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ABSTRACT

More than a year has passed since the first reported case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection in the
city of Wuhan in China’s Hubei Province. Until now, few antiviral medications (e.g., remdesivir) or drugs that target inflammatory complications
associated with SARS-CoV2 infection have been considered safe by public health authorities. By the end of November 2020, this crisis had led to
>1 million deaths and revealed the high susceptibility of people with pre-existing comorbidities (e.g., obesity, diabetes, coronary heart disease,
hypertension) to suffer from a severe form of the disease. Elderly people have also been found to be highly susceptible to SARS-CoV2 infection
and morbidity. Gastrointestinal manifestations and gut microbial alterations observed in SARS-CoV2–infected hospitalized patients have raised
awareness of the potential role of intestinal mechanisms in increasing the severity of the disease. It is therefore critically important to find alternative
or complementary approaches, not only to prevent or treat the disease, but also to reduce its growing societal and economic burden. In this review,
we explore potential nutritional strategies that implicate the use of polyphenols, probiotics, vitamin D, and ω-3 fatty acids with a focus on the gut
microbiome, and that could lead to concrete recommendations that are easily applicable to both vulnerable people with pre-existing metabolic
comorbidities and the elderly, but also to the general population. Adv Nutr 2021;12:1074–1086.
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Introduction
Since December 2019, the world’s population has been
severely affected by the rapid spread of coronavirus disease-
19 (COVID-19), an initially unknown viral infection that was
detected in patients from the city of Wuhan in China’s Hubei
Province (1). The disease has further been shown to originate
from the severe acute respiratory syndrome coronavirus 2
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(SARS-CoV2) (2), for which the genomic sequence has some
similarities with the previously known SARS-CoV (∼79%
sequence identity) and to a lesser extent, with the Middle
East respiratory syndrome coronavirus (MERS-CoV) (∼50%
sequence identity) (3). Sepsis, acute respiratory distress,
pulmonary thrombosis, and acute kidney and cardiac in-
juries are some of the complications frequently reported in
infected patients, highlighting the scope of disease severity
(2). An overproduction of proinflammatory mediators such
as IL-6, IL-1β , TNF-α, and monocyte chemoattractant
protein 1—a response described as a “cytokine storm”—is
in part responsible for the above-mentioned complications
(4). The elderly population have been largely affected by
this virus leading to high mortality rates (5). In the United
States, where the disease has rapidly spread, 8 out of 10
deaths related to SARS-CoV2 infection are in adults aged
>65 y (6). Another subgroup of the population, those
with pre-existing metabolic comorbidities, have been shown
to be highly susceptible to suffer from respiratory and
cardiac complications associated with SARS-CoV2 infection,
resulting in the need for hospitalization and intensive care,
and in some cases leading to death (7, 8). In a retrospec-
tive cohort study including 191 hospitalized patients with
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FIGURE 1 Potential risk factors influencing the susceptibility to SARS-CoV2 infection and disease severity in vulnerable populations. Risk
factors in individuals with obesity (pink); risk factors in elderly people (blue). Figure created with BioRender.com. ACE2,
angiotensin-converting enzyme 2; SARS-CoV2, severe acute respiratory syndrome coronavirus 2; T2D, type 2 diabetes.

COVID-19, 48% had pre-existing comorbidities, the most
prevalent being hypertension, diabetes, and coronary heart
diseases (2).

Even though the current pandemic creates a lot of
uncertainty, one consensus remains among epidemiologists:
“COVID-19 is here to stay” (9). Therefore, it is of utmost
importance to explore complementary or alternative strate-
gies to reduce the burden on the healthcare system in these
pandemic times and in the long term. Two decades ago, it
was shown that the nutritional status of the host not only
affects the capacity of the immune system to dampen the
viral load but also can influence the virulence of a virus
(10, 11). Interestingly, selenium-deficient mice infected with
influenza virus A (H3N2) exhibited severe lung pathology
compared with nondeficient mice despite equal lung virus
titers between groups (11). This effect has further been
attributed to the mutation of the virus due to mice selenium
deficiency (10). Thus, the use of nutritional approaches
targeting the numerous side effects associated with the
COVID-19 pandemic in the most vulnerable populations
could be promising. However, the study of the direct relation
between our nutritional health and SARS-CoV2 infection
in patients can be challenging considering the severity of
the pandemic. In vitro and animal studies provide the first
degree of evidence but also have their own limits and require
specific containment levels in laboratories. It is thus relevant
to provide evidence of potential nutritional applications that
can target the immune system and improve our health in the
context of the COVID-19 pandemic in the hope to stimulate
research around this topic to eventually lead to concrete
solutions.

