying on a similarity measure s and
considers retrieving the k most similar tuples to t in D.

The approach for retrieving the most similar tuples de-
pends on the types of data we are dealing with. We now

discuss different types of data and present the correspond-
ing algorithms to retrieve the k most similar tuples.

4.3.1 Numerical data

When a dataset containing only numerical data is used,
i.e. the values of attributes are quantitatively comparable,
one way to determine the k most similar tuples are kNN
algorithms [2]. FALCES uses the kd -tree nearest neighbor
approach [1] because it is simple and efficient. This method
creates a k-dimensional tree that can be precomputed during
the offline phase in which the tuples from D are arranged
and stored according to the dimensions. During the online
phase, when the tuple t is to be classified, the tree can then
be searched in O.logjDj/ time.

While searching for the nearest neighbors, we need
a similarity metric to identify tuples similar to t . To
compare two tuples t1 = .x1; :::; xn/ and t2 = .y1; :::yn/,
FALCES uses the Minkowski-Distance md.t1; t2/ =
�Pn

i=1jxi − yi jp
� 1
p . It is a generalization of both the Man-

hattan distance (p = 1) and the Euclidean distance (p = 2)
and has already proven useful for similar problems such as
K-Means algorithms [18].

Using this distance measure, we identify the nearest
neighbors of t . However, it must be ensured at this step
already that the af metric used in the next step of FAL-
CES receives the necessary information to calculate group
fairness. For this, it needs to receive tuples from all groups
to be able to produce meaningful results. Therefore, in FAL-
CES, the kNN algorithm is applied to each group separately,
which results in jGj trees and jGj � k nearest neighbors,
where jGj is the number of groups considered.

For better results, the comparable values should be
within a given range. If, for example, the maximum differ-
ence of one attribute is 100 and 1 for another attribute, the
first attribute would have a bigger influence on the overall
result of the kNN algorithm. Therefore, normalizing the
numerical data in a preprocessing step could be useful.

The runtime complexity using the kNN algorithm would
be O.logn/ for finding the k most similar tuples of one
sample, where n is the number of points in the dataset.
In addition to this, the construction of the k–d tree takes
O.n.d + logn//, where additionally d is the dimensionality
of the dataset, but it only has to be constructed once per
group.

4.3.2 Nominal data

Often, the datasets we receive contain important nominal
attributes, i.e., non-rankable categories. In order to use the
kNN algorithm, defined in Sect. 4.3.1, to retrieve the k most
similar tuples of a sample, the data has to be preprocessed.

K



Datenbank Spektrum (2022) 22:23–43 31

If the nominal attributes are binary, this is a simple task.
Both categories can be e.g. mapped to either value 0 or value
1, respectively. However, for non-binary nominal attributes
this is not possible. For non-binary nominal attributes we
perform a one-hot encoding. That is, we add a new attribute
for each of the possible nominal values and set the value
to 1 if the sample has the corresponding attribute, 0 other-
wise. The drawbacks of this approach is that there has to be
a set of possible nominal values and it drastically increases
the number of dimensions. Especially for datasets with at-
tributes with many different possible nominal values, the
resulting preprocessed dataset would be too huge in terms
of dimensionality.

Therefore, we implement an algorithm for nominal data
that does not need preprocessed data as input. Given two
samples, the algorithm returns 0, if their nominal attribute
value is equal, else it returns 1. The algorithm has to be
executed for each attribute. A low overall value between
two samples indicates that they are similar. The runtime
complexity of this naive approach is O.n �d/ per prediction
point, with n being the number of points in the dataset and
d being the dimensionality of the dataset. Therefore the
runtime is way higher compared to the runtime complexity
of the kNN algorithm.

4.3.3 Ordinal data

Many datasets also use ordinal data, i.e. rankable categori-
cal values. In order to apply the kNN algorithm, we again
preprocess the data. Therefore, the ordinal data values are
mapped to numerical values, where lower values indicate
closely ranked ordinal values. Without preprocessing, the
data is handled like nominal data.

Preprocessing ordinal data is not only useful because the
runtime-efficient kNN algorithm can be applied. It can also
improve the quality of the overall results compared to the
naive algorithm described in Sect. 4.3.2. We illustrate this
quality effect using the example in Table 1. During local
region determination, the nearest neighbor of Sue has to be
found in order to predict her salary. We assume, that Mark,
Sue and Jane only differ in experience and education. We
could apply a naive strategy, where we consider two people
more similar, if an attribute value is exactly the same. Then
Sue’s next neighbor would be Mark, since they have the
same experience value. However, realistically, Sue would

Table 1 Example extract of an income dataset

Name Experience Education ...

Mark B. 13 y. No college degree � � �
Sue C. 13 y. MSc. � � �
Jane D. 14 y. BSc. � � �
:::

:::
:::

:::

be expected to have a closer salary to Jane, considering that
their educational level is very similar and their experience
is not equal, but close enough. Hence, being able to more
accurately model the difference between Master of Science,
Bachelor of Science and no degree is also useful in terms
of result quality.

The preprocessing step of ordinal data does not effect
the dimensionality of the dataset. Here each value can be
mapped directly onto corresponding numerical values indi-
cating their rank within the attribute.

4.4 Dynamic ensemble selection

Based on the jGj � k tuples defining the local region for
a given test sample t , dynamic ensemble selection iden-
tifies the ensemble E = Œ.mc1 ; g1/; :::; .mcp ; gp/� 2 MC

that achieves the best local performance. To this end, FAL-
CES follows previous research on dynamic model ensem-
bles [19] and combines these techniques with the af metric.
More precisely, using as input MC , we evaluate all model
combinations based on af when they classify the jGj � k

nearest neighbors of t . The combination E with the lowest
af -score is retained.

