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Abstract: In recent years, high-throughput lipid profiling has contributed to understand the biological,
physiological and pathological roles of lipids in living organisms. Across all kingdoms of life, important
cell and systemic processes are mediated by lipids including compartmentalization, signaling and
energy homeostasis. Despite important advances in liquid chromatography and mass spectrometry,
sample extraction procedures remain a bottleneck in lipidomic studies, since the wide structural
diversity of lipids imposes a constrain in the type and amount of lipids extracted. Differences in
extraction yield across lipid classes can induce a bias on down-stream analysis and outcomes. This
review aims to summarize current lipid extraction techniques used for untargeted and targeted
studies based on mass spectrometry. Considerations, applications, and limitations of these techniques
are discussed when used to extract lipids in complex biological matrices, such as tissues, biofluids,
foods, and microorganisms.
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1. Introduction

The term lipids generally refers to amphiphilic organic molecules, poorly soluble in water
but miscible in organic solvents. Classification and study of lipid species is challenging due
to the large chemical and structural diversity, including different hydrocarbon backbone lengths,
branching, unsaturations, and functional groups. Since 2005, the International Lipid Classification
and Nomenclature Committee (ILCNC) on the initiative of the Lipid Metabolites and Pathways
Strategy (LIPID MAPS) consortium defined lipids as “hydrophobic or amphipathic small molecules that
originate entirely or in part by carbanion-based condensations of thioesters and/or by carbocation-based
condensations of isoprene units” [1–3]. Current lipid classification involves eight categories based on
chemical functionalities as: (1) glycerolipids (GL), (2) sphingolipids (SP), (3) glycerophospholipids
(GP), (4) sterol lipids (ST), (5) fatty acyls (FA), (6) prenol lipids (PR), (7) polyketides (PK), and (8)
saccharolipids (SL), where the last two categories are not synthesized by mammals and represent
a small proportion of the known lipidome [1–3]. Table 1 presents the number of lipid structures per
category according to Lipid Maps® Structure Database (LMSD) and Figure 1 shows representative
structures for each category.
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Table 1. Number of lipids structures per representative lipid category.

Lipid Category Main Subclasses Log P Range a LIPID Maps b

Curated Computationally-Generated All

Fatty Acyls [FA]
Fatty Acids and Conjugates, Eicosanoids,

Docosanoids, Fatty esters, Fatty amides, Fatty nitriles,
Fatty ethers, Fatty acyl glycosides, Acylcarnitines.

−5–15 7644 1792 9436

Glycerolipids [GL]
Monoradylglycerols, Diradylglycerols,

Triradylglycerols, Glycosylmonoradylglycerols,
Glycosyldiradylglycerols.

5–35 232 7379 7611

Glycerophospholipids
[GP]

Glycerophosphocholines,
Glycerophosphoethanolamines,

Glycerophosphoserines, Glycerophosphoglycerols,
Glycerophosphoglycerophosphates,
Glycerophosphoinositols, Oxidized
glycerophospholipids, Cardiolipins.

5–25 1607 8312 9919

Sphingolipids [SP]
Sphingoid bases, Ceramides, Phosphosphingolipids,

Neutral glycosphingolipids, Acidic
glycosphingolipids, Basic glycosphingolipids.

5–25 1410 3176 4586

Sterol lipids [ST] Sterols, Steroids, Secosteroids, Bile acids and
derivatives, Steroid conjugates. 0–20 2829 2829

Prenol lipids [PR] Isoprenoids, Quinones and hydroquinones,
Polyprenols. 0–20 1352 1352

Sacccharolipids [SL] Acylaminosugars, Acylaminosugar glycans,
Acyltrehaloses. 0–30 22 1294 1316

Polyketides [PK]
Linear polyketides, Macrolides and lactone

polyketides, Linear tetracyclines, Polyether antibiotics,
Aflatoxins, Flavonoids, Aromatic polyketides.

0–15 6810 6810

TOTAL 21,906 21,953 43,859
a Octanol/water partition coefficient (log P) calculated using ChemAxon. b Data taken from Lipid Maps® Structure Database (LMSD) in the 05/02/2020 update.
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Once viewed as mere membranes constituents and energy storage reservoirs, nowadays lipids are
also recognized for playing crucial roles in diverse biological activities at cellular and systemic levels
including: cell signaling, transport, protein trafficking, growth, differentiation, and apoptosis [3,4]. To
accomplish these myriad of functions, cells produce lipids with a vast structural complexity, along
with a differentiated compartmentalization, location, organization and interaction [5]. Consequently,
a particular set of lipids—known as lipidome—characterize each cell, tissue, and biological system [4].

Lipidomes are often are complex mixtures of lipids, with diverse chemical structures that
represent the different biological microenvironments where lipids normally play their function in vivo.
Therefore, lipidomes are highly susceptible to changes in response to physiological, pathological,
and environmental conditions and can indicate an organism status in a particular moment [6]. In
fact, abnormalities in the metabolism of lipids have been linked to several human pathologies (e.g.,
Alzheimer’s disease [7], cancer [8], diabetes [9]), stress response in plants [10] and antibiotic resistance
in infectious bacteria [11,12]. For this reason, the study of lipids has represented a valuable tool to
elucidate mechanistic insights into all kingdoms of life.

The main analytical platforms for lipid analyses include mass spectrometry (MS) and nuclear
magnetic resonance (NMR), where MS-based techniques have been widely used due to their high
sensitivity (pM concentrations), availability and speediness in accurate identification, quantification
and monitoring of basal lipid profiles in complex biological mixtures [13]. Sample preparation for
MS-lipidomics usually includes solvent–protein precipitation, lipid extraction, and solvent evaporation.
The initial step of protein precipitation aims to eliminate matrix components that could interfere
with the precision and accuracy of the mass analysis, such as proteins and salts. The subsequent
step of lipid extraction takes advantage of the hydrophobic properties of lipids to separate them in
a non-polar solvent system with or without mechanical assistance (e.g., vortex, microwave, ultrasound).
Finally, solvent evaporation allows lipid enrichment and resuspension in a compatible solvent for MS
equipment, typically hyphenated to chromatographic separation [14].

Considering the analytical challenge of extracting hundreds of lipidic compounds with a wide
range of polarities and concentration levels, there is not a unique method suitable to extract an
entire lipidome. Thus, the choice of a particular lipid-extraction protocol must account for its
inherent limitations and be tailored to a specific biological matrix, analysis approach and experimental
design. The importance of this choice lies in the profound impact on the class of lipids that can be
detectable and measured, which could create a bias on the subsequent analysis and findings. In
general, two main approaches are used to analyze lipidomes: (1) non-targeted analysis, also known as
hypothesis-generating, to simultaneously extract all detectable lipids in a sample regardless of class,
concentration or prior identification, for which non-selective methods are used; (2) targeted analysis, or
hypothesis-driven, to selectively extract a particular set of known lipids, in order to avoid interferences
and enhance extraction efficiency [15].

Furthermore, repeatability and reproducibility during extraction should account for the lack of
analyte-specific internal standards to asses lipid concentrations. In lipidomics, and metabolomics in
general, multiple samples are analyzed under equivalent conditions to allow further comparison of
analyte levels between different groups (e.g., control vs. disease) using univariate and multivariate
statistical analysis. For this reason, biological variations most prevail over analytical and random
variations in order to avoid data misinterpretation. In light of the vast diversity of lipids structures and
its determining role in lipid extraction, this review summarizes current extraction protocols used for
isolation of lipid species present in complex biological matrices, including microorganisms, biofluids,
plant and animal tissues, and foods. Technical details concerning both, untargeted and targeted
approaches, are discussed along with limitations and considerations of lipid extraction protocols
employed in MS-based lipidomics.
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2. Non-Targeted Analysis

Lipid extraction is without a doubt the major limiting step to analyze the complete set of lipids in
biological systems under an untargeted approach. Liquid–liquid extraction (LLE) protocols based on
chloroform/methanol mixtures, such as Folch [16] or Bligh and Dyer (BD) [17], have been widely used
since the late 1950s with few modifications and still represent the benchmark in the field. Alternative
LLE protocols include Methyl tert-butyl ether (MTBE) [18] and Butanol-methanol (BUME) [19] with
comparable outcomes for lipid isolation in plasma samples [20,21]. The success of these protocols
relies on exploiting the characteristic amphipathic properties of lipids to achieve a differential partition
between an aqueous phase and an immiscible organic phase at given temperature, pH and ionic strength.
In LLE protocols, separation in two phases is achieved by the hydrophobic and hydrophilic interactions
within a system. Hydrophobic interactions are mediated by aliphatic and cyclic hydrocarbon backbones,
while hydrophilic ones by polar groups, such as phosphates or carbohydrates. Lipids can also be isolated
into one-phase systems, using either a single or a combination of miscible organic solvents for protein
precipitation (PPT) and lipid solubilization. Methanol [22], isopropanol [23], and acetonitrile [24] have
been proposed as organic systems for untargeted lipidomics.

Solid phase extraction (SPE) is also a feasible option for lipid extraction. It is based on a partition
equilibrium involving the adsorption of lipids to a solid phase, which preconcentrates the hydrophobic
compounds prior to desorption. Removal of interfering compounds and impurities is achieved by
using SPE cartridges, commonly reverse-phase ones. The process comprises of cartridge conditioning,
followed by sample loading, cartridge washing and elution. During these stages, aliphatic backbones in
lipid structures interact with non-polar stationary phases (e.g., C8, C18) and are retained until an elution
solvent is added. Although, SPE protocols are occasionally used for untargeted approaches, they are
more typically used for targeted lipidomics. Other strategies for non-targeted lipid extraction are
tailored to specific matrices (e.g., plants, cell lines), sampling (e.g., microextraction), and include the use
of mechanical assistance like microwaves (MAE), ultrasound (UAE) among others [25]. Reports using
solid phase microextraction (SPME) for comprehensive lipid analysis are also worth mentioning [26,27].
SPME employs sorbent-coated rods/fibers where lipids migrate and diffuse directly from a headspace
or liquid, to the fiber or rod, eliminating the washing step required on SPE. Then, thermal or solvent
desorption is used for lipid elution and analysis by gas chromatography-mass spectrometry (GC-MS)
or liquid chromatography-mass spectrometry (LC-MS) respectively [28].