Increased Susceptibility to SARS-CoV2 Infection
and Disease Severity in People with
Pre-existing Metabolic Comorbidities and
Elderly Individuals
The worldwide rise of SARS-CoV2 infections has revealed
the susceptibility of individuals with pre-existing metabolic
comorbidities to test positive for COVID-19 (12) and to

present a more severe form of the illness (13). Several
hypotheses have been put forward to explain this phe-
nomenon (Figure 1). Briefly, SARS-CoV2 enters the cells
by binding to the angiotensin-converting enzyme 2 (ACE2)
implicated in the renin-angiotensin system (14). The spike
glycoprotein present on the outer envelope of the virus binds
≥10 times more efficiently to ACE2 than the previously
known SARS-CoV, contributing to the severity of the
pandemic (15). Epithelial cells lining the airway and lungs
express ACE2 and appear as an easy target for virus trans-
mission. In lung tissues of nonobese diabetic mice, a model
that develops type 1 diabetes, ACE2 protein expression
was significantly increased compared with nondiabetic mice
(16). Insulin treatment significantly reduced the protein
expression of ACE2 in the lungs of diabetic mice, suggesting
that low circulating insulin concentrations, or reduced
insulin action (resistance or poor glycemic control), plays
a key role in modulating the susceptibility to SARS-CoV2
infection. The increased ACE2 expression in diabetic animal
models has been suggested by Bindom and Lazartigues
(17) to act as a compensatory mechanism to mitigate the
hyperglycemic induced-activation of the ACE/Angiotensin
II (Ang II)/Ang II type 1 receptor axis. The latter has been
associated with vasoconstrictive and fibrogenic effects in
the pancreas of healthy rats, decreasing the blood flow to
the pancreatic islets of Langerhans and therefore delaying
the first peak of glucose-stimulated insulin secretion (18).
In individuals with obesity, it has been suggested that the
upregulation of ACE2 cannot be the sole contributor to
the increased susceptibility to suffer from the disease (19).
Indeed, ACE2 is not only expressed in the lungs but also
in the intestine (20), liver, pancreas, and heart (16) as well
as both visceral and subcutaneous adipose tissues (19).
Based on a human gene expression database, the expression
of ACE2 is higher in visceral and subcutaneous adipose
depots than in the lungs, suggesting that the high level of
adiposity in people with obesity could contribute to their
increased susceptibility to SARS-CoV2 infection (19). In
contrast, decreased ACE2 mRNA and protein expression has
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been observed in SARS-CoV–infected animal models and
associated with disease severity (21, 22). Downregulation of
ACE2 has also been reported in a mouse model of acute
lung injury induced by acid aspirations (23). The membrane
fusion that permits SARS-CoV2 entry in the host cell leads to
ACE2 endocytosis, contributing to the decreased expression
of the membrane-bound receptor (24), the latter being
implicated in antithrombotic and anti-inflammatory effects
(25). As suggested by Verdecchia et al. (26), a pre-existing
ACE2 deficiency in type 2 diabetic (T2D) and/or elderly
people could promote a more severe form of the disease.

In obesity, innate and adaptive immune dysfunctions
could represent other risk factors that can impair the antiviral
response. Before December 2019, no one had ever been
exposed to SARS-CoV2. Therefore, a rapid innate immune
response is necessary when infected to control the viral
replication (27). Rebello et al. (28) have recently suggested
leptin to be a possible causal link between the dysregulated
metabolic state of people with obesity and the altered im-
mune response. Leptin is an anorexigenic hormone produced
by the adipose tissue in amounts proportional to fat mass
and is therefore present at high circulating concentrations
in people with obesity. This hormone can regulate both
the innate and adaptive immune response because many
immune cells present the leptin receptor on their cell surface
(29). In a mouse model of diet-induced obesity infected with
the influenza A (H1N1) virus, intravenous administration of
anti–mouse leptin antibody to counteract hyperleptinemia is
associated with reduced pulmonary IL-6 concentrations and
reduced mortality by 40%, despite similar viral titers between
the experimental and control groups (30). In COVID-
19 patients, a subset of monocytes correlates positively
with circulating leptin concentrations. CD80, an M1 (pro-
inflammatory) polarization marker, is upregulated in CD14+

monocytes of severe COVID-19 patients with high leptin
concentrations as opposed to those presenting a mild form of
the disease (31), suggesting hyperleptinemia to contribute to
the exacerbated cytokine storm and vulnerability in individu-
als with obesity. A dysregulated adaptive immune response in
people with obesity is also of concern because most countries
rely mainly on vaccination to contain the spread of SARS-
CoV2. Karlsson et al. (32) have shown impaired function
of memory T cells in the lungs of diet-induced obese mice
following a secondary A/H1N1 influenza infection, that was
preceded by an A/H3N2 influenza infection. In vaccinated
obese persons, the risk of contracting influenza or suffering
from an influenza-like illness is twice as high as in healthy
vaccinated subjects, an effect that could be attributed to
malfunctioning T cells (33).