Example 3 Assume we want to classify a male employee t

that is thus considered to be part of gM . Assuming k = 20,
kNN retrieves the 20 male and 20 female samples in D most
similar to t . The two combinations possible with the clas-
sifiers retained after model pruning (see Example 2), i.e.,
Œ.m1; gM /; .m4; gF /� and Œ.m2; gM /; .m5; gF /�, are evalu-
ated using the af metric and focusing on the 40 samples of
D that form the local region. In our example, let this result
in E = Œ.m1; gM /; .m4; gF /� as this combination reaches
the lowest score.

Note that through previous model pruning during the
offline phase, the above example needed only to consider
2 instead of 25 classifier combinations. In addition to re-
ducing the number of comparisons, we further reduce the
complexity of an individual combination assessment, be-
cause the computation of classification predictions for all
sets of classifiers and all local jGj � k tuples can be quite
time consuming. That is, FALCES precomputes all classifi-
cation predictions for all tuples in D using all models in M .
This allows dynamic ensemble selection to simply look up
the necessary predictions instead of repeatedly computing
them by applying the classifier for each test sample during
the online phase.

4.5 Locally fair classification

Finally, the classifier of the previously identified model en-
semble E that achieved best local performance with respect

K



32 Datenbank Spektrum (2022) 22:23–43

Fig. 4 Runtime-efficient frame-
work adaptation

to the af metric and that is associated to the same group
as t is used to classify t .

Example 4 Continuing our running example with E =
Œ.m1; gM /; .m4; gF /�, m1 is finally used to classify t , be-
cause t belongs to gM . Considering a different t 0 of group
gM may result in a different local region, where for in-
stance E = Œ.m2; gM /; .m5; gF /� performs better, resulting
in the use of m2 instead.

5 Runtime-Efficient Framework Adaptation

The major runtime bottlenecks of the FALCES algorithm
are the determination of local kNN and dynamic ensemble
selection. We already have addressed methods to reduce
the runtime of the kNN step using preprocessed data on an
algorithmic level (see Sect. 4.3).

Additionally, we provide an adaptation, depicted in
Fig. 4, of the original framework to reduce the runtime
of the online phase. The goal is to reduce the number of
computations of the steps causing the runtime bottlenecks.
Here the idea is to add another kNN step (3a) in which
we want to find the kNN of the current, not yet predicted,
test sample t . Step 3a) can be computed in parallel to step
3b) and step 4. After the locally best model combination

is found for the current test sample, we then use this com-
bination to classify t , as well as all kNN of t within the
prediction dataset. With this method we can reduce the
amount of times step 3b) and step 4 have to be computed,
since we do not have to redo them for the corresponding
kNN of t .

This strategy is useful, when we already have a dataset of
which we want to predict the label, instead of just predicting
the label of one sample. The FALCES algorithms described
in Sect. 4 can be adapted by adding the new step to the
online phase. The runtime would reduce by the factor of
the number of kNN to be considered within the prediction
dataset.

Another improvement on the runtime can be done
through sorting the indices within the validation dataset
beforehand. This does not have an influence on the over-
all quality of the results, and thus can be used for both
frameworks.

6 Evaluation

We have implemented the algorithms discussed in Sect. 4
and present their evaluation in this section. We first describe
our experimental setup. We then present and discuss results
on combined accuracy and fairness, differences observed

K



Datenbank Spektrum (2022) 22:23–43 33

for the different metrics used, as well as differences when
using different parameter settings (� value of the metrics
and k-value of the kNN algorithm). Furthermore the impact
of preprocessed data is observed and we compare the orig-
inal algorithms with their new runtime-efficient framework
adaptations defined in Sect. 5. Additionally the runtime re-
sults on the online phase are discussed as well.

6.1 Experimental setup

This section summarizes which different algorithm variants
and baseline solutions we compare in our evaluation. We
further discuss datasets and metrics we use for benchmark-
ing.

Compared algorithms. We have presented different
variants of FALCES, depending on whether or not the
training data is split before training and whether or not
model pruning is applied. In addition, we compare to the
state-of-the-art algorithms. More precisely, we consider the
algorithms summarized in Table 2 for each experiment.
Additionally, we also want to evaluate the performance of
the algorithm variants using the runtime-efficient frame-
work adaptation described in Sect. 5 and compare it with
the original FALCES variants. We evaluate the different
fairness metrics for these algorithms as well as vary the �

value of the af metrics used. Furthermore we want to see
what influence changing the k-value for the kNN algorithm
has on the overall results. When not mentioned otherwise,
we set k = 15 as the default value. The reasoning for
choosing this value has been based on some prior testing,

Table 2 Overview of the algorithms compared in our evaluation

Algorithm Description

FALCES Our baseline algorithm without splitting
before training and without model prun-
ing.

FALCES-SBT This variant of FALCES splits the dataset
for training but does not apply model
pruning.

FALCES-PFA In this variant, model pruning is applied
on models trained over the complete train-
ing dataset.

FALCES-SBT-PFA The offline phase performs model prun-
ing on models that have been trained on
sub-sets of the training dataset, which has
been split according to considered groups.

DCS-LA [19] A baseline algorithm for dynamic model
ensembles that optimizes accuracy, which
we extended for FALCES.

Decouple [9] State-of-the-art algorithm for fair model
ensembles, when models are trained using
the full training dataset.

Decouple-SBT[9] Variant of Decouple that trains models on
a previously split training dataset.

which showed across the datasets considered that a k-
value of 15 provides promising results, while still having
an acceptable runtime.

Datasets and ML models. We use both synthetic and
real benchmark data in our evaluation.

