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Abstract

The goal of this study is to evaluate the effects of intermediate megavoltage (3-MV) photon
beams on SBRT lung cancer treatments. To start with, a 3-MV virtual beam was commis-
sioned on a commercial treatment planning system based on Monte Carlo simulations.
Three optimized plans (6-MV, 3-MV and dual energy of 3- and 6-MV) were generated for 31
lung cancer patients with identical beam configuration and optimization constraints for each
patient. Dosimetric metrics were evaluated and compared among the three plans. Overall,
planned dose conformity was comparable among three plans for all 31 patients. For 21 thin
patients with average short effective path length (< 10 cm), the 3-MV plans showed better
target coverage and homogeneity with dose spillage index Rsq<, = 4.68+£0.83 and homoge-
neity index = 1.26+0.06, as compared to 4.95+1.01 and 1.31+£0.08 in the 6-MV plans

(p <0.001). Correspondingly, the average/maximum reductions of lung volumes receiving
20 Gy (V2oay): 5 Gy (Vsay), and mean lung dose (MLD) were 7%/20%, 9%/30% and 5%/
10%, respectively in the 3-MV plans (p < 0.05). The doses to 5% volumes of the cord,
esophagus, trachea and heart were reduced by 9.0%, 10.6%, 11.4% and 7.4%, respectively
(p < 0.05). For 10 thick patients, dual energy plans can bring dosimetric benefits with com-
parable target coverage, integral dose and reduced dose to the critical structures, as com-
pared to the 6-MV plans. In conclusion, our study indicated that 3-MV photon beams have
potential dosimetric benefits in treating lung tumors in terms of improved tumor coverage
and reduced doses to the adjacent critical structures, in comparison to 6-MV photon beams.
Intermediate megavoltage photon beams (< 6-MV) may be considered and added into cur-
rent treatment approaches to reduce the adjacent normal tissue doses while maintaining
sufficient tumor dose coverage in lung cancer radiotherapy.

Introduction

Lung cancer has become the most common and deadly cancer in the world with estimated
1.59 million deaths each year, accounting for nearly one in five of the total cancer mortality
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worldwide [1]. In the United States, lung cancer accounts for more deaths than any other can-
cers in both men and women [2]. In recent years, stereotactic body radiation therapy (SBRT)
has shown promising outcome in the radiotherapeutic management of early-stage non-small
cell lung cancer (NSCLC) for inoperable lung cancer patients [3]. Despite improved local con-
trol and survival, SBRT approach for lung cancer still faces challenges in reducing radiation
toxicity to the normal tissues.

Although 6-MV and higher megavoltage photon beams have been dominantly used in the
clinic for decades, recently there has been growing interest in intermediate energy photon
beams (< 6-MV). This is because intermediate energy photons have narrower penumbra due
to reduced range of secondary electrons. Faster dose fall-off and lower exit dose can also benefit
the adjacent critical structures. If multiple gantry angles are employed in plan optimization,
good target coverage can also be achieved with intermediate energy photon beams without
over-dosing the superficial tissues [4].

Several studies have been carried out recently involving intermediate energy photon beams.
In 2007, Keller et al. showed that 1.2-MV x-rays combined with small fields can reduce the
radiological penumbra in intracranial stereotactic radiosurgery (SRS), which could be substan-
tially beneficial for improving target dose homogeneity and better sparing of critical structures
[5]. Fox et al. have compared Cobalt-60 gamma-ray with 6/18-MV photons and demonstrated
that nearly identical intensity-modulated radiotherapy (IMRT) plans can be achieved between
Co-60 and 6-MV photons [6]. Later on, Stevens et al. configured a 4-MV flattening filter free
(FFF) beam to improve the dose distribution at tissue-air interface for lung tumor treatment
[7]. More recently, Dong et al. investigated a 2-MV FFF beam for extracranial robotic IMRT.
Their results demonstrated that the dual energy plan (2- and 6-MV) had the best dosimetry in
terms of equivalent target coverage and improved organs-at-risk (OAR) sparing, followed by
2-MV only and 6-MV only plans [4].

Mixed energies for cancer treatments have been investigated in the past [8-10]. In a study
by St-Hilaire et al., beam energy was added as an optimization parameter in an automatic aper-
ture-based inverse planning system [10]. Their work demonstrated that energy optimization
using 6 and 23 MV beams could produce plans of better quality with less peripheral dose and
fewer MUs for prostate and lung tumors. Park et al. investigated the effect of mixing 6-MV and
15-MV photon beams on prostate cancer IMRT treatments and concluded that mixed-energy
plans have similar target coverage, improved OARs dose and integral dose for deep seated
tumors [8].