As shown in Figure 1, chemical structures across lipid classes display a large variety of polarities.
Encompassing more than 10 units of log P in the octanol–water coefficient as a polarity index, the wide
polarity window of lipid species is much wider than any solvent or solvent mixture can cover [15].
In consequence, none of the current protocols is capable to extract all lipid classes simultaneously
with high recovery (>80%), and usually the yields of specific compounds are typically sacrificed at
the expense of a wider coverage [13]. For instance, chloroform/methanol protocols can extract all lipid
classes with recoveries higher than 50%, but present low recoveries for charged and non-polar lipids,
like phosphatidic acids (PA) and lysophospholipids (LPA) in plasma [23,29].
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Figure 1. LIPID MAPS categories and representative structures with calculated octanol/water 
partition coefficient (log P) using ChemAxon. Reported log P of solvents used in lipidomics are 
indicated below [30]. Color code represents relative polarity, non-polar (blue), and polar (red). 
Example of classes corresponds to Glycerolipids, DG(16:0/16:0/0:0)—L02010001; Sphingolipids, 
SP(16:0/16:0)—LMGP01010564; Glicerophospholipids, PC(16:0/16:0)—LMGP01010564; Sterol lipids, 
Cholesterol—LMST01010001; Fatty acyls, C16:0—LMFA01010001; Prenol lipids, 2E,6E-farnesol—
LMPR0103010001; Polyketides, Pinosylvin—LMPK13090001; Saccharolipids, 2,3-di-0-hexanoyl-α-
glucopyranose—LMSL05000001. 

Furthermore, the differential recovery across lipid species can interfere with the analysis to 
different extents. For example, a sub estimation of ST in cerebrospinal fluid is feasible due to its low 
concentration compared to major constituents FA and SP [31]. In contrast, a similar analysis in plasma 
would not have a significant impact on ST, considering the its relatively high concentration in that 
matrix. However, estimation of low-abundant FA could be affected, particularly oxylipins in the pM 
range [32]. For this reason, it is recommended to explore different extraction protocols if previous 
reports on the matrix of interest are not available. Crucial factors to be optimized include solvent 
system and sample-solvent ratio. A good example for method selection and validation can be found 
in the work of Van Meulebroek et al. [33]. 

One might tackle the low recovery limitation proposing sequential extraction steps, by using 
either the same or a complimentary solvent mixture. However, more extraction steps can introduce 
a higher systematic variability and increase the time of the procedure, which play a crucial factor in 
large-scale study settings. Furthermore, extraction protocols tend to be minimal in order to preserve 
sample integrity and content. Non-selective liquid extraction protocols, such as LLE are preferred to 
extract lipids, since these avoid harsh conditions that can lead to degradation products or cross-
products. Nonetheless, there are some concerns about reproducibility of LLE protocols, in particular 
when MTBE is used given its high volatility [34]. Therefore, single-phase [23,34,35] and even triphasic 

Figure 1. LIPID MAPS categories and representative structures with calculated octanol/water
partition coefficient (log P) using ChemAxon. Reported log P of solvents used in lipidomics
are indicated below [30]. Color code represents relative polarity, non-polar (blue), and
polar (red). Example of classes corresponds to Glycerolipids, DG(16:0/16:0/0:0)—L02010001;
Sphingolipids, SP(16:0/16:0)—LMGP01010564; Glicerophospholipids, PC(16:0/16:0)—LMGP01010564;
Sterol lipids, Cholesterol—LMST01010001; Fatty acyls, C16:0—LMFA01010001; Prenol lipids,
2E,6E-farnesol—LMPR0103010001; Polyketides, Pinosylvin—LMPK13090001; Saccharolipids,
2,3-di-0-hexanoyl-α-glucopyranose—LMSL05000001.

Furthermore, the differential recovery across lipid species can interfere with the analysis to
different extents. For example, a sub estimation of ST in cerebrospinal fluid is feasible due to its low
concentration compared to major constituents FA and SP [31]. In contrast, a similar analysis in plasma
would not have a significant impact on ST, considering the its relatively high concentration in that
matrix. However, estimation of low-abundant FA could be affected, particularly oxylipins in the pM
range [32]. For this reason, it is recommended to explore different extraction protocols if previous
reports on the matrix of interest are not available. Crucial factors to be optimized include solvent
system and sample-solvent ratio. A good example for method selection and validation can be found in
the work of Van Meulebroek et al. [33].

One might tackle the low recovery limitation proposing sequential extraction steps, by using either
the same or a complimentary solvent mixture. However, more extraction steps can introduce a higher
systematic variability and increase the time of the procedure, which play a crucial factor in large-scale
study settings. Furthermore, extraction protocols tend to be minimal in order to preserve sample
integrity and content. Non-selective liquid extraction protocols, such as LLE are preferred to extract
lipids, since these avoid harsh conditions that can lead to degradation products or cross-products.
Nonetheless, there are some concerns about reproducibility of LLE protocols, in particular when MTBE
is used given its high volatility [34]. Therefore, single-phase [23,34,35] and even triphasic systems [36]
have been proposed to achieve enhanced reproducibility and lipid coverage. Further validation of
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these methodologies is still required. Table 2 presents a contrast of current lipid extraction protocols
used for untargeted MS-based studies of biological matrices. Different parameters were taking into
account for the comparison, including coverage, recovery, reproducibility and automatization. Note
that lipidomic studies using matrix-assisted laser desorption-ionization (MALDI) as ionization source
were not included in this review (recently reviewed by Leopold et al. [37]), since little or no sample
preparation is needed.
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Table 2. Comparison between extraction methods used in mass spectrometry (MS)-based untargeted lipidomics.

Extraction
Method Principle Protocol

Name System Lipid
Coverage

Lipid
Recovery

Solvent-
Efficiency

Carry-Over
Free

Time-
Efficiency Repeatability Versatility Automatization Biological

Matrix Platform Ref.

PPT Precipitation OPE
iPrOH, ButOH/MeOH

(2:2) CHCl3/MeOH (2:2)
Plasma HPLC-ESI-

QTRAP

[38–
40]

CSF UHPLC-ESI-
QTOF

[41]

LLE Partition

Folch * CHCl3/MeOH (2:1)

Cell
line/tissue

UHPLC-ESI-Q-
Exactive
Orbitrap

[42]

CSF
HPLC-ESI-Q-

Exactive
Orbitrap

[43]

Folch * BD *
CHCl3/MeOH (2:1)

CHCl3 or
CH2Cl2/MeOH (1:2)

Plasma/CSF
Food

HPLC-ESI-Ion
trap

[44]

UHPLC-Q-
Exactive
Orbitrap

[45,
46]

Tears UHPLC-
TripleTOF

[47]

Plants HPLC-ESI-
QTOF

[48]

Urine UHPLC-ESI-
3D-Ion trap

[49]

Feces
HPLC-ESI-Q-

Exactive
Orbitrap

[50]

Cell culture
HPLC-ESI-Q-

Exactive
Orbitrap

[43]

BD * MTBE
*

CHCl3 or
CH2Cl2/MeOH (1:2)
MTBE/MeOH (5:1.5)

Animal tissue DI-ESI-
QTRAP [51]

Urine/saliva ASAP-QTOF [52]

Plant tissue UHPLC-ESI-IT-
TOF

[53,
54]

Feces
HPLC-ESI-Q-

Exactive
Orbitrap

[50]
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Table 2. Cont.

Extraction
Method Principle Protocol

Name System Lipid
Coverage

Lipid
Recovery

Solvent-
Efficiency

Carry-Over
Free

Time-
Efficiency Repeatability Versatility Automatization Biological

Matrix Platform Ref.

Plasma HPLC-ESI-
QTOF [55]

MTBE *
BUME

MTBE/MeOH (5:1.5) 1.
ButOH/MeOH (3:1) 2.
Hep/EtOAc (3:1) 3. 1%

AcOH

Urine HPLC-ESI-
QTOF [56]

Food UHPLC-ESI-
TOF

[57]

Breast Milk HPLC-ESI-
QTOF

[58]

Plant tissue
UHPLC-ESI-Q-

Exactive
Orbitrap

[59]

Cell line HPLC-LTQ-
Orbitrap

[60]

Plant tissue
UHPLC-ESI-Q-

Exactive
Orbitrap

[61]

Cell line
Plasma/SBF

Animal tissue

UHPLC-ESI-
QTOF [62]

HPLC-ESI-
QqQ

[63]

DI-ESI-
QTRAP

[51]

BUME
IPA/Hex *

1. ButOH/MeOH (3:1) 2.
Hep/EtOAc (3:1) 3. 1%
AcOHiPrOH/Hex (3:2)

Cell lines
UHPLC-ESI-Q-

Exactive
Orbitrap

[64]

Cell lines
UHPLC-ESI-Q-

Exactive
Orbitrap

[61]

Cell lines UHPLC-ESI-
QTOF

[62]

IPA/Hex *
SFE

iPrOH/Hex (3:2)
Supercritical CO2

Serum
Parasites

DI-ESI-TOF [65]

HPLC-ESI-QqQ [66]

Plasma SFE-ESI-
QTRAP

[67]

Parasites UHPSFC-ESI-
IT-TOF [68]
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Table 2. Cont.

Extraction
Method Principle Protocol

Name System Lipid
Coverage

Lipid
Recovery

Solvent-
Efficiency

Carry-Over
Free

Time-
Efficiency Repeatability Versatility Automatization Biological

Matrix Platform Ref.

SPE
Coated fibers and

capillary tubes (sorbent
cartridge).