The evolution of the pandemic has also revealed the
susceptibility of the elderly population to COVID-19–related
mortality (5). In this population, the immune system under-
goes marked adaptive changes due to the aged environment,
a process referred to as immunosenescence (34). Therefore,
the capacity of the innate and adaptive immune system
to properly respond to the presence of SARS-CoV2 in
the host cell might be altered. For instance, changes in

the cellular metabolism of monocytes in aged individuals
have been proposed as a potential link to understand the
severity of COVID-19 in this population (35). In addition,
the inability in older adults to compensate for the increased
production of cellular debris or altered molecules by the
disposal mechanisms (36) triggers inflammation, a concept
also known as “inflammaging” (37). This process could
exacerbate inflammatory events already associated with
SARS-CoV2 infection (38). Age-associated comorbidities
(e.g., respiratory and kidney diseases, hypertension, diabetes)
are also independent risk factors for COVID-19 severity (39)
(Figure 1).

The Potential Role of the Gut Microbiota in the
Complex Pathogenesis of SARS-CoV2 Infections
The human gut microbiota represents trillions of different
microorganisms (e.g., bacteria, viruses, fungi, archaea) that
interact with the host to maintain metabolic homeostasis.
Mounting evidence has shown the interaction of gut mi-
crobiota with the mucosal interface of the intestine through
several immune mechanisms (40). However, the impact of
microbes on the regulation of the host immune system is
far from being restricted to the intestinal tract, but targets
many different cell types within peripheral tissues. Indeed,
the gut microbiome produces large numbers of microbial
metabolites, in part by metabolizing nonabsorbable dietary
compounds. SCFAs (the most abundant being acetate,
propionate, and butyrate) have been extensively studied (41).
Other metabolites such as secondary bile acids produced
by the gut microbiota also contribute to the regulation of
host immunity (42). Interestingly, the gut–lung axis has
emerged as a novel bidirectional connection linking the gut
microbiota to the airway immune system through the blood
and lymphatic system (43). The recent interest shown toward
the gut–lung axis is in part derived from previous studies that
demonstrated increased prevalence of pulmonary diseases
in patients suffering from inflammatory bowel diseases
such as Crohn disease and ulcerative colitis (44–46). The
airways possess their own microbiota that is similar in
many ways to the mouth microbiome but not throughout
its entire taxon composition, suggesting pathways of airway
colonization other than the mouth microbiota (47). It has
been shown that the absence of microbiota in germ-free
(GF) mice was associated with innate immune cell defects
in peripheral tissues. When GF mice were infected with
Listeria monocytogenes, the survival rate was null compared
with the specific-pathogen-free mice, which harbor a gut
microbiota (48). The underlying mechanisms by which
the gut microbiota can control the immune response in
distant organs remain poorly understood, and the same
holds true for the implication of the airway microbiome in
the interaction between the gut and the lungs. However,
there is some evidence pointing toward the production of
gut microbial-derived compounds. Indeed, Trompette et
al. (49) showed that mice fed a high-fiber diet exposed
to house dust mite extract were protected against allergic
inflammation in the lungs compared with mice receiving

1076 Daoust et al.



the control diet. The protective effect was attributed to
increased plasma SCFA concentrations derived from the high
fiber intake modulation of the gut microbiota. Thus, it is
suggested from this study that SCFAs impair the capacity
of dendritic cells to activate effector type 2 helper T cells
responsible for the increased inflammatory response in the
lungs.

In addition to the possible connection between the gut and
lungs, other evidence points toward the role of the gastroin-
testinal (GI) tract as being a potential extrapulmonary site
implicated in the infection process and the evolution of the
disease severity (50). As mentioned above, ACE2 is expressed
not only in the lung but also along the entire GI tract (20).
The presence of SARS-CoV2 in feces of infected patients
(50, 51) was also associated with alterations in the fecal
microbiome (52) and mycobiome (53) during the time of
hospitalization of those patients. Zuo et al. (52) reported that
the baseline gut microbiome was associated with COVID-19
severity. Interestingly, Faecalibacterium prausnitzii was one of
the bacteria showing the strongest inverse correlation with
disease severity. This observation is in line with reduced Fae-
calibacterium prausnitzii abundance being reported largely in
obese individuals (54). It is important to note that the studies
performed by Zuo et al. (52, 53) were within a small cohort
of patients, and thus conclusions from those studies should
be drawn carefully. Additionally, because the gut–lung axis
represents a bidirectional axis, lung inflammation could also
induce gut microbial dysbiosis (55). Although more evidence
is needed, it is worth considering the potential benefits of
gut microbiome and immune regulators such as prebiotics
and probiotics, especially in more vulnerable individuals
such as people with pre-existing metabolic comorbidities
or in the elderly, given their well-known predisposition
for more severe COVID-19 owing to an inherently altered
gut microbiome community (56–58). GI manifestations are
present in SARS-CoV2–infected patients, and are positively
associated with the severity of respiratory complications (59),
sometimes even preceding their occurrence (60).