We developed a synthetic data generator in order to con-
trol different types and degrees of bias in order to study how
the different algorithms are affected by these. The generated
datasets use numerical values, hence the kNN algorithm can
be directly used on the datasets. It generates labeled data
for two groups and a binary classification task and allows to
control (i) the group balance, (ii) the degree of social bias,
and (iii) implicit bias. Group balance describes the percent-
age group g1 represents in the full dataset (g2 implicitly
making up the remainder of the dataset), which can be very
unbalanced (e.g., only 10% of the training data belong to
g1) or perfectly balanced at 50%. Social bias refers to bias
directly related to the protected attribute defining a group
(e.g., gender in our example), reflected by different prob-
abilities for a positive label in the different groups (e.g.,
women have a lower probability for a positive label than
men). Such bias is sometimes also called historical bias, be-
cause it reflects direct discrimination of a group in a dataset
that commonly labels data based on historical decisions. In
our experiments, a social bias of 0 means probabilities are
equal for both groups (no discrimination), 0.1 if the proba-
bility for g1 differs by 0.1, and so on. Implicit bias is present
in a dataset when, even though groups are not directly dis-
criminated, their label depends on an unfavorable attribute
value that occurs more frequently in the protected group,
i.e., that is correlated to the protected group. Note that both
examples from the press mentioned in the introduction are
likely linked to such implicit bias. Similarly to social bias,
we vary implicit bias from 0 (none) in increments of 0.1.
The generated data in all cases consist of approximately
13,000 tuples. Table 3 summarizes the configurations we
used for testing. When not mentioned otherwise, the values
are set to the default values highlighted in bold.

We chose the Adult Data Set [7], a census income dataset
with data from 1994, which is a commonly used dataset in
multiple machine learning experiments. This dataset con-
sists of approximately 49,000 tuples and contains various
variables, including a binary salary value of yearly income
with the threshold of 50K$, which is our label in the ex-
periments. We chose the attribute “sex” with values “male”

Table 3 Different configurations for generating synthetic data, default
values in bold

Bias type Parameter settings

Group balance 0.1, 0.2, 0.3, 0.4, 0.5

Social bias 0, 0.1, 0.2, 0.3, 0.4, 0.5

Implicit bias 0, 0.1, 0.2, 0.3, 0.4, 0.5

Preprocessing on, off

K



34 Datenbank Spektrum (2022) 22:23–43

and “female” as a sensitive attribute, as well as a combi-
nation of the attribute “sex” with the attribute “race” with
values “white” and “others”, where we grouped together all
other races, because all other races make up � 10% of the
dataset. The dataset got preprocessed in such a way that our
implemented kNN algorithm could work properly in order
to have a better runtime.

Each dataset (synthetic and real) is split randomly such
that 50% of the dataset serve as training data for model
training, 35% for validation to determine emsembles, and
15% for testing the quality of predictions in the online
phase.

To get a diverse set of classifiers, we train five different
classifiers on our datasets: (i) Decision Tree, (ii) Logistic
Regression, (iii) Softmax Regression, (iv) Linear Support
Vector Machine, and (v) Nonlinear Support Vector Ma-
chine [12]. Given that we have two groups, this results in
ten classifiers when we split before training, and five when
training on the full dataset.

Metrics. Given that we aim for a good compromise of
accuracy and fairness, we use metrics to assess the different
algorithms in these two dimensions. We use the well known
accuracy-metric commonly used to evaluate machine learn-
ing techniques. For fairness, we distinguish between global
and local fairness. To study global fairness, we use the “un-
fairness part” of the metric given by Eq. 2 (setting � = 0),
to which we refer to as global bias (lower values are better).

To measure local bias, we define a local region bias met-
ric, which we call local region discrimination (LRD):

LRD =

1

jGj � jDj
X

ti2D

X

gj 2G

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

k

X

zl2Rti ;gj

zl −
1

kjGj
X

gm2G

X

zl2Rti ;gm

zl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(5)

where Rti ;gj
is the local data region of ti comprising the

kNN of ti in group gj . In this metric the probability of
a positive predicted label of each group in the local region
is measured against the average probability of a positive
predicted label amongst all points in the local region. In
this way, the metric reflects the average local fairness.

Table 4 depicts a brief overview over the different pa-
rameters used and evaluated in our experiments. Using the

Table 4 Different parameter settings used in the evaluation, default
values in bold

Parameter Parameter settings

Metric bLmean, bLimpact� , bLelift�

k-value of
kNN

5, 10, 15, 20, 25

Framework
adaptation

on, off

experimental setup described in this section, we now dis-
cuss results we obtained.

6.2 Comparative evaluation in terms of accuracy
and fairness

We first present results we obtained when using different
algorithms on our synthetic dataset in terms of accuracy,
global bias, and local bias. The metric used for the Decou-
ple and FALCES algorithms in the following results is the
bLmean metric described in Eq. 2.

As a first baseline, we start with a “clean” dataset with no
social or implicit bias, and see if changes in group balance
have an impact on our three metrics. Essentially, we expect
only a marginal effect on accuracy and a low global and lo-
cal bias, because the input data are a priori unbiased. This
is confirmed by the results depicted in Fig. 5. Note that
instead of plotting absolute accuracy for all methods, we
plot the deviation algorithms have in accuracy from the ac-
curacy reached by DCS-LA, reported as percentage points.
DCS-LA is not considering bias and optimizes solely for
accuracy, which is between 0.76 and 0.79 for DCS-LA over
the whole range of considered group balance. The ordinate
reporting percentage points, a deviation of -1 means that an
algorithm reaches for instance 0.77 instead of 0.78 reached
by DCS-LA.

In Fig. 5, we observe that all algorithms perform simi-
larly, i.e., for all algorithms, there is some very small fluc-
tuation in accuracy and global bias remains low. For local
bias, while being generally low as well, we observe that it
steadily increases with increasing imbalance, reaching a rel-
ative increase of up to 64% from the balanced case (0.5)
to the highest imbalance (at 0.1, where only 10% of the
dataset concern one group).