Animal tissue
Plasma

UHPSFC-ESI-
IT-TOF [69]

HPLC-ESI-Q-
Exactive
Orbitrap

[70]

SPE Adsorbance SPE SPME
Coated fibers and

capillary tubes (sorbent
cartridge).

Diameter-reduced
sorbent-coated

rods/fibers

Saliva
HPLC-ESI-Q-

Exactive
Orbitrap

[71]

Breast Milk HPLC-ESI-
QTOF

[72]

Cell lines
HPLC-ESI-Q-

Exactive
Orbitrap

[43]

Urine GC-EI-Q
[26,
27]

* Water is added for phase separation. OPE: One-phase extraction; PPT: Protein precipitation; BD: Bligh and Dyer; SFE: Supercritical fluid extraction; SPE: Solid-phase extraction; SPME:
Solid-phase microextraction; BUME: Butanol-methanol; MTBE: Methyl tert-butyl ether; DI: Direct infusion; ASAP: Atmospheric Solids Analysis Probe; Color reference: Dark blue: Good;
Blue: Fair; Light blue: Poor. References were selected for studies conducted during the 2009–2019 period.
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In recent years, automatized lipid extraction has been proposed to decrease the experimental
variability between samples in large batches. Not all solvent–extraction systems are suitable for this
task, since some of them are prone to contamination with proteins and other matrix components. This
is the case of chloroform/methanol protocols, where in order to get access to the non-polar fraction
at the bottom, the injection needle must break through a protein interphase and a polar fraction at
the top. In contrast, MTBE and BUME methods use a low-density extraction solvent that locates
the hydrophobic fraction at the top of the partition system, there it can be easily sampled by an
automatized needle. Moreover, solvent compatibility with the MS system should be considered. For
instance, chloroform is well-known for being problematic with liquid chromatography (LC)-MS and
it has to be removed by a previous injection. One-phase extraction (OPE) and SPE protocols could
also be automatized for high throughput analysis. A recent review by Liu et al. covers the details and
advances in analytical methods for MS-based large-scale lipidomics [73].

Another consideration is the high sensitivity of MS instruments, which could play a double-edged
sword role in the mass-to-charge analysis of lipid extracts. On the one hand, small sample amounts are
enough to detect femtomolar and quantify picomolar concentrations of lipid species. Usually only
10–100 µL of liquid sample or 1–100 mg of solid sample is required for lipid extraction. Then, 5–20 µL
of extract are subsequently taken for either LC injection (LC-MS based lipidomics) or direct infusion
into an MS (also called shotgun lipidomics). On the other hand, multi-sourced trace impurities coming
from biological matrices (e.g., remaining proteins), solvents, preparation devices (e.g., siloxenes and
phthalates), and even sample containers (e.g., plasticizers) can also be detected if carried over in
the lipid extract.

Overall, the presence of contaminants excerpts an effect on ionization (either enhancement or
suppression) and can lead to deterioration of MS instrumentation. This issue is not as critical in
LC-MS methods as in shotgun lipidomics, since LC allows separation between lipids and contaminants.
Consequently, HPLC (high-performance liquid chromatography) and UPLC (ultra-performance liquid
chromatography) are commonly preferred for non-directed lipidomics at the expense of increased
solvent consumption and analysis time. Recently, SFC (supercritical fluid chromatography) have been
successfully applied as a sample separation step to overcome these drawbacks [74].

Although, a comprehensive discussion of sampling and sample processing falls outside the scope
of this review, general guidelines for handling biological matrices are implemented to preserve lipidome
integrity. These measures include sample storage at −80 ◦C, avoid freeze–thaw cycling, and short
processing times at 4 ◦C to minimize unwanted enzymatic and chemical processes. However, some lipid
species (e.g., oxylipins, polyphenols, lysoGP) require particular measures due to their susceptibility to
oxidation and isomerization. For this reason, antioxidants such as, butylated hydroxytoluene (BHT),
butylated hydroxyanisole (BHA), or triphenylphosphonium (TPP), along with buffers are commonly
included prior sample homogenization and extraction. Additionally, the use of MS grade solvents,
glass vials and glass pipetting tips significantly decrease the incorporation of contaminants.

Another important limitation of any current extraction protocol is the inherent homogenization of
lipids coming from different sub-compartments (e.g., tissue region, cell type, organelles). The disruption
of in vivo interactions and subsequent reorganization of lipids by hydrophobicity not only hinders
the chance to localize and monitor its dynamic changes, but also can impact its stability and
reactivity [13]. Therefore, conclusions from these studies most acknowledge this limitation in
the biological interpretation of their outcomes.

Overall, lipidomic studies can be powerful hypothesis-generating tools. Extraction conditions
should be adjusted and validated for the biological matrix of interest. General guidelines include
testing of repeatability, reproducibility, and recovery using at least one representative compound per
lipid class. The step by step workflow for protocol selection proposed by Furse et al. [75] can serve as
a starting point.
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3. Targeted Analysis

For studies focused on a specific subset of lipids, the particular features in their chemical structures
drive the selection of the extraction protocol. Isolation and concentration of lipids of interest is
achieved by either LLE with narrow polarity windows or SPE cartridges. Compared with untargeted
approaches, targeted analysis allows higher sample amounts due to the selective procedures used for
enrichment of a particular lipid species. For instance, to study low-abundant oxylipins in plasma, up to
250 µL of the sample are extracted, which represents ten times the typical amount used for untargeted
approaches [14].

In general, compounds with a high hydrophobicity index, such as triacylglycerols (TG),
diacylglycerols (DG), cholesteryl esters and fatty esters, are commonly extracted with LLE. Non-polar
solvents (e.g., cyclohexane, toluene) are preferred over moderately polar solvent mixtures (e.g.,
chloroform, MTBE) since only the most hydrophobic lipids dissolve in them [75].

The extraction of intermediate hydrophilic species, such as GP and SP, is usually achieved by
LLE using polar solvents. Chloroform-based protocols are the most common, followed by a rising
popularity of MBTE-based ones. Considering the recovery disparities across lipid species, these
protocols are often modified to achieve higher extraction yields, including changes in solvent system,
solvent proportions (%v/v), and introduction of mechanic forces. When charged groups are present,
another important variable is the pH, since the acid-base character of certain lipids can be used for its
extraction and enrichment. For instance, phosphatidic acids (PA), phosphatidylserines (PS) [76] and
phosphatidylinositols (PI) [77] can be efficiently extracted using mild acidic conditions. However, pH
changes must be optimized to avoid structural re-arrangements in the presence of nucleophiles, given
the high electrophilicity of phosphate groups [78].

Finally, isolation of polar lipids has less standardized protocols given both, the similarities in
physicochemical properties to common non-lipid metabolites and the complex structure of these
compounds (e.g., acylaminosugars, cerebrosides). Typical approaches use water, methanol, or pyrimide
as polar solvents in combination with additives [75]. When SPME is used, derivatization reagents are
incorporated into the SPME fibers to improve specificity and sensitivity. Table 3 provides a revision of
recent lipidomic targeted studies in different biological matrices. A discussion for each lipid category
is also presented.
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Table 3. Reports of targeted extraction of lipids by category.

Lipid
Class Extraction Method System Biological Matrix

(Sample Amount) Platform Ref

Fatty Acyls

Fatty Acids and Conjugates

1. LLE, 2. SPE 1. Modified Bligh and Dyer, CH3Cl - MeOH - H2O (1:1:1) with 2 mM
HCl; 2. 3-aminopropyl silica gel/ACN-AcOH (49:1) Food supplements (3 mL) UHPLC-ESI-QTOF [79]

LLE H2O with 0.5 M HCl - anhydrous Et2O (1:1) + Deriv. with BSTFA Feces (30 mg) GC-Q [80]

LLE Modified Folch, CH3Cl-MeOH-H2O (2:1:0.8) + BHT Grapes-skins-seeds (0.1 g) UHPLC-ESI-QqQ [81]

LLE Modified Folch, CH3Cl - MeOH - 0.73% NaCl (2:1:0.6) + Deriv. with
1% H2SO4 in MeOH Green coffee (0.5 g) GC-Q [82]

LLE Hex - 0.5% NaOH in MEOH and 14% BF3 in MeOH - Sat. NaCl (1.3:2:4) Shark liver oil (25 mg) GC-Q [83]

1. Filter pre-conc. 2. LLE 1. Whatman GF/F filters, 2. CH2Cl2 - MeOH - H2O (1.5:3:1) Oceanic water (5–10 L) DI-ESI- FT-ICR MS [84]

Octadecanoids

1. OPE, 2. SPE 1. MeOH + BHT; 2. < 8% MeOH/Polymeric RP/MeOH + BHT Mice amygdala tissue UHPLC-ESI-QTRAP [85]

Eicosanoids

1. LLE, 2. Hydrolysis, 3.
SPE

1. MTBE-MeOH-0.15 M NH4OAc (2:1:1) + BHT; 2. MeOH-H2O-10M
NaOH (1:1:1.2); 3. Reac.Mix. + AcOH + 0.1 M Na2HPO4 buffer (pH
6)/AEC/tOAc-Hex (75:25) + 1%AcOH

Human cells (1 × 107) HPLC-ESI-QTRAP [86]

LLE Sample + AcOH (pH 3.5) - MTBE (2:1) + Deriv. for GC Breath condensate (2 mL) HPLC-ESI-QTRAP
GC/NICI–MS [87]

SPE MeOH (<17%) + Na2HPO4 buffer (pH 6)/AEC/EtOAc - Hex (75:25)
with 1% AcOH Plasma (500 µL) UHPLC-ESI-QTRAP [86]

SPE H2O + BHT/Polymeric RP/MeOH Plasma (500 µL) UPLC-ESI-QqQ [88]

SPE 15% MeOH + 0.1 M HCl (pH 3.0)/C18/Methyl formate Mouse brain tissue
(25–75 mg) HPLC-ESI-QqQ [89,

90]

SPE 10% MeOH/Polymeric RP/MeOH Human cells-animal
tissues HPLC-ESI-QTRAP [91]
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Table 3. Cont.