The Contribution of the Gut Microbiota to
Chronic Low-Grade Inflammation in Assessing
COVID-19 Severity
One common feature in individuals highly susceptible to
suffer from a more severe form of COVID-19 is the presence
of a chronic low-grade inflammatory state. A dysbiotic gut
microbiota contributes to this inflammatory profile (61) and
is a key feature associated with a dysregulated metabolic
state (56, 62). Gut microbial dysbiosis is highly associated
with disruption of the intestinal membrane integrity, which
contributes to increased intestinal permeability, commonly
known as leaky gut. These events can subsequently lead to
the passage of bacterial endotoxins such as LPSs derived from
Gram-negative bacteria through the intestinal membrane.
This process has been described as metabolic endotoxemia
(61). When in circulation, LPS binds to the polysaccharide-
binding protein (LBP) and is transferred to membrane-
bound or soluble CD14 receptor. The LPS from the CD14

receptor is then transferred to the Toll-like receptor 4
(TLR4)/Myeloid differentiation factor 2 complex on the sur-
face of various cells, which activates downstream target genes
(e.g., NF-κB) triggering inflammatory responses (63) via
the myeloid differentiation primary response 88 or the TIR-
domain–containing adapter-inducing interferon-β (TRIF)-
dependent pathways (64). It has been reported that TLR4
signaling in a TRIF-dependent manner could determine the
susceptibility to acute lung injury. Indeed, genetic deletion
of TLR4 in a mouse model improved edema and histological
pulmonary changes associated with acute lung injuries (65).
Because TLR4 is a sensor for LPS, one could speculate that the
gut microbiota contributes to COVID-19 severity in a TLR4
signaling–dependent manner. Moreover, Hoel et al. (66)
have observed increased baseline LBP concentrations in the
circulation of patients confirmed positive for SARS-CoV2
compared with healthy controls and, more interestingly, in
infected patients with adverse cardiac outcomes compared
with those who did not experience such complications (66).
Thus, the presence of a low-grade chronic inflammatory state
in individuals with a dysregulated metabolic state, which is
at least partly explained by gut dysbiosis, could increase the
risk of greater COVID-19 severity and morbidity (67). As
suggested by Onishi et al. (68), it would also be interesting
to further investigate the implication of microbial-derived
endotoxins in determining the severity of the cytokine storm
in people with pre-existing metabolic comorbidities. Recent
work from our group showed that bacteria or microbial
components can cross the intestinal barrier in morbidly
obese individuals (69). This work showed that a specific
bacterial signature was found in extraintestinal tissues like
the liver, the adipose tissues, and the plasma of people with
morbid obesity. More interestingly, the bacterial signature of
the mesenteric adipose tissue of normoglycemic individuals
was significantly discriminated from individuals with T2D,
notably by the increased abundance of Faecalibacterium in
the former (69). This is particularly interesting because
this bacterium was reported to be associated with a lean
phenotype by several research groups (54, 70). Because
T2D represents a major risk factor for COVID-19 severity,
one could therefore speculate that the types of bacteria or
bacterial fragments present in extraintestinal tissues could be
a key factor influencing the susceptibility of people to develop
more severe complications.

Additional Evidence Suggesting the Use of
Nutritional Applications Targeting the Gut
Microbiome to Promote Health in the Context of
COVID-19
From another perspective, COVID-19 has forced people
to quarantine, isolating them from their usual social envi-
ronment. Many individuals have lost their jobs generating
additional stress, which can lead to increased risk of suffering
from more profound disorders such as depression and
anxiety (71). Wang et al. (72) reported that ≤16.5% and
≤28.8% of the general population experienced moderate
to severe depressive and anxiety symptoms, respectively.
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Increasing evidence suggests that change in the composition
and functions of the gut microbiome could be implicated
in the onset of mood disorders through a bidirectional gut–
brain axis (73, 74). Gut-derived microbial metabolites could
play a pivotal role in connecting these 2 organs. Neuroactive
compounds (75, 76) and SCFAs (77) produced by bacteria or
intestinal cells are some documented examples of gut-derived
metabolites that have been associated with brain modulation,
reinforcing the use of nutritional approaches that can target
the gut microbiota.

Potential Nutritional Approaches Targeting the
Gut Microbiota to Alleviate SARS-CoV2
Outcomes
Polyphenols
The potential for plant-derived molecules to treat diseases
takes its root in the fact that 2 of the most prescribed
drugs in modern medicine worldwide, namely metformin
and aspirin, were first derived from extracts of French
lilac and willow bark, respectively (78, 79). Polyphenols are
biologically active compounds that are abundant in berries,
nuts, fruits, vegetables, and whole grains and are part of a
healthy lifestyle diet (80). Polyphenols are thought to exert
some of their benefits through so-called antioxidant and anti-
inflammatory activities. Indeed, the molecular structure of
polyphenols makes them good electron or hydrogen atom
donors, which can thereby neutralize reactive oxygen species
and prevent cellular damage (81). However, in the specific
context of SARS-CoV2 infection, the molecular structure of
polyphenols could confer them with other novel properties.
Polyphenols could act as natural inhibitors of SARS-CoV2
viral activity, as suggested from studies that were performed
in the context of the 2003 SARS-CoV epidemic and which
reported that some polyphenols (i.e., luteolin) could bind
with high affinity to the surface spike glycoprotein of the virus
and restrict its entry into host cells, as demonstrated using
frontal affinity chromatography coupled with MS detection
(82). In addition, an in silico study has proposed that
anthocyanidins (i.e., petunidin, delphinidin) and flavonols
(i.e., quercetin) could act as antagonists to block ACE2
receptors to prevent the virus entry (83).