Next, we perform the same analysis again, but this time
with an additional social bias of 0.3 introduced to g1. The
results are summarized in Fig. 6. With the introduction of
social bias, we observe that deviations in accuracy become
more pronounced, in particular for the two variants of the
Decouple algorithm. Least affected in terms of accuracy
is FALCESSBTPFA, actually having comparable or better
accuracy than DCS-LA. For both local and global bias,
we see that all FALCES variants consistently outperform
both Decouple variants and DCS-LA. Also, compared to
the previous experiment without social bias, the field has
overall shifted upwards. This shows that we cannot fully
counter bias originally present in the dataset, but FALCES
is best in reducing it while maintaining high accuracy.

Our next analysis focuses on the impact different degrees
of social bias have on the overall performance, assuming
balanced groups without additional implicit bias. Fig. 7 re-
ports our results. For accuracy, we observe that all methods
fluctuate, but the degradation in accuracy (typically less

K



Datenbank Spektrum (2022) 22:23–43 35

a b c

Fig. 5 Results on synthetic data with varying group balance, no social bias, and no implicit bias using the bLmean metric. a Accuracy deviation from
DCS-LA, b global bias, c local bias

a b c

Fig. 6 Results on synthetic data with varying group balance, 0.3 social bias, and no implicit bias using the bLmean metric. a Accuracy deviation
from DCS-LA, b global bias, c local bias

a b c

Fig. 7 Results on synthetic data with varying social bias, group balance of 0.5, and no implicit bias using the bLmean metric. a Accuracy deviation
from DCS-LA, b global bias, c local bias

than 2 percentage points) is tolerable. Our approaches are
more robust to social bias than the state-of-the-art Decou-
ple variants, the PFA variants generally being closest to the
accuracy reached by DCS-LA. For both local and global
bias, a clear upward trend is visible with increasing social
bias, showing that the more bias in the input data, the more
bias the ensemble generates. However, the gradient of our
approaches is less steep and consistently below the baseline
methods. This means that the more social bias in the data,
the more effective our approaches are in countering the bias
to optimize (local) group fairness compared to the state-of-
the-art. FALCES-SBT is best in terms of global and local

bias, but FALCES-SBT-PFA has similar performance and
thus presents a good compromise in datasets with mainly
social bias.

We perform a similar analysis for implicit bias in the
source data, again assuming a balance of groups (balance =
0.5) and setting social bias to 0. Fig. 8 visualizes the re-
sults of this set of experiments. Our first observation is that
implicit bias impacts all metrics more than the previously
considered social bias. As before, in terms of variations
in accuracy, these are strongest for the Decouple variants,
whereas the PFA variants of our algorithm outperform FAL-
CES and FALCES-SBT. However, looking at both local and

K



36 Datenbank Spektrum (2022) 22:23–43

a b c

Fig. 8 Results on synthetic data with varying implicit bias, group balance of 0.5, and no social bias using the bLmean metric. a Accuracy deviation
from DCS-LA, b global bias, c local bias

Fig. 9 Global bias (left) and
local bias (right) on real-world
dataset for one or two sensitive
attributes

global bias, our algorithms without model pruning typically
perform better than their counterpart with PFA. The rea-
son for this is that model pruning during the offline phase
can prune classifiers that would, during the online phase,
be better compared to those retained after model pruning.
Nevertheless, in general, our methods outperform the state
of the art for a wide range of implicit bias configurations.

We validate our findings on artificial data on the real-
world dataset as well. Given that it includes two sensi-
tive attributes (sex and race), we study accuracy, global
bias, and local bias when just one attribute is used to form
groups (resulting in two groups) and when two attributes
are used (resulting in 4 groups). Fig. 9 shows the average
results of multiple tests for global and local bias. Results
on accuracy confirm that all algorithms perform similarly,
it consistently ranges between 0.790 (Decouple) and 0.799
(DCS-LA). As before, we observe that FALCES variants
typically are comparable or outperform the three baseline
algorithms, both in terms of global and local fairness. With
the increasing number of sensitive attributes, we observe
that the bias increases for all methods.

In conclusion, we see that our methods improve on the
state of the art by offering a better accuracy-fairness com-
promise than the state of the art Decouple approach (consid-

ering global fairness) and the difference in accuracy com-
pared to DCS-LA is typically tolerable. Our methods are
also the most robust to different types and degrees of bias
(we studied group balance, social bias, and implicit bias).
An added benefit is that our methods inherently consider
local fairness as well, and our evaluation of local fairness
shows that the classifications performed using our algo-
rithms get us closer to equal opportunity for different pre-
defined groups.

6.3 Impact of different accuracy-fairnessmetrics

In Sect. 4.2, we have presented multiple alternative metrics
for af , used both during model pruning in the offline phase
and dynamic classifier selection in the online phase. All ex-
periments so far have used our metric bLmean (Eq. 2). The
next series of experiments investigates how different met-
rics potentially impact the result. For the sake of consistency
and to compare the different metrics, we still use the same
methodology (mean difference) to calculate the global bias
and the LRD metric to calculate the local bias.