Lipid
Class Extraction Method System Biological Matrix

(Sample Amount) Platform Ref

1. OPE, 2. SPE 1. MeOH + BHT; 2. < 8% MeOH/Polymeric RP/MeOH + BHT Mice brain tissue UHPLC-ESI-QTRAP [85]

SPE 0.12 M PP buffer + 5 mM MgCl2 + BHT/Polymeric RP/MeOH Human CSF and rat cortex UPLC-ESI-QqQ [92]

Fatty Esters

OPE MeOH - 0.1% FA (0.8:1) Plasma (20 µL)-urine
(5 µL)-CSF (20 µL) UHPLC-HESI-QTRAP [93]

1. OPE, 2. OPE 1. MeOH - H2O (4:1) + 0.1% FA; 2. MeOH - 0.1% FA (0.8:1) Human brain tissue
(10 mg)

UHPLC-HESI-Q-
Orbitrap [93]

OPE iPrOH Serum (10 µL) HPLC-ESI-QqQ [94]

OPE AbsoluteIDQ p180 Kit Serum (10 µL) HPLC-ESI-QqQ [95]

OPE AbsoluteIDQ p180 Kit Plasma UPLC-ESI-QqQ [96]

OPE ACN + Deriv. with DnsHz Plasma UHPLC-ESI-QqQ [97]

1. LLE, 2. SPE 1. CHCl3 - MeOH - PBS (2:1:1); 2./CHCl3/Silica NP/EtOAc Adipose tissue (150 mg) HPLC-ESI-QqQ [98]

1. LLE, 2. SPE 1. CHCl3 - MeOH - PBS (2:1:0.86); 2./CHCl3/Silica NP/EtOAc Serum or plasma (200 µL) HPLC-ESI-QqQ [98]

1. LLE, 2. SPE 1. Bligh and Dyer, CHCl3-MeOH - H2O (2:1:1); 2. 0.1% NH4OH in
ACN/AEC/1% FA in Acetone + AMPP Plant leaves (100 mg) UHPLC-ESI-QqQ [99]

SPE 0.1% NH4OH in ACN (1:2)/AEC/1% FA in Acetone + Deriv. DMED
and d4-DMED

Mice adipose tissue
(100 mg) UHPLC-ESI-QqQ [100]

1. LLE, 2. SPE 1. Modified Bligh and Dyer, CHCl3 - MeOH (1:1); 2. CHCl3/Silica
NP/EtOAc Plasma (100 µL), liver nanoESI-QqQ [101]

Fatty amides

SPE 10% MeOH/Polymeric RP/MeOH Human cell lines or
animal tissues HPLC-ESI-QTRAP [91]

SPE MeOH - H2O (1:2.3)/C18/MeOH Rat brain HPLC-ESI-QqQ [102]
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Table 3. Cont.

Lipid
Class Extraction Method System Biological Matrix

(Sample Amount) Platform Ref

Glycerolipids

Monoradylglycerols

OPE MeOH + Deriv. with d4-NPB and 3-NPB Cells-Tissue
(60 mg)-Serum (50 µL) UPLC-ESI-QTOF [103]

OPE iPrOH Shark liver oil (10 mg) HPLC-ESI-QqQ [83]

1. Filter pre-conc. 2. LLE 1. Whatman GF/F filters, 2. CH2Cl2 - MeOH - H2O (1.5:3:1) Oceanic water (5–10 L) DI-ESI- FT-ICR MS [84]

LLE CHCl3 - MeOH - 25 M LiCl (1:1:1) Plasma (25 µL) DI-ESI-QTOF [104]

Diradylglycerols

1. OPE, 2. LLE 1. 70% iPrOH, 2. Bligh and Dyer Feces (2 mg) FIA-ESI-Q-Orbitrap [105]

OPE iPrOH Shark liver oil (10 mg) HPLC-ESI-QqQ [83]

LLE Modified Bligh and Dyer, CHCl3 - MeOH - H2O (1:1:0.8) Bacterial cells (OD: 0.3,
0.5, 0.8, 1.3)

HPLC-ESI-LTQ-
Orbitrap [106]

LLE Modified Matyash, MTBE - MeOH - H2O (3:0.9:0.75) Skeletal muscle (50 mg) HPLC-API-QqQ [107]

1. Filter pre-conc. 2. LLE 1. Whatman GF/F filters, 2. CH2Cl2 - MeOH - H2O (1.5:3:1) Oceanic water (5–10 L) DI-ESI- FT-ICR MS [84]

Triradylglycerols

LLE Modified Bligh and Dyer, CH2Cl2 - MeOH - H2O (1.5:3:1) Serum (30 µL) HPLC-HESI-Orbitrap [108]

OPE EtOH - MTBE - DCM (70:15:15) Size-fractionated serum
(20 µL) UPLC-ESI-QTRAP [35]

LLE Modified Bligh and Dyer, CHCl3 - MeOH - H2O (1:1:0.8) Bacterial cells (OD: 0.3,
0.5, 0.8, 1.3)

HPLC-ESI-LTQ-
Orbitrap [106]

OPE Acetone Vegetal Oil (40 mg) HPLC-ESI-Quadrupole [109]

1. Filter pre-conc. 2. LLE 1. Whatman GF/F filters, 2. CH2Cl2 - MeOH - H2O (1.5:3:1) Oceanic water (5–10 L) DI-ESI- FT-ICR MS [84]

1. OPE, 2. LLE 1. 70% iPrOH, 2. Bligh and Dyer Feces (2 mg) FIA-ESI-Q-Orbitrap [105]
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Table 3. Cont.

Lipid
Class Extraction Method System Biological Matrix

(Sample Amount) Platform Ref

Glycosyldiradylglycerols

1. pre-treat, 2. LLE 1. iPrOH (75 ◦C) + BHT; 2. CHCl3 - MeOH (2:1) Vegetal tissue (2–3 plant
rosettes) ESI-QqQ [110]

LLE Bligh and Dyer Algae tissue (30 L culture) UPLC-ESI-QTOF [111]

Glycerophospholipids

Glycerophosphocholines

OPE AbsoluteIDQ p150 Kit Plasma (10 µL) FIA-ESI-QTRAP [112]

OPE ACN Plasma (20 µL) UPLC-ESI-QTRAP [113]

OPE MeOH + BHT Plasma (10 µL) HPLC-ESI-QTRAP [114]

LLE CH2Cl2 - MeOH (2:1) Cytosol (100 µL) UPLC-ESI-QTRAP [115]

LLE Modified Folch, CHCl3 - MeOH - 0.15 M NaCl (2:1:0.8) + BHT Lenses ESI-QqQ [116]

LLE Modified Bligh and Dyer, CHCl3 - MeOH - 0.1N HCl (1:1:1) Human cells (2 × 106) UPLC-ESI-QTOF [117,
118]

µChip-SPE Lysozyme in 20 mM Tris-HCl (pH 7.5)/Silica beads/MeOH Bacterial cells (10µL) nanoESI-QTOF [119]

OPE EtOH - MTBE - DCM (7:1.5:1.5) Size-fractionated serum
(20 µL) UPLC-ESI-QTRAP [35]

LLE Bligh and Dyer Algae tissue (30 L culture) UPLC-ESI-QTOF [111]

Glycerophosphoethanolamines

OPE ACN Plasma (20 µL) UPLC-ESI-QTRAP [113]

OPE MeOH + BHT Plasma (20 µL) HPLC-ESI-QTRAP [114]

LLE CH2Cl2 - MeOH (2:1) Cytosol (100 µL) UPLC-ESI-QTRAP [115]

LLE Modified Folch, CHCl3 - MeOH - 0.15 M NaCl (2:1:0.8) + BHT Lenses DI-ESI-QqQ [116]

LLE Modified Bligh and Dyer, CHCl3 - MeOH - 0.1N HCl (1:1:1) Human cells (2 X 106) UPLC-ESI-QTOF [117,
118]

µChip-SPE Lysozyme in 20 mM Tris-HCl (pH 7.5)/Silica beads/MeOH Bacterial cells (10 µL) nanoESI-QTOF [119]
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Table 3. Cont.

Lipid
Class Extraction Method System Biological Matrix

(Sample Amount) Platform Ref

OPE EtOH - MTBE - DCM (7:1.5:1.5) Size-fractionated serum
(20 µL) UPLC-ESI-QTRAP [35]

LLE Bligh and Dyer Algae tissue (30 L culture) UPLC-ESI-QTOF [111]

Glycerophosphoserines

OPE ACN Plasma (20 µL) UPLC-ESI-QTRAP [113]

LLE CH2Cl2 - MeOH (2:1) Cytosol (100 µL) UPLC-ESI-QTRAP [115]

LLE Bligh and Dyer Human cells (0.4 × 106) ESI-QTRAP [120]

LLE Modified Folch, CHCl3 - MeOH - 0.15 M NaCl (2:1:0.8) + BHT Lenses ESI-QqQ [116]

µChip-SPE Lysozyme in 20 mM Tris-HCl (pH 7.5)/Silica beads/MeOH Bacterial cells (10µL) nanoESI-QTOF [119]

Glycerophosphoglycerols

OPE ACN Plasma (20 µL) UPLC-ESI-QTRAP [113]

LLE Modified Bligh and Dyer, CHCl3 - MeOH - 0.1N HCl (1:1:1) Human cells (0.4 × 106) UPLC-ESI-QTOF [117,
118]

µChip-SPE Lysozyme in 20 mM Tris-HCl (pH 7.5)/Silica beads/MeOH Bacterial cells (10 µL) nanoESI-QTOF [119]

LLE Modified Bligh and Dyer, CHCl3 - MeOH - H2O (1:1:0.8) Bacterial cells (OD: 0.3,
0.5, 0.8, 1.3) UPLC-ESI-QqQ [106]