3-MV photon beams have significantly lower energy than 6-MV photon beams with dis-
tinctly different beam characteristics. To our best knowledge, so far there has been no system-
atic study on the potential dosimetric effects of 3-MV photon beams on radiotherapy
treatments of lung cancers. Hence, the aim of this study is to investigate the dosimetric effects
of intermediate energy photon beams, particularly 3-MV photons on the lung SBRT treatments
with IMRT. The dosimetric effects of mixed energy plan using intermediate energy photons
(3-MV) and clinically widely used 6-MV photons was also explored.

Materials and Methods
Virtual Linac beam modeling and validation

In this study, a virtual 3-MV photon beam was modeled with Monte Carlo method based on a
Varian linear accelerator (Varian Medical Systems, Palo Alto, CA). Specifically, an EGS4/
BEAM Monte Carlo code has been used to simulate the particles emanating from a Varian
Linac treatment head with nominal energy of 3-MV [11,12]. The geometry and the materials
used in the EGS4/BEAM Monte Carlo simulation reflected a realistic construction of the Linac
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operating at 6 MV photon mode, only the energy of incident electron beam was set to be 3
MeV. Particularly, various component modules were constructed with the EGS4/BEAM
Monte Carlo code to model the treatment head of the Linac including the target, primary colli-
mator, exit window, flattening filter, monitor chamber, secondary collimator, jaws and protec-
tion window. A full phase space file was first scored above the photon jaws located at 28 cm
downstream from the target. The phase space data contains multi-dimensional information for
each particle across the chosen plane, including the position, direction, charge, energy, weight-
ing factor, and a tag to record the particle history [13]. The full phase space can be sampled for
further particle transport in the rest of the geometry. However, the large amount of informa-
tion to be stored and the slow sampling speed during retrieval of all this information is the
major limitation of the phase space approach [14]. As an alternative, multiple source models
can be derived with EGS4/BEAMDP based on the phase space data [15]. The obtained multiple
source models consisted of detailed numerical description of the energy spectrum, spatial dis-
tribution, fluence distribution, source location, shape and size of each source for a particular
treatment head [15,16]. The multiple source models have been shown equivalent to the phase
space data in representing the photon beams from the Linac treatment head and replicating
the dose distributions in water, yet eliminating the inconvenience of large data transfer and
latent variance related to the phase space [13,15,16].

The obtained multiple source models were then used as beam input in EGS4/MCSIM for
Monte Carlo dose simulations so that all the required beam data such as depth doses and trans-
verse dose profiles for various square and rectangular field sizes ranging from 3 cm x 3 cm to
40 cm X 40 cm were generated in a water phantom. Output factors normalized to 10 cm x 10 cm
field size at 95 cm SSD and 5 cm depth in water were also calculated. For all the simulations, the
EG$4 transport parameters were set as electron cut-off energy (ECUT) = AE = 700 keV and pho-
ton cut-off energy (PCUT) = AP = 10 keV. AE is the low-energy threshold for y-ray production
while AP is the low-energy threshold for soft bremsstrahlung production. The voxel size ranged
from 0.25 cm x 0.25 cm x 0.25 cm in dose profile simulations to larger steps along depth direction
in depth dose simulations. The calculation time of each Monte Carlo simulation was between 1 to
52 hours on a single CPU workstation in order to achieve a statistical uncertainty (10) of less than
2%. The benchmark results of EGS4/MCSIM have been reported previously [17,18].

The Monte Carlo-simulated dose profiles and output factors of the 3-MV photon beams
were then commissioned into a Pinnacle’ treatment planning system (TPS) version 9.6 (Philips
Radiation Oncology Systems, Milpitas, CA). The auto-modeling in Pinnacle® TPS was first
used and manual adjustments were then made to ensure that agreement between the Pinnacle’
calculations and the Monte Carlo simulations was better than 2%/2mm. The accuracy of the
3-MV beam model commissioned in Pinnacle® TPS has been evaluated by comparing the Pin-
nacle’ dose calculations with Monte Carlo simulations in a variety of beam configurations
including both homogeneous water phantom (Figs 1 and 2) and inhomogeneous water phan-
tom with lung block (Fig 3).