In addition to their purported ability to prevent viral
entry, polyphenols such as resveratrol could prevent severe
COVID-19 as suggested by Horne et al. (84). As previously
mentioned, the expression of ACE2 is decreased following
SARS-CoV infection and acute lung injuries. However, the
administration of resveratrol was shown to increase ACE2
expression levels in the liver of rat offspring born from a
high-fat (HF)–fed dam and subsequently fed an HF diet
(85), and in the epididymal adipose tissue of HF-fed mice
(86) at a dose of 50 and 30 mg/kg/day, respectively. On
the other hand, the angiotensin-converting enzyme (ACE),
which has opposite functions to ACE2 in the regulation of
the renin-angiotensin system, has been shown to promote
the disease severity of acute lung injuries (23). Guerrero
et al. (87) reported that a concentration of 500 μM of

different subtypes of flavonoids could inhibit ACE activity
ranging from 17% to 95% efficacy in purified lung ACE
from rabbits. Polyphenols could also decrease the disease
severity by inhibiting virus replication. High concentrations
(150–250 μM) of resveratrol in vitro were shown to reduce
MERS-CoV RNA abundance in infected Vero E6 cells
(88). One of the proposed mechanisms for this inhibition
by polyphenols is their potential actions against specific
coronavirus proteases such as 3-chymotrypsin-like protease
(3CLPro) (89) and papain-like protease (PLPro) (90), which
are implicated in virus replication. 3CLPro and PLPro are
present in different types of coronavirus (91), suggesting that
previous reported data on the potential inhibitory effects
of polyphenols on SARS-CoV and MERS-CoV could apply
also to SARS. Viral proteases have also been highly targeted
for the development of drugs against coronaviruses (92,
93). Although in vitro experiments can provide interesting
insights about the beneficial effects of polyphenols, they also
have their limits. The concentration of polyphenols used for
cellular experiments are often too high and do not take into
consideration that native compounds are poorly absorbed
in the gut and strongly metabolized by the gut microbiota.
More than 90% of ingested polyphenols are not absorbed in
the upper part of the intestine due to their high molecular
weight (94). The relative abundance and biological activity
of circulatory metabolites derived from the interaction of
dietary polyphenols with the gut microbiota likely differ from
those of the native compounds used for in vitro studies (95).
Moreover, the presence of a dysregulated gut microbiota in
COVID-19 patients is likely to impact on the metabolism
of polyphenols, their absorption, and thus the availability
of both the native molecules and their metabolites. Further
experiments are needed to better understand the role of
polyphenols in potentially preventing SARS-CoV2 entry into
host cells and to reduce disease severity. At the time of
writing this review, only 3 clinical studies evaluating the
potential benefits of dietary polyphenols against SARS-CoV2
infections were registered in the US National Library of
Medicine (96).

In addition to the direct effect of polyphenols on viral
infection, their purported intestinal and peripheral anti-
inflammatory activities are also worth mentioning (97,
98). When they have reached the colon, polyphenols exert
prebiotic effects, because they are powerful modulators of the
gut microbiota leading to several intestinal health benefits
such as improvement of the intestinal barrier functions (99,
100). Polyphenols stimulate the growth of beneficial bacterial
species such as Akkermansia muciniphila and Barnesiella as
shown by our research group (101, 102) and others (103,
104). The latter have been associated with the improvement
of many features of the metabolic syndrome (e.g., improved
glucose tolerance, decreased visceral adiposity, reduced
circulating triglyceride concentrations). As proposed above,
a dysregulated gut homeostasis could contribute to the
severity of COVID-19. Furthermore, when colonic bacteria
metabolize polyphenols, smaller compounds are released in
the circulation and reach peripheral organs to modulate host
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TABLE 1 Summary of evidence suggesting the use of nutrients to prevent or decrease SARS-CoV2 disease severity1

Nutrients Evidence References

Polyphenols Natural inhibitors of SARS-CoV2 activity by binding with high affinity to the surface spike proteins (82, 83)
Prevent illness severity by increasing ACE2 expression and inhibiting ACE expression (85–87)
Inhibit virus replication by their actions on specific coronavirus proteases (3CLPro and PLPro) (88–90)
Indirect evidence through their intestinal and peripheral anti-inflammatory and antioxidant effects (101–104)

Probiotics Reduce disease incidence of ventilator associated-pneumonia (106, 107)
Production of antiviral inhibitory metabolites; bacteriocins (108, 109)
Immunomodulatory effects against respiratory tract influenza viruses (110–112)

Vitamin D Regulates immune responses against respiratory tract viruses through their receptors on immune cells (113–117)
Improves disease severity associated with SARS-CoV2 (118, 119)

PUFAs Reduce replication of SARS-CoV2 in combination with remdesivir (120)
Improve disease severity associated with respiratory tract viruses and acute inflammation (121–123)
Glucoregulatory activities (124)
Anticoagulant properties (125, 126)

1ACE2, angiotensin-converting enzyme 2; PLPro, papain-like protease; SARS-CoV, severe acute respiratory syndrome coronavirus; 3CLPro, chymotrypsin-like protease,.

immunity (105). In the context of the pandemic, the potential
of plant polyphenols has certainly not been fully explored
(Table 1, Figure 2).