LLE Bligh and Dyer Algae tissue (30 L culture) UPLC-ESI-QTOF [111]

Glycerophosphoinositols

OPE ACN Plasma (20 µL) UPLC-ESI-QTRAP [113]

LLE CH2Cl2 - MeOH (2:1) Cytosol (100 µL) UPLC-ESI-QTRAP [115]

LLE Modified Bligh and Dyer, CHCl3 - MeOH - 0.1N HCl (1:1:1) Human cells (2 × 106) UPLC-ESI-QTOF [117,
118]

µChip-SPE Lysozyme in 20 mM Tris-HCl (pH 7.5)/Silica beads/MeOH Bacteria Cells (10 µL) nanoESI-QTOF [119]

OPE EtOH - MTBE - DCM (7:1.5:1.5) Size-fractionated serum
(20 µL) UPLC-ESI-QTRAP [35]
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Lipid
Class Extraction Method System Biological Matrix

(Sample Amount) Platform Ref

Glycerophosphates

OPE ACN Plasma (20 µL) UPLC-ESI-QTRAP [113]

µChip-SPE Lysozyme in 20 mM Tris-HCl (pH 7.5)/Silica beads/MeOH Bacterial cells (10µL) nanoESI-QTOF [119]

Glycerophosphoglycerophosphoglycerols

LLE Modified Bligh and Dyer, CHCl3 - MeOH - H2O (1:1:0.8) Bacterial cells (OD: 0.3,
0.5, 0.8, 1.3) HPLC-ESI-QTOF [106]

Oxidized glycerophospholipids

µHP-SPE MeOH/C18 spin column/MeOH - 0.2% FA (82:18) Plasma (20 µL) HPLC-ESI-QTRAP [121]

Sphingolipids

Sphingoid bases

LLE Modified Bligh and Dyer, CHCl3 - MeOH -H2O (1.8:2:0.8) + 0.1% TFA Plasma (50 µL) UHPLC-ESI-QqQ [122]

LLE Bligh and Dyer, CHCl3 - MeOH - H2O (1:2:0.8) B Cells (80 µL cell
suspension) HPLC-ESI-QTRAP [123]

LLE MTBE - MeOH - H2O (3:0.9:0.8) Plasma-Red blood cells
(50 µL) UHPLC-ESI-QqQ [124]

LLE + Transesterification 0.25M MeONa in MeOH - MTBE - H2O (1.3:4:1) + AcOH (pH 7) Serum (40 µL) UHPLC-ESI-QqQ [125]

LLE + Sap. CH2Cl2 - MeOH - KOH 1M in MeOH (1:2:0.3) Cells (106)-Tissue
(1–10 mg)

LC-MS/MS techniques [126]

LLE CH 2Cl2 - MeOH (1:1) with 0.25% DEA Plasma (25 µL) HPLC-ESI-QqQ [127]

LLE ButOH - 40 mM Na2HPO4 + CA (pH4) (1:1) Plasma (75 µL) HPLC-ESI-QTRAP [128]

Ceramides

LLE Modified Bligh and Dyer, CHCl3 - MeOH -H2O (1.8:2:0.8) + 0.1% TFA Plasma (50 µL) UHPLC-ESI-QqQ [122]

LLE Bligh and Dyer, CHCl3 - MeOH - H2O (1:2:0.8) B Cells (80 µL cell
suspension) HPLC-ESI-QTRAP [123]
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(Sample Amount) Platform Ref

LLE + Sap. CHCl3 - MeOH - 1M KOH in MeOH (1:2:0.3) Cells (106)-Tissue
(1–10 mg)

LC-MS/MS techniques [126]

LLE CH2Cl2 - MeOH (1:1) with 0.25% DEA Plasma (25 µL) HPLC-ESI-QqQ [127]

LLE + Transesterification 0.25M MeONa in MeOH - MTBE - H2O (1.3:4:1) + AcOH (pH 7) Serum (40 µL) UHPLC-ESI-QqQ [125]

LLE ButOH - 40 mM Na2HPO4 + CA (pH4) (1:1) Plasma (75 µl) HPLC-ESI-QTRAP [128]

1. OPE, 2. SPE 1.MeOH, 2.Hex-iPrOH (11:1)/aminopropyl silica
cartridges/Hex-CHCl3-MeOH (80:10:10) Skin (Three patches) UHPLC-ESI-QTOF [129]

Phosphosphingolipids

LLE Modified Bligh and Dyer, CHCl3 - MeOH -H2O (1.8:2:0.8) + 0.1% TFA Plasma (50 µL) UHPLC-ESI-QqQ [122]

LLE CHCl3 - MeOH - 1M KOH in MeOH (1:2:0.3) Cells (106)-Tissue
(1–10 mg)

LC-MS/MS techniques [126]

LLE + Transesterification 0.25M MeONa in MeOH - MTBE - H2O (1.3:4:1) + AcOH (pH 7) Serum (40 µL) UHPLC-ESI-QqQ [125]

OPE MeOH Whole blood (15 µL on
DBS) UHPLC-ESI-TOF [130]

OPE AbsoluteIDQ p150 Kit Plasma (10 µL) FIA-ESI-QTRAP [112]

Neutral glycosphingolipids

LLE Bligh and Dyer, CHCl3 - MeOH - H2O (1:2:0.8) B Cells (80 µL cell
suspension) HPLC-ESI-QTRAP [123]

LLE CHCl3 - MeOH - 1M KOH in MeOH (1:2:0.3) Cells (106)-Tissue
(1–10 mg)

LC-MS/MS techniques [126]

LLE ButOH - 40 mM Na2HPO4 + CA (pH 4) (1:1) Plasma (75 µL) HPLC-ESI-QTRAP [128]

LLE MTBE - MeOH - H2O (3:0.9:0.8) Plasma-Red blood cells
(50 µL) UHPLC-ESI-QqQ [124]

Acidic glycosphingolipids

LLE CHCl3 - MeOH - H2O (0.8:1:1) + Deriv. with PAEA and DMTMM to
aq. phase Plasma (20 µL) UHPLC-ESI-QTRAP [131]
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1. LLE, 2. SPE 1. Modified Folch, CHCl3 - MeOH -H2O (2:1:0.6) 2.C18/MeOH to aq.
phase

Plasma (200 µL)-Human
tissues (25 mg) HPLC-ESI-QTOF [132]

LLE CH2Cl2 - MeOH (1:1) with 0.25% DEA Plasma (25 µL) HPLC-ESI-QqQ [127]

Sterol lipids

Sterols

SPE Hex - Et2O (99:1)/NP silica cartridge/Hex - Et2O (99:1) Sunflower oils (200 mg) ESI-QTRAP-QqQ [133]

SPE iPrOH/Polymeric RP/MeOH - 0.02% FA (10:90) Plasma-Serum-CSF
(100 µL) HPLC-ESI-QTRAP [134]

LLE Bligh and Dyer like method + Deriv. with AcCl - CHCl3 (1:5) Ocular Tissue HPLC-ESI-QTrap-
Orbitrap [135]

1. OPE + Esterif. 2. LLE 1. iPrOH 70% + 5M NaOH (1M HCl), 2. iOct - Reaction Mix. (2:1) +
Deriv. with MSTFA Feces (2 g) GC-QqQ [136]

1. OPE + Esterif. 2. LLE 1. iPrOH 70%+5M NaOH (1M HCl), 2. iOct-Reaction Mix.(2:1)+Deriv.
with DMG+DMAP Feces (2 g) UHPL-HESI-Q-Orbitrap [137]

LLE Hex - iPrOH - 0.47M Na2SO4 (2:3:1.5) + BHT Atherosclerotic plaques
(10 mg) HPLC-APCI-QqQ [138]

1. OPE, 2. LLE 1. 50 mM Tris-HCl (pH 7.5), 150 mM NaCl and 2mM EGTA, 2.
Modified Bligh and Dyer, CHCl3 - MeOH - Sample (1:1:0.9) Silkworm tissues HPLC-ESI-QqQ [139]

Steroids

LLE MTBE Serum (100 µl) HPLC-ESI-QTRAP [140]

SLE Acetate buffer (pH 5.2)/Diat. Earth/CH2Cl2 + Deriv. with MSTFA -
NH4I − DTE (500:4:2) Serum (100 µl) GC-QqQ [141]

SPE 5% H3PO4/Polymeric RP/MeOH Plasma (100 µL) HPLC-ESI-TripleTOF [142]

Bile acids and derivatives

OPE Methanol Rat serum (10 µL) UPLC-ESI-QTRAP/
QTOF [143]
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A. OPE or D. LLE A. ACN; D: ACN - 400 g/L NH4SO4 - H2O (1:1:0.35) Serum (100 µL) HPLC-ESI-QqQ [144]

PD-SPE Ostro 96 well plates/cold ACN with 1% of FA Plasma-Serum (100 µL) UHPLC-ESI-QqQ [145]

SPE iPrOH/Polymeric RP/MeOH - 0.02% FA (10:90) Plasma-Serum-CSF
(100 µL) HPLC-ESI-QTRAP [134]

OPE iPrOH Feces (1 g) HPLC-ESI-QqQ [146]

1. OPE, 2. SPE 1. Saline solution - (60 ◦C) Ethanol (1:1); 2. Extract - H2O
(1:10)/Polymeric RP/MeOH Rat brain tissue (1.5–1.8 g) HPLC-ESI-QqQ [147]

Prenol lipids

Isoprenoids

LLE Et2O - PBS (pH = 7.4) - EtOH (1:1:0.2) Feces (0.3–0.5 g) HPLC-DAD [148]

OPE ACN - MeOH - H2O (2:1:1) Natural rubber (1.5 g) HPLC-ESI-QqQ [149]

OPE Methanol - H2O (1:1) Bacterial cells (1.5 mL,
OD: 5) HPLC-ESI-TOF [150]

OPE Methanol - H2O (1:3) Bacterial supernatant
(1.5 mL) HPLC-ESI-TOF [150]