First, we want to compare the results of the state-of-the-
art metric of Eq. 1 as SOA, with our metric bLmean, since
it is an extended version of the SOA metric. As a reminder,

K



Datenbank Spektrum (2022) 22:23–43 37

our extension aims at countering the effect on fairness in
presence of unbalanced groups. Therefore, we focus our
study on evaluating both the global and local bias for dif-
ferent configurations of group balance. As before, accuracy
is comparable across all approaches, whether we use SOA
or bLmean. Fig. 10 reports our results on global bias and lo-
cal bias comparing the results of both approaches. For better
readability, we omit the results of Deocuple, Decouple-SBT
and DCS-LA, as their relative performance to the other ap-
proaches being analogous to our previous discussion. The
dotted lines represent the results when using the state-of-
the-art metric, while the results using the bLmean metric
are presented in solid lines. For both global bias and local
bias, we see that FALCES variants without model pruning
(FALCES and FALCES-SBT) are comparable when using
SOA or bLmean. The effect of using a different metric only
becomes apparent when model pruning is active. Overall,
we see that bLmean closes the “bias gap” between FALCES
variants with model pruning (FALCES-PFA and FALCES-
SBT-PFA) and those without. This allows our methods to
consistently exhibit low bias, especially in comparison to
state-of-the-art algorithms like Decouple. This behavior can
be explained by the fact the af is used by model pruning
where group imbalance can cause the pruning of otherwise
good classifier combinations. Note that the use of af dur-
ing the online-phase is not sensitive to the choice of the two

Fig. 10 Results for varying
group balance, 0.3 social bias,
and using alternative af -met-
rics. The state-of-the-art metric
results have dotted lines, while
the bLmean results use solid lines.
a Global bias, b local bias

a b

a b c

Fig. 11 Results on synthetic data with varying social bias, group balance of 0.5, and no implicit bias using thebLimpact� metric. aAccuracy deviation
from DCS-LA, b global bias, c local bias

metrics, because it ensures class balance in the local region
by selecting k members of each group to form a region.
Consequently, FALCES and FALCESSBT are not signifi-
cantly affected by the choice of metric.

Furthermore we want to explore the effects when using
other fairness metrics, like bLimpact� or bLelift� as described
in Eq. 3 and Eq. 4 respectively. Due to the nature of ratio
metrics in comparison to difference metrics, when using
values within the range of Œ0,1�, the output generated by
the ratio metric is greater than the output generated by the
difference metric. Since the fairness part of bLimpact� and
bLelift� will generate values higher than the bLmean metric,
we want to evaluate these metrics when varying the bias
value of the dataset. The expectation is that a higher bias in
the dataset results in a bigger improvement by our algorithm
variants when using one of the two ratio metrics. Here we
also want to measure the influence of these metrics on the
accuracy value, since this is expected to decline. The results
are depicted in Fig. 11 and Fig. 12. The results show, that
although our FALCES algorithms still outperform the DCS-
LA and Decouple algorithms, the gap of global and local
bias is more narrow. Contrary to our expectations, the bias
is not further decreased compared to the bLmean metric re-
sults. In general the global and local bias is even higher than
when we used the bLmean metric. The difference between
both ratio metrics bLimpact� and bLelift� is very small as

K



38 Datenbank Spektrum (2022) 22:23–43

a b c

Fig. 12 Results on synthetic data with varying social bias, group balance of 0.5, and no implicit bias using the bLelift� metric. a Accuracy deviation
from DCS-LA, b global bias, c local bias

expected, since both metrics are similar to each other. Also
the assumption about the influence on the overall accuracy
is invalidated within this experiment. The overall accuracy
values of the predictions are similar to the ones using the
difference metric for the fairness part, hence metric bLmean.
However, the conclusion that the FALCES algorithms re-
duce further bias compared to the state-of-the-art Decouple
approach still persists when using other af metrics.

6.4 Impact of different � values for the accuracy-
fairness metrics

All experiments so far have used the default � value of
� = 0.5, which means that both parts, accuracy and fair-
ness, are valued the same. We want to test how the overall
results change when different � values are used, ranging
from � = 0 (ignoring the accuracy part) to � = 1 (ignoring
the fairness part) with steps of 0.1. The evaluation has been
made for the bLmean and bLimpact� metrics. We omit the
evaluation for the bLelift� metric as they are analogous to
the results of the bLimpact� metric. Fig. 13 and Fig. 14 show
the results.

The DCS-LA algorithm does not have the same result
in each computation, which could be the result of ran-

a b c

Fig. 13 Results on synthetic data with 0.3 social bias, group balance of 0.5, and no implicit bias using the bLmean metric with a varying � value. a
Accuracy deviation from DCS-LA, b global bias, c local bias

domly choosing the classifier if multiple classifiers perform
equally well. Overall the results show, as expected, that for
a low � value, the bias tends to be lower for our algo-
rithms, but also worsen the overall accuracy. For a higher �

value, the accuracy gets better, but the bias becomes higher
at the same time. For the experiments we conducted, a �

value between 0.3 and 0.5 seems to be optimal when us-
ing the bLmean metric, while for the bLimpact� metric a �

value between 0.3 and 0.6 seem to provide similar results.
Surprisingly, when using the bLimpact� metric, the FALCES-
PFA algorithm seems to perform badly, while the FALCES-
SBT-PFA algorithm overall performs the best considering
local bias and accuracy, and also performs similar to the
FALCES-SBT algorithm when considering global bias and
accuracy. Also our FALCES algorithms have some differ-
ent results compared to the DCS-LA algorithm, although
it behaves similarily for � = 1. However, since we con-
sider the kNN of each group nonetheless within FALCES,
we take into account more sample points overall within the
validation dataset compared to the DCS-LA algorithm.

K



Datenbank Spektrum (2022) 22:23–43 39

a b c

Fig. 14 Results on synthetic data with 0.3 social bias, group balance of 0.5, and no implicit bias using the bLimpact� metric with a varying � value.
a Accuracy deviation from DCS-LA, b global bias, c local bias

6.5 Impact of different k-values for the kNN
algorithm

Another experiment we conduct in this paper is about the
influences of different k-values for the kNN algorithms.
A positive aspect of a high k-value is that multiple points
are considered, hence the effect of a single point is lower.
However this could also result in a problem, since if the k-
value is too high, points might be considered as close which
are not necessarily similar to the current point considered.
Also we are taking into account the kNN of each group for
the FALCES algorithms, so if the k-value is 20 and we have,
e.g., 4 sensitive groups, we use 80 points to decide which
model combination is best suited for the current point. The
results are shown in Fig. 15.