Probiotics
Probiotics have been defined as “live microorganisms that,
when administered in adequate amounts, confer a health
benefit on the host” (127). Many commercial probiotics are
specific strains of Lactobacillus and Bifidobacterium (127).
In prospective randomized control trials, a prophylactic
administration of Lactobacillus rhamnosus GG (106) and
a combination of Bacillus subtilis and Enterococcus faecalis
(107) in patients at high risk of developing ventilator-
associated pneumonia significantly reduced disease inci-
dence compared with patients receiving placebo. Consid-
ering that hospitalized patients with pre-existing metabolic
comorbidities are more likely to need mechanical ventilation
(128), the use of probiotics to help reduce respiratory com-
plications should be further explored in the context of this
pandemic (Figure 2). A direct virus–probiotic interaction has
been proposed to explain the antiviral potential of probiotics
(129, 130), but robust evidence supporting this interaction
is lacking. As suggested by Mak et al. (131), it is doubtful
that a direct probiotic–SARS-CoV2 interaction occurs. On
the other hand, an indirect interaction of a probiotic with
SARS-CoV2 through the production of antiviral inhibitory
metabolites or immunomodulatory effects is a more likely
mechanism. In a recent review, Tiwari et al. (132) suggested
using bacteriocins for their potential antiviral benefits as
a new therapeutic agent. These are polypeptides produced
by probiotics such as lactic acid bacteria. The role of
bacteriocins goes beyond their known function as natural
food preservatives (133). However, scant attention has been
given to their antiviral effects in the context of COVID-19.
In a previous in vitro study, semipurified bacteriocins from
Enterococcus durans inhibited herpes simplex virus 1 and
poliovirus replication at different levels in Vero cells (108).
Mice infected with the influenza virus A (H1N1) receiving a
probiotic strain (Enterococcus faecium L3) known to produce

specific bacteriocins starting 1 wk prior to infection showed
a decreased mortality rate compared with the nontreated
control group (Figure 2) (109). As for the immunomodula-
tory capacities of probiotics, commensal bacteria have been
shown to regulate the innate and adaptive immune response
against respiratory tract influenza A/H1N1 infections (110–
112). Indeed, antibiotic-treated mice showed decreased
influenza-specific antibody titers and CD4+ and CD8+ T cell
responses (110). The administration of a probiotic cocktail in
antibiotic-treated mice infected with influenza virus showed
improved lung pathology (111). In BALB/c mice challenged
with A/H1N1 influenza virus, the administration of Bid-
ifobacterium bifidum prophylactically significantly reduced
IL-6 concentration in lung homogenates and increased the
survival rate of the mice (112). Based on those preclinical
studies, the development of potential probiotic applications
should be considered knowing that the commensal gut
microbiota composition is altered in people with obesity
(56) and in elderly individuals (57). However, evidence
supporting their use to prevent or reduce the severity of
COVID-19 is currently lacking (Table 1).

Additional Nutritional Approaches to Improve
Health in the Context of COVID-19
Vitamin D
Cholecalciferol (vitamin D-3), a fat-soluble vitamin, is
naturally synthesized from 7-dehydrocholesterol in the skin
when exposed to ultraviolet-B. It is then metabolized
in the liver to 25-hydroxycholecalciferol [25(OH)D3] and
subsequently by the kidneys to its active form, 1,25-
dihydroxycholecalciferol [1,25(OH)2D3] (134). Therefore,
in countries with diminished sunlight exposure due to
geographic location and cold weather, vitamin D supple-
mentation can be recommended for some groups of the
population to achieve the recommended nutritional intake.
Indeed, natural dietary sources such as fatty fish or egg yolks
can only provide a minimal amount of vitamin D (135).
In some countries, systematic vitamin D food fortification
is also mandatory (136). Even though these measures are
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FIGURE 2 Evidence suggesting the use of nutritional applications to alleviate SARS-CoV2 infection and adverse outcomes.
Polyphenol-rich foods: Polyphenols are suggested to have direct inhibitory effects on virus entry in host cells through the interaction with
ACE2 receptors and spike proteins. Polyphenols can indirectly reduce low-grade inflammation by improving gut microbial dysbiosis and
intestinal membrane functions. Probiotics: The production of bacteriocins by probiotics improves mortality rate in influenza-infected mice.
A prophylactic administration of probiotics has been associated with reduced ventilator-associated pneumonia in patients at high risk of
developing this complication. Vitamin D: In circulation, 25(OH)D3 is converted by the kidneys to its active form, 1,25(OH)2D3, which binds
to the vitamin D receptor and regulates essential immune functions. In vitro, in vivo, and clinical studies have shown the beneficial effects
of vitamin D supplementation against the disease severity of respiratory tract infection. Polyunsaturated fatty acids: Resolvins, protectins,
and maresins are ω-3 fatty acid–derived proresolving mediators. LA and DHA are n–6 and n–3 PUFAs, respectively. In vitro, LA reduces
SARS-CoV2 replication in combination with remdesivir. Protectins (PD1, PDX) derived from the enzymatic conversion of DHA have been
shown to reduce mortality rates in sepsis and influenza-infected mouse models. Figure created with BioRender.com. ACE2,
angiotensin-converting enzyme 2; LA, linoleic acid; PD1, protectin D1; PDX, protectin DX; SARS-CoV, severe acute respiratory syndrome
coronavirus; Vit D2-3, Vitamin D2 and D3; 1,25(OH)2D3, 1,25-dihydroxycholecalciferol; 25(OH)D3, 25-hydroxycholecalciferol.

