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Abstract

Summary: Determination of haplotypes is important for modelling the phenotypic consequences of

genetic variation in diploid organisms, including cis-regulatory control and compound heterozygosity.

We realized that single-cell RNA-seq (scRNA-seq) data are well suited for phasing genetic variants,

since both transcriptional bursts and technical bottlenecks cause pronounced allelic fluctuations in indi-

vidual single cells. Here we present scphaser, an R package that phases alleles at heterozygous variants

to reconstruct haplotypes within transcribed regions of the genome using scRNA-seq data. The devised

method efficiently and accurately reconstructed the known haplotype for�93% of phasable genes in

both human and mouse. It also enables phasing of rare and de novo variants and variants far apart

within genes, which is hard to attain with population-based computational inference.

Availability and Implementation: scphaser is implemented as an R package. Tutorial and code are

available at https://github.com/edsgard/scphaser

Contact: rickard.sandberg@ki.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The haplotype phase, the sequence of alleles present on the same nu-

cleic acid molecule, such as the maternal or paternal copy of a

chromosome, is of importance to reveal relationships between DNA

sequence and phenotype. Major efforts have been made using

expression-quantitative-trait-loci studies to identify cis-regulatory

variants that affect gene expression. Making use of allele-specific ex-

pression (ASE) increases the power of such studies; however, to reach

the full potential of ASE-based approaches require or depend on

phased alleles within genes (Kumasaka et al., 2016; van de Geijn

et al., 2015). Phase information is also important for associating clin-

ical outcomes to genetic variation, e.g. to identify cases of compound

heterozygosity where risk alleles at different loci do not co-occur on

the same DNA molecule but affect both homologous copies of a gene.

This information can help to elucidate the impact of mutations in can-

cer, Mendelian disease and in personalized medicine.

Several approaches exist to determine haplotypes, including dir-

ect experimental phasing of a single individual, such as physical

separation of the chromosomes, dilution to single-haplotype concen-

tration equivalents, barcoding schemes and long-read sequencing, as

well as computational approaches including population phasing

using genome reference panels, transmission between related indi-

viduals, or utilizing the presence of multiple variants in overlapping

reads (Browning and Browning, 2011; Snyder et al., 2015).

However, the direct experimental phasing techniques are relatively

laborious and the computational methods depend on either DNA

data or sequencing read length.

RNA-sequencing (RNA-seq) allows quantification of the number

of transcribed copies from each allele; however, short read lengths

preclude direct observation of haplotype sequences. Studies to date

have evaluated ASE in tissues or cell populations where ASE in indi-

vidual cells is averaged out. By contrast, single-cell RNA-seq pro-

vides frequent monoallelic or skewed allelic expression (Fig. 1A),

due to stochastic bursting of gene expression and technical losses

(Reinius and Sandberg, 2015). Here, we demonstrate that the pro-

nounced allelic fluctuations in scRNA-seq data can be used to accur-

ately infer haplotypes of the transcribed parts of a genome (Fig. 1B).
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2 Methods

scphaser assumes a diploid genome, for which there are two possible

states of the DNA haplotype sequence. Input to the program is either

the expression of each allele, or the expressed genotype, for every

variant and cell. If a gene is monoallelically expressed in a cell, the

genotype vector of such a cell is identical to the haplotype sequence.

Cells with an imbalanced allelic expression will be closer to the

haplotype towards which it is imbalanced. Determining which of

the two underlying states a cell is closest to can then be viewed as a

two-class clustering problem.

To solve this, we implemented an exhaustive search where every

possible haplotype of a gene is evaluated, where the haplotype is

chosen that minimize the variation of the resulting cell distribution.

Additionally, we include PAM-clustering (R package ‘cluster’),

which is used for genes with ten or more variants to reduce run-

time. We also include an option to minimize the variation using dis-

crete transcribed genotypes, instead of the continuous ASE, and a

simple transcribed-genotype caller if allele read counts are input.