The results of this experiment are unexpected as the ac-
curacy results are the lowest for k = 10. Apart from that the
results seem to be quite stable, especially for the local bias
value. The downside of having a small k-value is that not
many points are considered in order to find the locally best
machine combination for a specific sample. On the other
hand, choosing a high k-value could risk that points are
considered as being similar to the current tuple, although
they might vary a lot. Especially when dealing with a lot of
different groups, one group might only have very few sam-

a b c

Fig. 15 Results on synthetic data with 0.3 social bias, group balance of 0.5, and no implicit bias using the bLmean metric with a varying k-value for
the kNN algorithm. a Accuracy deviation from DCS-LA, b global bias, c local bias

ples. If a high k-value is chosen it would mean that a high
proportion of this group is considered. E.g. we set k = 100
and the underlying dataset consists of 6 different groups,
whereas there is one small group consisting of only 300
tuples. In this case 1/3 of the group would be considered
as being similar to the currently considered tuple, although
in reality a high number of these tuples might be totally
different.

6.6 Impact of preprocessed data

In Sect. 4.3 we mention that a preprocessed dataset is
needed to perform the more runtime-efficient kNN algo-
rithm. Additionally, it is also mentioned that not only the
runtime might suffer if a no preprocessed data is used, but
that also the qualitative results might take a hit. Therefore
we conduct an experiment about the influence of using pre-
processed data. In Fig. 16 we see the results of the experi-
ment using the same data as the experiment in Fig. 7. The
difference is that this time we do not use pre-processed val-
ues, hence we only have a distance of 1 or 0 of an attribute
between two points. We use distance 0 if the attribute value
is the same and 1 otherwise. The influence on the runtime
is shown in Sect. 6.8. However, for the LRD metric in the
evaluation we still use the original kNN algorithm.

K



40 Datenbank Spektrum (2022) 22:23–43

As expected, the results are worse if the data is not pre-
processed. However, the degree of the impact is higher than
initially expected. Especially the variants without pruning
model combinations perform worse in both aspects, accu-
racy and bias, compared to the Decouple, and even the
DCS-LA algorithm. Also the FALCES variants with model
pruning are providing similar results as the Decouple algo-
rithms. This indicates that the FALCES algorithms should
be used on preprocessed datasets.

6.7 Evaluation of the Runtime-Efficient Framework
Adaptation

The last experiment we conduct is comparing the algo-
rithms implementing the new runtime-efficient framework
adaptation described in Sect. 5 with the other FALCES al-
gorithms. We chose k = 10 for the kNN algorithm within
the prediction dataset. The accuracy value is similar in both
experiments and is therefore not depicted here. The results
are depicted in Fig. 17. These were similar to the results
when varying the implicit bias or using the other metrics.
The FALCES algorithms using this new adaptation have
added “-NEW” to their name in this graph and are depicted
as solid lines. The comparison of the runtime is provided
in Sect. 6.8.

Expectedly, the bias of the results slightly increase us-
ing this new approach. However the difference is mostly
marginal. In situations where the runtime is important, it
might be useful to use the runtime-efficient adaptation,
since the tradeoff in terms of bias is rather low.

Furthermore we want to evaluate the runtime-efficient
framework adaptation on the real-world dataset as well.
Fig. 18 depicts the results in comparison to the standard
FALCES algorithms for the dataset with both, 2 sensitive
groups and 4 sensitive groups. The results of the standard
FALCES algorithms slightly deviate from the ones shown
in Fig. 9, since that figure shows the average of multiple
runs. On the real-world dataset with 2 sensitive groups the
FALCES algorithms using the framework adaptation even

a b c

Fig. 16 Results on non-preprocessed synthetic data with varying social bias, group balance of 0.5, and no implicit bias using the bLmean metric. a
Accuracy deviation from DCS-LA, b global bias, c local bias

have less global bias for most of the variants. However, this
can not be confirmed for the dataset with 4 sensitive groups.
In general the bias value is very similar in both strategies.

6.8 Runtime evaluation

We also evaluate the efficiency of our approach in its online
phase. In particular, we study the effect of model pruning in
the offline phase on the online performance, as well as the
effect of other proposed FALCES strategies. To this end, we
run the four variants of FALCES and measure the average
runtime to perform online classification on a tuple for which
we want a prediction. Compared to our originally published
paper [14] we provide a more extensive runtime evaluation
in this enhanced version. Due to a different hardware, as
well as some minor changes within the code, the overall
runtime in this paper also deviates compared to the original
paper. For Fig. 19a–e the evaluation has been conducted
on the synthetic dataset with 30% of social bias, while for
Fig. 19f the evaluation has been done on the real-world
dataset.

We report results in Fig. 19a on our synthetic dataset
with 30% social bias, on which we can vary the number
of groups (either 2 or 4), given two sensitive attributes. In
any configuration, we see that model pruning during the of-
fline phase improves the average runtime to classify a test
tuple during the online phase. While this improvement is
moderate when limiting to two groups, the difference in-
creases as the number of groups increases. This can be
explained based on the fact that for two groups and five
models trained per group, we have 25 combinations to con-
sider during the online phase when none are previously
pruned. This exponentially increases with the number of
groups, e.g., for 4 groups, 54 = 625 combinations need to
be tested. The runtime gap is increasing with the numbers
of model combinations considered. Surprisingly the SBT
variants also outperform the other algorithms in terms of
runtime by quite a margin. This could be due to a slightly
different implementation strategy adapted for this variant.