OPE iPrOH - 100 mM NH4HCO3 (pH 7.4) (1:1) Human cells UPLC-ESI-QqQ [151]

SPE 2% FA/Polymeric RP/Hex - iPrOH - NH4OH (12:7:1) Plasma (300 µL) UPLC-ESI-QqQ [151]

Quinones and hydroquinones

LLE Saturated K2CO3 - CH2Cl2 (1:1) Urine (Rats: 2 mL Human:
10 mL) GC-Q [152]

LLE CHCl3 - MeOH (3:7) - cold 10% NaCl + BHT Bacterial cells (10–50 mg) HPLC-APCI-QTRAP [153]

Saccharolipids

Acylaminosugars

1. LLE, 2. LLE 1. 45% Phenol - H2O; 2. CHCl3 - MeOH - H2O (2:1:3) + Deriv. aq
phase. Bacterial cells (2 g/mL) GC-Q [154]
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LLE 50% Phenol - H2O Acetone-dried bacteria UHPLC-ESI-QTOF [155]

SPE Genlantis SoluLyse detergent/AEC/5% NH4OH in MeOH Supernatant cell lysate
(2×900 µL) UPLC-ESI-QTRAP [156]

Polyketides

Linear polyketides

LLE EtOAc Bacterial supernatant
(10 mL) HPLC-ESI-LTQ-Orbitrap [157]

OPE Acetone - MeOH (1:1) Bacterial cells (10 mL
culture)

HPLC-ESI-LTQ-
Orbitrap [157]

OPE MeOH Bacterial supernatant
(10 mL) UPLC-ESI-QTOF [158]

Aromatic polyketides

LLE EtOAc + 1% HCl Enzymatic mixture
(500 µL)

HPLC-ESI-LTQ-
Orbitrap [159]

Flavonoids

OPE 70% MeOH + 3% FA Digested cooked flour
(1 mL) UHPLC-HESI-QTRAP [160]

LLE EtOAc Blood-Tissue (50 µL) UFLC-ESI-QqQ [161,
162]

Polyether antibiotics

1. OPE, 2. OPE, 3. LLE, 4.
SPE

1. MeOH; 2. 80% PrOH; 3. EtOAc - H2O (1:1); 4. aq. phase/C18/80%
PrOH

Microalga cells pellet
(125–150 mL culture) UPLC-nanoESI-QTOF [163]
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Annonaceae acetogenins

1. OPE, 2. LLE 1. Acetone; 2. CH2Cl2 - H2O (1:1) Avocado mesocarp
(2g)-cotyledons (1g) HPLC-ESI-TOF [164]

AcCl: Acetyl chloride, Ace: Acetone, ACN: Acetonitrile, AcOH: Acetic acid, AEC: Anion exchange cartridge, AMPP: N-[4-(aminomethyl)phenyl]pyridinium, APCI:
Atmospheric pressure chemical ionization, API: Atmospheric pressure ionization, aq.: aqueous, BHT: Butylated hydroxytoluene, BHT: Butylhydroxytoluene, BSTFA:
N,O-Bis(trimethylsilyl)trifluoroacetamide, ButOH: n-Butanol, CA: Citric acid, Conc.: Concentration, CSF: cerebrospinal fluid, DAD: Diode Array Detection, DEA: Diethylamine,
Deriv.: Derivatization, Diat.: Diatomaceous, DI: direct-infusion, DMAP: N,N-dimethylpyridin-4-amine, DMED: N,N-dimethylethylenediamine, DMG: N,N-dimethylglycine, DMTMM:
4-(4, 6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride, DnsHz: Dansylhydrazine, DTE: Dithioerythritol, EDTA: Ethylenediaminetetraacetic acid, EGTA: ethylene
glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid, eq.: Equivalent, Et2O: Diethyl ether, ESI: Electrospray ionization, EtOAc: Ethyl acetate, FA: Formic acid, FIA: Flow Injection
Analysis, FT-ICR MS: Fourier transform ion cyclotron resonance mass spectrometry, HESI: Heated electrospray ionization mode, Hex: n-Hexane, iOct: 2,2,4-trimethylpentane (isooctane),
iPrOH: 2-propanol, LLE: Liquid–liquid Extraction, LTQ: Linear Trap Quadrupole, MeONa: Sodium methoxide, MF: Methyl formate, MSTFA: N-Methyl-N-trimethylsilyl-trifluoracetamide,
MTBE: Methyl tert-butyl ether, nanoESI: nano electrospray ionization, NH4OAc: Ammonium acetate, NP: Normal phase, NPB: 3-nitrophenylboronic acid, OPE: One Phase Extraction,
PAEA: 2-(2-Pyridilamino)-ethylamine, PBS: Phosphate Buffered Saline, PC: Protein content, PD-SPE: Phospholipid depletion solid phase extraction, PGWAT: Perigonadal white adipose
tissue, PP: Potassium Phosphate, PrOH: 1-propanol, Q: Quadrupole, RP: Reverse Phase, SLE: Supported Liquid Extraction, SPE: Solid Phase Extraction, TFA: Trifluoroacetic acid, TOF:
Time of flight, Tris-HCl: Tris(hydroxymethyl)aminomethane hydrochloride, UFLC: Ultra Fast Liquid Chromatography, µChip-SPE: Microchip-based SPE, µHP-SPE: micro-preparative
high-performance solid-phase extraction. References were selected for studies conducted during the 2011–2020 period.
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3.1. Glycerolipids (GL)

GL are neutral lipids composed of one glycerol backbone attached to at least one FA via ether or
ester linkage. Structural classification is mainly based on the number of FA bound. Mono-, di-, and
triradylglycerols are typically extracted with apolar organic solvents, including octane, cyclohexane,
and MTBE. An alternative approach includes supercritical CO2 for high-throughput separation of
GL [165]. Pure chloroform and mixtures with methanol have also been reported [84,104,106,108].
Selective isolation of these hydrophobic species is achieved with low degradation, under mild conditions
used in the extraction and minor reactivity of GL. Glycosylglycerols are another important subgroup
in this class, which are characterized by sugar residues linked to the backbone. BD and Folch methods
have been reported for the analysis of glycosylglycerols, such as digalactosyldiacylglycerols [110] and
seminolipids [166].

3.2. Sphingolipids (SP)

The common backbone in SP consists of an amino alcohol, known as sphingoid base. Structural
diversity arises from different chemical moieties linked to the amino and hydroxy groups. Important
members of this family include ceramides, phosphospingolipids, cerebosides, and gangliosides.
An up-to-date review by Montefusco et al. summarizes several experimental considerations for
quantitative and qualitative analysis of sphingolipids [167]. In general, reports are consistent in
comparable SP recoveries using chloroform-methanol-based and MTBE methods, with electrospray
(ESI) as ionization source in positive and negative modes [21,23,62]. Mild alkaline and acidic extraction
has also been combined with classic LLE protocols. Addition of MeONa [125] and KOH [126]
has shown improved recovery and reproducibility in SP extraction, particularly ceramides and
phosphosphingolipids. A standardized protocol for SP profiling is proposed by Sullards et al. [126].
For gangliosides, a quantitative approach involves derivatization using 4-(4, 6-Dimethoxy-1, 3,
5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) and 2-(2-Pyridilamino)-ethylamine (PAEA)
after protein precipitation [131]. The addition of a pyridylamine group increases the ionization
efficiency resulting in a 15-fold signal intensity when compared to previously reported methods.

3.3. Glycerophospholipids (GP)

GP basic structure contains a glycerol base linked to one or two FA at the sn-1 and sn-2 positions.
A phosphate group is also attached to the sn-3 position. Different bonding (acyl-, alkyl-, or alkenyl),
length and unsaturation of the FAs create a wide range of combinations. However, GP are commonly
subclassified based on the head group attached to the phosphate. Neutral phosphatidylcholine (PC)
and phosphatidylethanolamine (PE) species, and charged ones including phosphatidic acid (PA),
phosphatidylglycerol (PG), phosphatidylinositol (PI), phosphatidylserine (PS) and cardiolipins (CL)
have precise locations and functions within cell membranes [168]. Most of neutral GP are successfully
extracted with traditional procedures using chloroform or MTBE with comparable yields, except
for LPCs [21,169]. For polar GPs like PI and LPA acidic conditions (pH 4–6) during extraction are
recommended [170]. Tris or citric acid buffers are preferred for this purpose to avoid hydrolysis
and interconversion of GP [119]. OPE protocols have also shown improved recoveries in polar
GP, particularly PG and PS [23]. As alternative, specific SPE cartridges are commercially available
for deproteinization and phospholipid preconcentration, such as HybridSPE-Phospholipid Ultra
cartridge® [171] and iSPE®, with reported capability to isolate low-abundant GP [169,172,173].

3.4. Sterol Lipids (ST)

The structural skeleton of ST is based on a four fused ring. Differences in conjugation and
position/type of polar functional groups generate a broad spectrum of polarities in this family. Lipid
analysis in mammalian systems have focused on steroids, cholesterol and bile acids, while plants systems
focus on phytosterols and phytostanols. Thin layer chromatography–flame ionization (TLC-FID) and



Metabolites 2020, 10, 231 24 of 36

GC-MS techniques were initially used to determine ST with the requirement of derivatization (e.g.,
trimethylsilation and methylation). Nonetheless, an increasing number of publications have been
implemented LC-MS strategies, since ST analysis can be performed in native state. Commonly, PPT
or LLE methods are used for lipid extraction prior SPE in order to avoid interferences and signal
suppression. Appropriate SPE elution solvents can resolve cholesterol from derivates like oxysterols
and steroids given the differences in number of hydroxyl groups attached to the core ring. Moreover,
antioxidants and metal chelators are commonly added to prevent ST oxidation during the extraction
procedure [174]. For ST in plants, n-hexane and supercritical CO2 have shown the best yields when
combined with mechanical forces [175]. If esterified ST are targeted, a saponification stage under mild
conditions can be included to remove fatty acyl groups without generation of artifacts [176].