Patient characteristics

31 lung cancer patients were included in this comparative study with institutional review board
(IRB) application approved by Yale University Human Investigation Committee
(#1404013787). The patients’ characteristics have been summarized in Table 1.

Treatment planning

For all 31 patients, 4DCT scans were performed with Varian real-time position management
system (RPM) v1.7.5 and CIVCO Body Pro-Lok immobilization device (CIVCO Medical
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Fig 1. Comparison of (a) percentage depth dose (PDD) curves and (b) lateral dose profiles at 5 cm depth for field sizes of 3x3 cm?, 10x10 cm? and
20x20 cm? between Monte Carlo simulated (solid lines) and Pinnacle3 calculation results (dashed lines) for the 3-MV photon beam at 100 cm
source-to-surface distance. The deviations in depth doses were shown in the lower part to the right scale.

doi:10.1371/journal.pone.0145117.9001
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Fig 2. Comparison of Pinnacle® calculated and Monte Carlo simulated dose profiles of 6-MV (a,c) and 3-MV (b, d) beam along the line for two MLC
shaped fields (inserts, not to the scale) at 5 and 10 cm depths of a homogeneous water phantom. All doses were normalized to the central axis at 5 cm
depth for comparison.

doi:10.1371/journal.pone.0145117.g002

Solutions, Coralville, lowa). The 4DCT's were transferred to GE Sim MD workstation to con-
tour the internal target volume (ITV) and 7 mm margin was then added to create the planning
target volume (PTV). The average intensity projection (AIP) CT dataset was used for contour-
ing of all relevant OARs including the spinal cord, the trachea, the esophagus and the heart.
Three treatment plans were generated for each patient, i.e., 3-MV only, 6-MV only, and dual
energy of 3- and 6-MV with the commissioned beam models in Pinnacle’. The energies for the
dual energy plan were selected based on the effective path length from the beam entrance to
the isocenter for each beam. Practically, 3-MV and 6-MV photon beams were mixed almost
equally in the dual energy plans.

Identical beam configuration and optimization constraints were used in all three plans for
each patient. All plans were optimized such that 100% prescription dose volume covered at
least 95% of PTV. The planning optimization constraints for OARs have been used (Table 2).
While TG101 and RTOG 0915 guidelines were used as references, optimization constraints
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Fig 3. Comparison of Pinnacle® calculated and Monte Carlo simulated percentage depth dose (a, b) and profiles (c, d) of 6-MV and 3-MV beam
under inhomogeneous condition. A lung block of 5 cm thick, with a density of 0.3 g/cm® was inserted in a water phantom from 5 cm depth, while the lateral
dimensions were either 15x15 cm? or 15x7.5 cm?. The field sizes were 3x3 cm? and 5x5 cm?.

doi:10.1371/journal.pone.0145117.9003

were slightly adjusted in the clinic to allow for personalized treatment planning for each indi-
vidual patient.

During the planning, avoidance ring structures were created to facilitate rapid dose fall-off
away from the PTV and to restrict the entrance dose of individual beams. IMRT inverse plan-
ning was done using direct machine parameter optimization (DMPO) [19]. The final dose dis-
tribution was calculated with a collapsed cone convolution (CCC) algorithm on a dose grid of
0.25 cm resolution [20].

Plan evaluation

Per AAPM TG101 recommendations, CI; e, Rso9 and R,ge, defined as the ratios of volumes
receiving 100%, 50% and 20% of prescribed dose to the PTV volume respectively, were used to
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Table 1. Summary of patient characteristics.

Characteristic Median (Range) or No. (%)
Total number of patients 31
PTV Volume (cm®) 38.6 (14.2-188.2)
Number of Beams 7-12

Dose fractionation

125Gy x 4 10 (32%)
18 Gy x 3 9 (29%)

10 Gy x 4 4 (13%)
10Gy x5 8 (26%)
Average effective path length (AEP)?(cm) 8.3 (5.6-17.6)
SEP® 7.0 (5.6-9.5)

Patients count 21 (68%)
LEP °© 12.1 (10.2-17.6)
Patients count 10 (32%)
Tumor location
Central ¢ 9 (29%)
Peripheral 22(71%)
Upper °© 17(55%)
Lower 14(45%)

@ Average effective path length (AEP): a water-equivalent mean path length of all beams from beam
entrance to the isocenter.

b SEP: short effective path length, i.e., AEP <10 cm.

° LEP: long effective path length, i.e., AEP > 10 cm.