in place and UV radiation is considered enough to avoid
deficiency in countries with continuous sunlight exposure,
vitamin D insufficiency/deficiency is still a public health issue
worldwide (137). Compared with healthy individuals, people
with various comorbidities such as T2D (138) and obesity
(139) have a greater prevalence of vitamin D deficiency.
However, the reason for this discrepancy is not yet well
understood. It must be clarified whether a low 25(OH)D3
status is a cause or a consequence of a dysregulated metabolic
state, as proposed by Vranić et al. (140). A large proportion of
the elderly population are also deficient in vitamin D (141).

Vitamin D acts as an important player in the regulation
of metabolism that goes beyond its function in calcium
homoeostasis (142). 1,25(OH)2D3 binds to the vitamin D
receptor, a nuclear receptor that acts as a transcription
factor, implicated in the regulation of essential immune
functions (143). Interestingly, in vitro evidence has suggested
a protective role of vitamin D in regulating the immune
response of respiratory viruses in human alveolar and
bronchial epithelial cell lines (113–115). Mice supplemented
with 25(OH)D3 in their diet for 7 wk showed reduced lung

viral replication 3 d post-A/H1N1influenza viral injection.
This effect was, however, transient and no longer statistically
significant 5 d postinfection (116). In humans, a meta-
analysis including 10,899 subjects suggested protective effects
of vitamin D against the risk of acute respiratory tract
infection (117). Knowing that individuals with metabolic
comorbidities and older people are more prone to suffer
from vitamin D deficiency, it is noteworthy that patients who
were the most vitamin D deficient were observed to benefit
the most from a daily or weekly supplementation (117).
In the context of COVID-19, an observational study and a
clinical case report have shown beneficial effects of vitamin
D supplementation against the progression of the disease
severity, such as lower oxygen requirement and reduced
support from the intensive care unit (ICU), in hospitalized
patients (118, 119). Such studies were, however, performed
in small cohorts of patients. Overall, robust evidence for
the potential therapeutic use of vitamin D against SARS-
CoV2 infection and disease severity is still lacking (Table 1,
Figure 2). An important international effort is currently
underway to assess these effects. Indeed, many clinical
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studies are listed by the US National Library of Medicine
to test vitamin D products in the context of COVID-19
(96).

Omega-3 fatty acids and their lipid mediators
The health benefits of PUFAs have been largely demon-
strated and are thought to be partly related to their anti-
inflammatory actions (144). Recent results point toward
the use of PUFAs in the treatment of COVID-19 (Table 1,
Figure 2). The administration of 50 μM linoleic acid (18:2n–
6) in combination with remdesivir (a broad-spectrum an-
tiviral agent) in human epithelial cells has been shown
to reduce the replication of SARS-CoV2 greater than the
administration of remdesivir alone (120). These results
are highly significant considering that remdesivir has been
authorized in many countries for the treatment of patients
with symptoms of COVID-19 (145). Moreover, long-chain
ω-3 PUFAs, such as EPA (20:5n–3) and DHA (22:6n–3), can
be synthesized by internal bioconversion of their precursor,
α-linolenic acid (ALA; 18:3n–3). However, the bioconversion
of ALA to EPA and DHA in humans is limited and so an
adequate dietary intake of rich food sources such fish oil,
nuts, and seeds (flax, chia, canola) is necessary to achieve
recommendations (146). Protectins are lipid mediators de-
rived from DHA and are naturally produced in mammals
through enzymatic production (147). They are known to
promote resolution of inflammatory processes (148). The
administration of the protectin D1 (PD1) isomer [known as
protectin DX (PDX)] at a dose of 1000 ng combined with
an antiviral drug (peramivir) in A/H1N1 influenza–infected
mice 48 h postinfection prevented mortality (100% survival
rate) compared with administration of the antiviral drug or
PDX alone, which was associated with only 25–30% survival
rates (121). Moreover, the administration of high doses of
PDX (300 and 1000 ng) has been shown to increase survival
rate in a mouse model of sepsis (122). In mice suffering from
LPS-induced acute lung injury, the administration of low
doses of PDX (1 and 10 ng compared with 100 ng) protected
against pulmonary histopathological changes, facilitating
the resolution of inflammation and inhibiting neutrophil
infiltration (123). Other unique bioactivities of PDX over
those of PD1 might also contribute to its ability to reduce
COVID-19 illness and its most severe complications. In-
deed, we have shown that PDX, but not PD1, has unique
glucoregulatory activities and reduces insulin resistance in
an obese diabetic mouse model (124). Finally, PDX has a
well-recognized anticoagulant activity that is also distinct
from PD1 (125, 126), a key attribute when considering
the high incidence of thrombotic events in ICU patients
with COVID-19 pneumonia (149). These properties, coupled
with its antidiabetic effect, point toward the development
of an innovative treatment for COVID-19, particularly in
more vulnerable diabetic patients, targeting both acute
inflammation and hematological complications caused by the
viral infection. Historically, the pharmaceutical development
of PDX has been hampered by its exorbitant cost of pro-
duction linked to an inefficient biosynthetic manufacturing