3.5. Fatty Acyls (FA)

The structure of FA contains repeated series of methylene groups, derived from successive
additions of malonyl-CoA or methylmalonyl-CoA to an acetyl-CoA primer. Differences in carbon
chain lengths, degree of oxidation, unsaturation, and cyclations are the main sources of structural
diversity. Major subclasses include fatty acids, fatty esters, and eicosanoids. Fatty acids have been
traditionally derivatized for characterization by GC–MS. However, LC-MS and SFC-MS approaches
provide quantitative signals for most fatty acids in biological samples. This allows the use of faster and
milder conditions during lipid extraction, like BD and MTBE protocols. For extraction of eicosanoids,
further measurements must be taken to avoid lipid degradation and artifact generation. Cold conditions
(4 ◦C) and addition of antioxidants (e.g., BHT, BHA) are commonly introduced to preserve FA integrity
within a sample. In a recent review on oxylipin extraction, Liakh et al. contrast PPT, LLE, and SPE
methods. A combination of LLE previous SPE seems to be the best approach for preconcentration of
oxylipins and other related species [177].

3.6. Prenol Lipids (PR)

PR carbon backbones comprise one or more isoprene units condensed. The number of terpene
units and oxidation state of the structure form the basis of their classification. Isoprenoids, quinones
and polyprenols are representative members of this class. Besides the well-known derivatization
for GC-MS analysis of PR [178], recent OPE and LLE have been introduced for LC-MS methods.
One-phase solvent systems containing diethyl ether, methanol, propanol and water are generally
employed for the extraction, due to the relative polar character of PR in comparison to other bulk lipid
classes. For higher yields of apolar PR like carotenoinds and tocopherols, either hexane or chloroform
is added [148,179]. Supercritical fluids have also shown potential to efficiently extract and separate
these compounds as reported in food and human serum studies [180]. Given their physicochemical
similarities, ST are commonly co-extracted with PR, even after saponification. However, conventional
ST precipitation with petroleum ether [181] or SPE enrichment [151] could be used to achieve separation
of PRs. Additionally, extraction conditions such as neutral or slightly basic pH, presence of antioxidants
and absence of light improve extraction yield and minimize PR degradation.

3.7. Polyketides (PK)

PK are a structural diverse lipid class derived from sequential condensations of ketoacyl groups.
PK are characterized by backbones with at least two carbonyls linked by a carbon atom, and also
subject to functional modifications including hydroxylation, glycosylation, methylation among others.
Further subclassification include macrolides, aromatic polyketides, and flavonoids. The abundance
of polar groups and double bounds in PK structures allow the use of polar solvents to narrow down
the type of lipids to be extracted. Targeted studies report either ethyl acetate or methanol as OPE
solvents. Considering that plants, fungi, and bacteria are the main biological sources of PK, mechanical
forces are commonly applied during the extraction. Pressurized systems with [182] or without [183]
supercritical fluids increase significantly the PK recovery. SPE methods have also been adopted for
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PK fractionation and preconcentration using reverse phase cartridges (e.g., Strata™-X(Torrance, CA
90501-1430, USA), Sep-Pak Plus C18), particularly for prymnesins [163] and flavonoids [184]. Other
important parameters must be optimized for the extraction, including sample amount, sample-solvent
ratio and temperature. Finally, extraction of PK prone to oxidation (e.g., polyphenols) can incorporate
β-mercaptoethanol or K2S2O5 to decrease unwanted redox processes.

3.8. Saccharolipids (SL)

SL are distinguished by a sugar backbone linked to FAs via glycosidic bonds. Representative
members of this class include lipopolysaccharides (LPS) synthesized by gram-negative bacteria.
Several methods have been developed for LPS extraction based on the analytical technique for
detection and quantification. For MS studies, phenol-based methods are the standard for SL extraction,
including hot phenol extraction (HPE), aqueous phenol-chloroform and aqueous phenol-diethyl ether
extraction [185]. Recently, alternative at-room-temperature protocols have been tested to improve
efficiency, yield, and lipid integrity. SPE [156] and methanol-chloroform [155] methods are reported in
cell membrane characterizations.

SL are distinguished by a sugar backbone linked to FAs via glycosidic bonds. Representative
members of this class include lipopolysaccharides (LPS) synthesized by gram-negative bacteria.
Several methods have been developed for LPS extraction based on the analytical technique for
detection and quantification. For MS studies, phenol-based methods are the standard for SL extraction,
including hot phenol extraction (HPE), aqueous phenol-chloroform and aqueous phenol-diethyl ether
extraction [185]. Recently, alternative at-room-temperature protocols have been tested to improve
efficiency, yield, and lipid integrity. SPE [156] and methanol-chloroform [155] methods are reported in
cell membrane characterizations.

4. Conclusions and Future Perspectives

The high-throughput analysis of lipids using mass spectrometry provides a snapshot into complex
lipidomes in living organisms. However, lipid identification and quantification are limited by
the selected extraction protocol. Structural features not only drive the intermolecular interactions
within an extraction system, but also dictates their stability and reactivity. Furthermore, type and
amount of biological matrix should be well considered for protocol selection and validation. Despite
the efforts of several researchers, the lack of standardized procedures for sample preparation in
lipidomics is still a major concern in the field. Therefore, comparative studies contrasting two or more
different isolations techniques, along with inclusion of extraction protocols in lipid databases, provide
valuable insights and criterion.

Preservation of lipidome integrity must be prioritized through extraction procedures, otherwise
lipid extracts would not faithfully retain biological variations and comparisons across samples will be
inaccurate. Automatized lipid isolation represents a feasible solution by taking advantage of simple
and versatile protocols. Although not all samples are suitable subjects of automatization, advances
in SPME-LC online interfaces and combined extraction of amphiphilic and lipophilic compounds in
glass-coated microplates are promising.

For untargeted approaches, the main limitations are the narrow coverage and differential yield
of extracted lipid species. Meanwhile, repeatability and reproducibility through several extraction
steps are constraints faced by targeted approaches. Future lipidomic studies will account for lipid
sub-cellular localization, interaction with physiological partners and monitor concentrations changes
over time using fast, reproducible, and versatile extraction protocols to assure an accurate depiction of
the dynamic changes taking place in biological systems.

Author Contributions: Conceptualization, J.A. and M.P.C.; literature review, J.A., A.R.-O. and M.P.C.;
writing—review and editing J.A and M.P.C. All authors accepted the final version of the review. All authors have
read and agreed to the published version of the manuscript.



Metabolites 2020, 10, 231 26 of 36

Funding: The APC was funded by Metabolomics Core Facility-MetCore at the Univerisidad de Los Andes a facility
that is supported by the vicepresidency for research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fahy, E.; Subramaniam, S.; Brown, H.A.; Glass, C.K.; Merrill, A.H.; Murphy, R.C.; Raetz, C.R.H.; Russell, D.W.;
Seyama, Y.; Shaw, W.; et al. A Comprehensive Classification System for Lipids. J. Lipid Res. 2005, 46, 839–862.
[CrossRef] [PubMed]

2. Fahy, E.; Subramaniam, S.; Murphy, R.C.; Nishijima, M.; Raetz, C.R.H.; Shimizu, T.; Spener, F.; Meer, G.; van
Wakelam, M.J.O.; Dennis, E.A. Update of the LIPID MAPS Comprehensive Classification System for Lipids.
J. Lipid Res. 2009, 50, S9–S14. [CrossRef] [PubMed]

3. Fahy, E.; Cotter, D.; Sud, M.; Subramaniam, S. Lipid Classification, Structures and Tools. Biochim. Biophys.
Acta - Mol. Cell Biol. Lipids 2011, 1811, 637–647. [CrossRef] [PubMed]

4. Han, X.; Gross, R.W. Shotgun Lipidomics: Electrospray Ionization Mass Spectrometric Analysis and
Quantitation of Cellular Lipidomes Directly from Crude Extracts of Biological Samples. Mass Spectrom. Rev.
2005, 24, 367–412. [CrossRef]

5. Van Meer, G.; de Kroon, A.I.P.M. Lipid Map of the Mammalian Cell. J. Cell Sci. 2011, 124, 5–8. [CrossRef]
6. Watson, A.D. Lipidomics: A Global Approach to Lipid Analysis in Biological Systems. J. Lipid Res. 2006, 47,

2101–2111. [CrossRef]
7. Wong, M.W.; Braidy, N.; Poljak, A.; Pickford, R.; Thambisetty, M.; Sachdev, P.S. Dysregulation of Lipids in

Alzheimer’s Disease and Their Role as Potential Biomarkers. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2017,
13, 810–827. [CrossRef]

8. Perrotti, F.; Rosa, C.; Cicalini, I.; Sacchetta, P.; Del Boccio, P.; Genovesi, D.; Pieragostino, D. Advances in
Lipidomics for Cancer Biomarkers Discovery. Int. J. Mol. Sci. 2016, 17, 1992. [CrossRef]

9. Mika, A.; Sledzinski , T.; Stepnowski, P. Current Progress of Lipid Analysis in Metabolic Diseases by Mass
Spectrometry Methods. Curr. Med. Chem. 2019, 60–103. [CrossRef]

10. Tenenboim, H.; Burgos, A.; Willmitzer, L.; Brotman, Y. Using Lipidomics for Expanding the Knowledge on
Lipid Metabolism in Plants. Biochimie 2016, 130, 91–96. [CrossRef]

11. Appala, K.; Bimpeh, K.; Freeman, C.; Hines, K.M. Recent Applications of Mass Spectrometry in Bacterial
Lipidomics. Anal. Bioanal. Chem. 2020. [CrossRef] [PubMed]
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165. Lísa, M.; Holčapek, M. High-Throughput and Comprehensive Lipidomic Analysis Using
Ultrahigh-Performance Supercritical Fluid Chromatography–Mass Spectrometry. Anal. Chem. 2015,
87, 7187–7195. [CrossRef]