K



Datenbank Spektrum (2022) 22:23–43 41

Fig. 17 Results on synthetic
data with varying social bias,
group balance of 0.5, and no
implicit bias using the bLmean

metric. a Global bias, b local
bias

a b

a b c d

Fig. 18 Results on the Adult Data Set using the bLmean metric with 2 sensitive groups (a & b) and 4 sensitive groups (c & d). a Global bias, b local
bias c global bias, d local bias

The FALCES algorithms implementing the runtime-ef-
ficient framework adaptation defined in Sect. 5 show a big
runtime improvement compared to the standard FALCES
algorithms, as depicted in Fig. 19b. Taking into considera-
tion the results of Fig. 17 that showed that the overall bias is
only slightly increased for the framework adaptation with
our settings, and in some cases even performs a little bit
better, using this strategy seems very promising.

Fig. 19c depicts the runtime results of our standard algo-
rithm compared to the runtime, if the data are not prepro-
cessed properly and do not conform to a specific format. As
expected the runtime increases significantly, since the op-
timized kNN algorithm cannot be used. Combining it with
the results of Fig. 16 which showed that if the data are
not preprocessed, FALCES does not reduce the bias com-
pared to the state-of-the-art algorithms, which proves that
preprocessed data are of utter importance for our FALCES
algorithms, both in terms of runtime as well as quality of
the results.

The k-value chosen has also an influence on the overall
runtime as it can be seen in Fig. 19d. In this experiment,
the runtime with 2kNN compared to 5kNN is tripled for
the algorithms where the data are not split before the train-
ing phase. However, for the SBT variants, the runtime dif-
ference is surprisingly rather small. An explanation could
be that due to splitting up the dataset beforehand, finding
and accessing the kNN can be performed faster, while the
amount of model combinations considered is still the same.

Fig. 19e depicts the impact of having sorted indices for
the validation dataset. This shows that the runtime can be
further improved using this strategy, while having no effect
on the overall quality of the results.

Fig. 19f shows the effect on the runtime on the real-world
dataset with 4 sensitive groups, when comparing the origi-
nal FALCES algorithms with their runtime-efficient frame-
work adaptations described in Sect. 5, combined with hav-
ing sorted indices within the validation dataset.

6.9 Summary

The results of the detailed experiment discussion can be
summarized as follows.

� Varying group balance: The results of FALCES are
quite stable over imbalanced datasets.

� Different types and amount of bias: Higher bias within
training datasets results in higher bias of the results, al-
though FALCES keeps the bias lower than state-of-the-
art algorithms. In general the datasets containing social
bias resulted in an overall lower bias of the results, than
the datasets containing implicit bias. This means that so-
cial bias is easier to detect.

� Metrics: While using the adapted ratio metrics bLimpact�

and bLelift� also provide an improvement on the results,
the gap to the state-of-the-art algorithms when choos-
ing the mean difference metric bLmean is bigger and thus

K



42 Datenbank Spektrum (2022) 22:23–43

a b c

d e f

Fig. 19 Runtime analysis. a Impact of the number of sensitive groups: 2 vs 4 groups, b standard vs New Strategy, c standard vs No Preprocessed
Data, d impact of k-value on the runtime: 5 vs 25kNN, e impact of using sorted indices: Standard vs Sorted Index Improvement, f standard vs
New Strategy + Sorted Indices on the Adult Data Set with 4 sensitive groups

shows more promising results. A good �-value depends
on the metric used, but for the mean difference metric
a value between 0.3 and 0.5 returned the best results.

� k-value of kNN: The results in our experiments are
quite stable. Due to the increased runtime when choos-
ing a high k-value, k = 15 proved to be a good cutoff
value.

� Non-preprocessed (non-numerical) data:While the re-
sults of FALCES are promising for most of the datasets,
it has been shown that they are not viable to be used
on non-numerical datasets without prior preprocessing.
These were the only experiments in which state-of-the-
art algorithms outperformed FALCES. Furthermore, the
runtime on non-preprocessed non-numerical data is im-
practical.

While FALCES typically provided good results, which
variant to choose depends on several factors.

� Splitting the dataset (SBT): No definitive answer to the
question of whether or not to apply splitting can be given
when focusing on the quality of the results, However, in
most cases the results of the FALCES algorithms using
this technique show a slightly smaller overall bias. Ad-
ditionally, the runtime of the algorithms using this tech-
niques is lower than the runtime of their counterparts.

� Prune model combinations in the offline phase (PFA):
In general, pruning model combinations in the offline
phase leads to higher bias in the results. The reason be-
hind this is, that a model combination might perform
badly when the whole dataset is considered, but it might
be the most suitable model combination for a specific
local region. However, not pruning model combinations
might result in an unfeasible runtime. This heavily de-
pends on the number of trained models and more so on
the number of sensitive groups. If more than two sensi-
tive groups are considered and/or the runtime is crucial,
model pruning is needed. Furthermore, the results when
pruning model combinations were a bit more accurate
in general, but the improvement in accuracy did not
outweigh the deficit coming from the increase in bias.

� Runtime-efficient framework adaptation (-NEW):
The main focus of the adaptation was to reduce the over-
all runtime, while trying to keep the quality of the results
on a similar level. The results of the experiments show
that it succeeded and that the adaptation variants are
typically more practical.

Overall, FALCES-SBT-PFA-NEW is a promising algo-
rithm, when the runtime is an important factor and FAL-
CES-SBT or FALCES-SBT-NEW, if the goal is solely to
reduce bias.