method. However, we have recently developed an efficient
and complete chemical synthesis of PDX that will allow
the synthesis of large quantities of this unique proresolving
and metabolically active DHA derivative at reduced cost
(150). Other EPA- and DHA-derived proresolving mediators
(e.g., resolvins, maresins) have also been suggested for
their potential antiviral activities (151) and also need to be
investigated for their potential actions against COVID-19
and associated pathologies.

Conclusion
This review presents an overview of potential nutritional
approaches that could help limit SARS-CoV2 infection
and related pathological outcomes, particularly in patients
with pre-existing metabolic comorbidities and in the el-
derly population. Indeed, many preclinical and clinical
studies have suggested the immunomodulatory and/or anti-
inflammatory effects of polyphenols, probiotics, vitamin D,
and PUFAs, in part through gut microbiota modulation.
Even if some of these strategies appear promising to prevent
COVID-19 or to limit its severity, the main issue is the
lack of well-designed and large-scale clinical studies for
us to be able to draw final conclusions and eventually
formulate public health recommendations. When writing
this review, most of the clinical trials assessing the impact
of some of these nutritional strategies have not yet started
the recruitment process or are still in the process of
enrolling patients. None of these potential applications to
improve health in the context of COVID-19 or to treat the
disease have yet been approved by public health authorities.
Therefore, claims made for the potential of food sources to
prevent or attenuate COVID-19 severity should be carefully
stated due to the lack of extensive literature and potential
adverse effects. One notable example is the proposed use of
relatively high doses of vitamin D to protect people from
COVID-19, but which can also lead to secondary vascular
calcification, a disorder of the blood vessels characterized by
a deposit of calcium along the vessel walls (152). Nausea,
flatulence, and abdominal cramping are possible mild side
effects of probiotic consumption, but they are generally
recognized as safe (GRAS) even if overconsumed. However,
the intake of probiotics should be supervised by a healthcare
provider in immunosuppressed patients, pregnant women,
or patients with heart disease, for instance (153, 154). In
a similar way, some adverse outcomes associated with a
high polyphenol consumption in both animal models and
humans (155) and some conflicting evidence associated with
the intake of PUFAs and the risk of prostate cancer (156,
157) have been reported. Finally, nutrition and infectious
diseases are not typical cross-disciplines but this should be
further encouraged considering the growing occurrence of
epidemics (e.g., SARS-CoV, MERS-CoV, Ebola, Zika virus)
and a pandemic (SARS-CoV2) over the last 20 y.
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H, Erkkola M, Holvik K, Madar AA, Meyer HE, Tetens I, et al.
Vitamin D status and current policies to achieve adequate vitamin D
intake in the Nordic countries. Scand J Public Health [Internet] 2020.
doi:10.1177/1403494819896878.

136. Pilz S, März W, Cashman KD, Kiely ME, Whiting SJ, Holick MF, Grant
WB, Pludowski P, Hiligsmann M, Trummer C, et al. Rationale and plan
for vitamin D food fortification: a review and guidance paper. Front
Endocrinol 2018;9:373.

137. Palacios C, Gonzalez L. Is vitamin D deficiency a major global public
health problem? J Steroid Biochem Mol Biol 2014;144:138–45.

138. Miñambres I, Sánchez-Quesada JL, Vinagre I, Sánchez-Hernández J,
Urgell E, de Leiva A, Pérez A. Hypovitaminosis D in type 2 diabetes:
relation with features of the metabolic syndrome and glycemic control.
Endocr Res 2015;40(3):160–5.

139. Daniel D, Hardigan P, Bray N, Penzell D, Savu C. The incidence
of vitamin D deficiency in the obese: a retrospective chart review. J
Community Hosp Intern Med Perspect 2015;5(1):26069.
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