The package also includes the option to weigh the calculations based

on the read counts, to account for sampling error. To enable short

run-times, parallelization was implemented where the input is split

into subsets of genes. Thus, scphaser provides in total eight alterna-

tive phasing strategies: clustering: {exhaustive, PAM}, input: {geno-

type, read allele counts} and weigh: {true, false}.

Further details on the algorithms, including gene and variant fil-

ters, are described in the Supplementary Data. Usage instructions

are detailed in the vignette, as part of the R package.

3 Results

We assessed the performance of scphaser on two full-length scRNA-

seq datasets, where the phase was known. The first dataset con-

tained 336 cells from a mouse F1 cross of two inbred strains for

which the genomes are known (CAST/EiJ�C57BL/6J, reciprocal

cross) and the second dataset contained 28 single cells from the

human individual NA12878, where the phase was inferred via trans-

mission between the sequenced genomes of the family-trio (Marinov

et al., 2014). All eight phasing approaches implemented in scphaser

(Methods) were assessed with respect to varying pre-filtering

settings and genotype calling cutoffs for the two datasets

(Supplementary Fig. S1). A suitable trade-off between phasing ac-

curacy and number of phasable genes (at least two heterozygous

variants left in a gene) was obtained by pre-filtering for at least five

cells with imbalanced ASE for a variant, where imbalance should be

at least 3-fold (fc�1/3 or fc�3, where fc¼ alternative allele count/

reference allele count) and there are at least three reads for any of

the alleles in such a cell. Furthermore, we set the default phasing ar-

guments to cluster¼ exhaustive, input¼ allele counts and

weigh¼ false, since that combination performed the best on average

across the two datasets, with 95.1% and 97.5% correctly phased

variants in the mouse and human dataset, respectively (Fig. 1C). At

gene-level, 93.6% and 94.9% of phasable genes had all variants cor-

rectly phased.

Originally, there were 20 268 and 15 597 RefSeq genes with at

least two heterozygous variants at the DNA level and using the de-

fault pre-filtering values 8563 and 534 phasable genes remained in

the mouse and human dataset, respectively (336 versus 28

sequenced cells). In a second human dataset, containing 163 single

cells sequenced from a single individual (Borel et al., 2015), we

found that 3155 RefSeq genes were phasable out of 15 556 RefSeq

genes with at least two heterozygous variants. The dependency of

number of phasable genes with respect to number of sequenced cells,

degree of genome heterozygosity and sequencing depth is shown in

Supplementary Figure S2. The run-time on the human 163-cell data-

set using default settings was 61 seconds using 80 cores and the com-

putational complexity with respect to the number of variants, genes

and cells are shown in Supplementary Figure S3.

4 Discussion

We conclude that phasing by leveraging the imbalanced ASE fre-

quently observed in full-length scRNA-seq data is both accurate and

fast. Using RNA instead of DNA enables phasing of variants located

far apart from each other within a gene due to introns. As data from

only a single individual is needed scphaser can also phase rare and

de novo variants. The number of genes available for phasing de-

pends on (i) the number of sequenced single cells, (ii) cell type, as the

number of expressed genes vary considerably between cell types, (iii)

the number of heterozygous variants in the individual, where genet-

ically distant parents yield higher heterozygosity, (iv) sequencing

depth and (v) the efficiency of the full-length scRNA-seq protocol.

The retrieved gene phase information has important applications in

functional and clinical genomics, such as empowering cis-regulatory

variation studies and in elucidating the impact of haplotype struc-

tures on phenotypic outcome and response.
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Fig. 1. Concept and performance of scphaser. (A) Number of genes against

observed ASE in scRNA-seq (two human and a mouse dataset) and bulk

RNA-seq data. Line indicates mean and band the inter-quartile range across

cells. (B) Transcriptional bursts and technical drop-out cause frequent mono-

allelic or allele-biased observations in scRNA-seq data, which can reveal the

phase of transcribed sequences. (C) Percent correctly phased SNVs in the

human and mouse dataset, X-axis labels denote the input, method and

weighing settings for the phasing (Methods)
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