K



Datenbank Spektrum (2022) 22:23–43 43

7 Conclusion

This paper studied the novel problem of making locally fair
and accurate classifications to foster equal opportunity de-
cisions. We have presented two general frameworks to ad-
dress the problem, as well as FALCES, an implementation
of the frameworks that combines and extends techniques of
dynamic model ensembles and fair model ensembles. Our
experimental evaluation demonstrated that FALCES gener-
ally outperforms the state of the art when it comes to bal-
ancing accuracy and fairness for several types and degrees
of bias present in the training dataset. The algorithm vari-
ant adaptations for the runtime-efficient framework show
an improvement in terms of running time over their vari-
ants implementing the original framework, while having
comparable bias values. Furthermore, multiple metrics to
measure accuracy and fairness have been implemented and
tested, but the results show that the biggest improvement of
our FALCES algorithms over the state-of-the-art algorithms
are achieved when using the mean difference metric for the
fairness part, hence bLmean. A good value for weighing the
accuracy and fairness part is � = 0.3 − 0.5, but it varies
a bit depending on the metric used. Although overall the
FALCES algorithms are successful in improving the fair-
ness of the results while still staying similarily accurate, it
has been shown that not every data is suitable for our algo-
rithms. Possible avenues for future research include meth-
ods that diversify the set of trained models in a controlled
way or dynamic and adaptive setting of the parameter k

of the kNN search, depending on the density of the data
region. While we already conducted some experiments in
terms of choosing different k-values, these experiments can
be further enhanced in the future to determine good k-val-
ues based on factors like dataset sizes and the number of
samples per group.

Funding Supported by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence Strategy –
EXC 2120/1 – 390831618

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

References

1. Bentley JL (1975) Multidimensional binary search trees used for
associative searching. Commun ACM 18(9):509–517

2. Bhatia N (2010) Survey of nearest neighbor techniques. Int J Com-
put Sci Inf Secur 8(2):4

3. Calders T, Verwer S (2010) Three naive bayes approaches for dis-
crimination-free classification. DataMinKnowl Disc 21(2):277–292

4. Coughlan S (2020) Why did the A-level algorithm say no? https://
www.bbc.com/news/education-53787203. Accessed: 16 December
2021

5. Cruz RM, Sabourin R, Cavalcanti GD (2018) Dynamic classifier
selection: recent advances and perspectives. Inf Fusion 41:195–216

6. Dastin J (2018) Amazon scraps secret AI recruiting tool that
showed bias against women. https://www.reuters.com/article/
us-amazon-com-jobs-automation-insight/amazon-scraps-secret-
ai-recruiting-tool-thatshowed-bias-against-women-idUSKCN1
MK08G. Accessed: 16 December 2021

7. Dua D, Graff C (2019) UCI machine learning repository. http://
archive.ics.uci.edu/ml. Accessed: 16 December 2021

8. Dvornik N, Schmid C, Mairal J (2019) Diversity with coopera-
tion: ensemble methods for few-shot classification. In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pp 3723–3731

9. Dwork C, Immorlica N, Kalai AT et al (2018) Decoupled classi-
fiers for group-fair and efficient machine learning. In: Conference
on Fairness, Accountability and Transparency, pp 119–133

10. Friedler SA, Scheidegger C, Venkatasubramanian S (2016) On the
(im)possibility of fairness. arXiv 160907236:16

11. Garg S, Perot V, Limtiaco N et al (2019) Counterfactual fairness in
text classification through robustness. In: Proceedings of the 2019
AAAI/ACM Conference on AI, Ethics, and Society ACM, AIES
’19, pp 219–226

12. Géron A (2019) Hands-on machine learning with Scikit-Learn,
Keras, and TensorFlow: concepts, tools, and techniques to build
intelligent systems. O’Reilly Media, Sebastopol

13. Kamiran F, Calders T (2009) Classifying without discriminating.
In: 2009 2nd International Conference on Computer, Control and
Communication. IEEE, Karachi, pp 1–6

14. Lässig N, Oppold S, Herschel M (2021) Using falces against bias
in automated decisions by integrating fairness in dynamic model
ensembles. In: BTW 2021

15. Pedreschi D, Ruggieri S, Turini F (2008) Discrimination-aware data
mining. In: Proceeding of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining KDD ’08.
ACM Press, Las Vegas, pp 560–568

16. Polikar R (2006) Ensemble based systems in decision making.
IEEE Circuits Syst Mag 6(3):21–45

17. Shen Z, He Z, Xue X (2019) MEAL: Multi-model ensemble via
adversarial learning. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol 33, pp 4886–4893

18. Singh A, Yadav A, Rana A (2013) K-means with three different
distance metrics. IJCA 67(10):13–17

19. Woods K, Kegelmeyer WP, Bowyer K (1997) Combination of mul-
tiple classifiers using local accuracy estimates. IEEE Trans Pattern
Anal Machine Intell 19(4):405–410

20. Zheng H, Zhang Y, Yang L et al (2019) A new ensemble learn-
ing framework for 3d biomedical image segmentation. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol 33, pp
5909–5916

21. Žliobaitė I (2017) Measuring discrimination in algorithmic decision
making. Data Min Knowl Disc 31(4):1060–1089

K

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.bbc.com/news/education-53787203
https://www.bbc.com/news/education-53787203
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-thatshowed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-thatshowed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-thatshowed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-thatshowed-bias-against-women-idUSKCN1MK08G
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	Metrics and Algorithms for Locally Fair and Accurate Classifications using Ensembles
	Abstract
	Introduction
	Related work
	Model ensembles
	Fairness in machine learning
	Fair model ensembles
	Dynamic model ensembles

	Framework for fair and dynamic model ensembles
	Locally unfair decisions
	Framework

	Algorithms implementing the framework
	Model training
	Model pruning
	Metrics
	Pruning procedure

	Local region determination
	Numerical data
	Nominal data
	Ordinal data

	Dynamic ensemble selection
	Locally fair classification

	Runtime-Efficient Framework Adaptation
	Evaluation
	Experimental setup
	Comparative evaluation in terms of accuracy and fairness
	Impact of different accuracy-fairness metrics
	Impact of different λ values for the accuracy-fairness metrics
	Impact of different k-values for the kNN algorithm
	Impact of preprocessed data
	Evaluation of the Runtime-Efficient Framework Adaptation
	Runtime evaluation
	Summary

	Conclusion
	References