166. Wood, P.L.; Scoggin, K.; Ball, B.A.; Troedsson, M.H.; Squires, E.L. Lipidomics of Equine Sperm and Seminal
Plasma: Identification of Amphiphilic (O-Acyl)-ω-Hydroxy-Fatty Acids. Theriogenology 2016, 86, 1212–1221.
[CrossRef]

167. Montefusco, D.J.; Allegood, J.C.; Spiegel, S.; Cowart, L.A. Non-Alcoholic Fatty Liver Disease: Insights from
Sphingolipidomics. Biochem. Biophys. Res. Commun. 2018, 504, 608–616. [CrossRef]

http://dx.doi.org/10.1016/j.chroma.2018.05.006
http://dx.doi.org/10.1007/978-1-4939-8757-3_11
http://dx.doi.org/10.3390/molecules23123275
http://dx.doi.org/10.1016/j.jchromb.2011.09.051
http://dx.doi.org/10.1016/j.mimet.2011.10.001
http://dx.doi.org/10.1194/jlr.M001362
http://dx.doi.org/10.1002/jms.3839
http://dx.doi.org/10.1371/journal.pone.0211803
http://dx.doi.org/10.3389/fmicb.2018.01959
http://www.ncbi.nlm.nih.gov/pubmed/30186270
http://dx.doi.org/10.1007/s00253-017-8729-z
http://www.ncbi.nlm.nih.gov/pubmed/29349495
http://dx.doi.org/10.1016/j.biochi.2015.05.019
http://www.ncbi.nlm.nih.gov/pubmed/26048582
http://dx.doi.org/10.1016/j.foodchem.2019.125068
http://www.ncbi.nlm.nih.gov/pubmed/31260977
http://dx.doi.org/10.2174/1573412914666180910102909
http://dx.doi.org/10.1016/j.jpba.2014.04.037
http://dx.doi.org/10.1016/j.ab.2013.07.034
http://dx.doi.org/10.1186/s12870-017-1103-6
http://dx.doi.org/10.1021/acs.analchem.5b01054
http://dx.doi.org/10.1016/j.theriogenology.2016.04.012
http://dx.doi.org/10.1016/j.bbrc.2018.05.078


Metabolites 2020, 10, 231 35 of 36

168. Yang, Y.; Lee, M.; Fairn, G.D. Phospholipid Subcellular Localization and Dynamics. J. Biol. Chem. 2018, 293,
6230–6240. [CrossRef]

169. López-Bascón, M.A.; Calderón-Santiago, M.; Sánchez-Ceinos, J.; Fernández-Vega, A.; Guzmán-Ruiz, R.;
López-Miranda, J.; Malagon, M.M.; Priego-Capote, F. Influence of Sample Preparation on Lipidomics Analysis
of Polar Lipids in Adipose Tissue. Talanta 2018, 177, 86–93. [CrossRef]

170. Bollinger, J.G.; Ii, H.; Sadilek, M.; Gelb, M.H. Improved Method for the Quantification of Lysophospholipids
Including Enol Ether Species by Liquid Chromatography-Tandem Mass Spectrometry. J. Lipid Res. 2010, 51,
440–447. [CrossRef]

171. Ahmad, S.; Kalra, H.; Gupta, A.; Raut, B.; Hussain, A.; Rahman, M.A. HybridSPE: A Novel Technique to
Reduce Phospholipid-Based Matrix Effect in LC-ESI-MS Bioanalysis. J. Pharm. Bioallied Sci. 2012, 4, 267–275.
[CrossRef]

172. Criado-Navarro, I.; Mena-Bravo, A.; Calderón-Santiago, M.; Priego-Capote, F. Determination of
Glycerophospholipids in Vegetable Edible Oils: Proof of Concept to Discriminate Olive Oil Categories. Food
Chem. 2019, 299, 125136. [CrossRef]

173. Helmer, P.O.; Korf, A.; Hayen, H. Analysis of Artificially Oxidized Cardiolipins and Monolyso-Cardiolipins
via Liquid Chromatography/High-Resolution Mass Spectrometry and Kendrick Mass Defect Plots after
Hydrophilic Interaction Liquid Chromatography Based Sample Preparation. Rapid Commun. Mass Spectrom.
2020, 34, e8566. [CrossRef]

174. John, C.; Werner, P.; Worthmann, A.; Wegner, K.; Tödter, K.; Scheja, L.; Rohn, S.; Heeren, J.; Fischer, M.
A Liquid Chromatography-Tandem Mass Spectrometry-Based Method for the Simultaneous Determination
of Hydroxy Sterols and Bile Acids. J. Chromatogr. A 2014, 1371, 184–195. [CrossRef]

175. Ms, U.; Ferdosh, S.; Haque Akanda, M.J.; Ghafoor, K.; Rukshana, A.H.; Ali, M.E.; Kamaruzzaman, B.Y.;
Fauzi, M.B.; Sharifudin Shaarani, H.S.; Islam Sarker, M.Z. Techniques for the Extraction of Phytosterols and
Their Benefits in Human Health: A Review. Sep. Sci. Technol. 2018, 53, 2206–2223. [CrossRef]

176. McDonald, J.G.; Thompson, B.M.; McCrum, E.C.; Russell, D.W. Extraction and Analysis of Sterols in Biological
Matrices by High Performance Liquid Chromatography Electrospray Ionization Mass Spectrometry. Methods
Enzymol. 2007, 432, 145–170. [CrossRef]

177. Liakh, I.; Pakiet, A.; Sledzinski, T.; Mika, A. Modern Methods of Sample Preparation for the Analysis of
Oxylipins in Biological Samples. Molecules 2019, 24, 1639. [CrossRef] [PubMed]

178. Kodama, H. GC-MS Methods for Tobacco Constituents BT—Gas Chromatography/Mass Spectrometry; Linskens, H.F.,
Jackson, J.F., Eds.; Springer: Berlin/Heidelberg, Germany, 1986; pp. 277–298. [CrossRef]

179. Meléndez-Martínez, A.J.; Stinco, C.M.; Brahm, P.M.; Vicario, I.M. Analysis of Carotenoids and Tocopherols in
Plant Matrices and Assessment of Their In Vitro Antioxidant Capacity BT—Plant Isoprenoids: Methods and Protocols;
Rodríguez-Concepción, M., Ed.; Springer: New York, NY, USA, 2014; pp. 77–97. [CrossRef]

180. Yamada, T.; Bamba, T. Lipid Profiling by Supercritical Fluid Chromatography/Mass Spectrometry BT—Lipidomics;
Wood, P., Ed.; Springer: New York, NY, USA, 2017; pp. 109–131. [CrossRef]

181. Britton, G.; Young, A.J. Methods for the Isolation and Analysis of Carotenoids BT—Carotenoids in Photosynthesis;
Young, A.J., Britton, G., Eds.; Springer: Dordrecht, The Netherlands, 1993; pp. 409–457. [CrossRef]

182. Hadj-Mahammed, M.; Badjah-Hadj-Ahmed, Y.; Meklati, B.Y. Behaviour of Polymethoxylated and
Polyhydroxylated Flavones by Carbon Dioxide Supercritical Fluid Chromatography with Flame Ionization
and Fourier Transform Infrared Detectors. Phytochem. Anal. 1993, 4, 275–278. [CrossRef]

183. Lebeau, J.; Venkatachalam, M.; Fouillaud, M.; Petit, T.; Vinale, F.; Dufossé, L.; Caro, Y. Production and New
Extraction Method of Polyketide Red Pigments Produced by Ascomycetous Fungi from Terrestrial and
Marine Habitats. J. Fungi (Basel Switz.) 2017, 3, 34. [CrossRef]

http://dx.doi.org/10.1074/jbc.R117.000582
http://dx.doi.org/10.1016/j.talanta.2017.09.017
http://dx.doi.org/10.1194/jlr.D000885
http://dx.doi.org/10.4103/0975-7406.103234
http://dx.doi.org/10.1016/j.foodchem.2019.125136
http://dx.doi.org/10.1002/rcm.8566
http://dx.doi.org/10.1016/j.chroma.2014.10.064
http://dx.doi.org/10.1080/01496395.2018.1454472
http://dx.doi.org/10.1016/s0076-6879(07)32006-5
http://dx.doi.org/10.3390/molecules24081639
http://www.ncbi.nlm.nih.gov/pubmed/31027298
http://dx.doi.org/10.1007/978-3-642-82612-2_12
http://dx.doi.org/10.1007/978-1-4939-0606-2_6
http://dx.doi.org/10.1007/978-1-4939-6946-3_8
http://dx.doi.org/10.1007/978-94-011-2124-8_10
http://dx.doi.org/10.1002/pca.2800040606
http://dx.doi.org/10.3390/jof3030034


Metabolites 2020, 10, 231 36 of 36

184. Nieman, D.C.; Kay, C.D.; Rathore, A.S.; Grace, M.H.; Strauch, R.C.; Stephan, E.H.; Sakaguchi, C.A.; Lila, M.A.
Increased Plasma Levels of Gut-Derived Phenolics Linked to Walking and Running Following Two Weeks of
Flavonoid Supplementation. Nutrients 2018, 10, 1718. [CrossRef]

185. Nguyen, M.P.; Tran, L.V.H.; Namgoong, H.; Kim, Y.-H. Applications of Different Solvents and Conditions
for Differential Extraction of Lipopolysaccharide in Gram-Negative Bacteria. J. Microbiol. 2019, 57, 644–654.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/nu10111718
http://dx.doi.org/10.1007/s12275-019-9116-5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Non-Targeted Analysis 
	Targeted Analysis 
	Glycerolipids (GL) 
	Sphingolipids (SP) 
	Glycerophospholipids (GP) 
	Sterol Lipids (ST) 
	Fatty Acyls (FA) 
	Prenol Lipids (PR) 
	Polyketides (PK) 
	Saccharolipids (SL) 

	Conclusions and Future Perspectives 
	References