9Central tumor: tumors within 2 cm in all directions around the proximal bronchial tree per Radiation
Therapy Oncology Group (RTOG) 0915.

el Upper tumor: including right upper lobe (RUL), and left upper lobe (LUL).

f Lower tumor: including right lower lobe (RLL), and left lower lobe (LLL).

doi:10.1371/journal.pone.0145117.t001

Table 2. Guidelines of dose volume constraints for the organs-at-risk (OARs)

Organ Constraints
Lung (Total lung—ITV) Vaogy <7%
Mean <7Gy
Spinal Cord 18 Gy <1cm®
12 Gy <10 cm?®
Esophagus 35 Gy <1cm®
30 Gy <10cm?®
Brachial plexus Point max <26 Gy
Heart/Great vessels 40 Gy <1cm®
35 Gy <10cm?®
Tracheobronchial tree 40 Gy <1cm®
35 Gy <10cm®
Skin Point max < 30 Gy
Chest wall 30 Gy < 30cm®
60 Gy <1cm®

doi:10.1371/journal.pone.0145117.t002
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quantify the plan quality[21]. Homogeneity index (HI), defined as the ratio of highest dose
received by 5% of PTV to lowest dose received by 95% of PTV, was used to evaluate the dose
heterogeneity inside the PTV [22,23]

Besides the plan quality indices, Dso, D19, and mean dose to the spinal cord, the trachea, the
esophagus, the heart and the skin were compared, where Ds,, and Do, were the doses to at
least 5% and 1% of the organ volume, representing the highest doses received by the OARs. For
lung tissues, the percent volume receiving 20 Gy (Vo) and 5 Gy (Vsgy), and mean lung dose
(MLD) were recorded. The mean doses to each lobe, ipsilateral and contralateral lungs were
also compared. A two-tailed t-test was applied in statistical analysis. A significant difference
was assumed when p is equal to or less than 0.05.

Results
Virtual Linac beam modeling and validation

The 3-MYV virtual Linac model was compared with the Monte Carlo simulations in Fig 1. As
shown in Fig 1(A), the depth dose curves for the fields of 3 x 3 cm?, 10 x 10 cm* and 20 x 20
cm? at 100 cm source-to-surface distance (SSD) were compared between the Pinnacle® predic-
tions and the Monte Carlo simulations. The deviations between the two were shown in the
lower part of Fig 1(A), with less than 1% for all the points except in the build-up region where
up to 5.5% deviation was observed for the field of 3 x 3 cm?. Fig 1(B) showed the lateral dose
profile comparisons at 5 cm depth for the same three fields with better than 2%/2 mm agree-
ment. Furthermore, the dose profile comparisons at 5 and 10 cm depths for 100 cm SSD for
various irregular fields collimated by the multi-leaf collimator (MLC) were found to be within
2%/2 mm between the Pinnacle’ predictions and the Monte Carlo simulations for both the
6-MV and the 3-MV beams (Fig 2). The beam models were also evaluated under inhomoge-
neous conditions. A lung block of 5 cm thick, with a density of 0.3 g/cm® was inserted in a
water phantom from 5 cm depth, while the lateral dimensions were either 15 x 15 cm? or

15 x 7.5 cm®. The PDD and profiles for field sizes of 3 x 3 cm® and 5 x 5 cm” at the locations
marked with dashed lines in the inserts in Fig 3 were extracted for comparison. The compari-
son indicated a better than 2%/2 mm agreement between the Pinnacle’ predictions and the
Monte Carlo simulations at water/lung interface.

PTV coverage

The isodose distributions and dose volume histograms (DVHs) of three plans for a peripheral
lung tumor were shown in Fig 4 as an example. While all the plans met the conformity require-
ments, the 3-MV plan (dashed lines) offered the best OAR sparing compared to the 6-MV
(thick lines) and the dual energy plans (thin lines) as indicated by the DVHs, and tighter dose
envelop and more rapid dose fall-off around PTV as illustrated by the isodose distributions
(notable differences are marked with red arrows).

Based on the average effective path length (AEP), we further classified the 31 patients into
two groups: short AEP (SEP, < 10 cm) and large AEP (LEP, > 10 cm). As shown in Table 3,
the 3-MV plans achieved better dose conformity in SEP group with lower CI; g (1.07£0.14),
Rsg0, (4.68+0.83) and Ry, (27.3£8.40) compared with those in the 6-MV plans (p < 0.01).
Almost no significant difference was observed between 3-MV plans and dual energy plans on
these dose conformity indices. For the PTV dose homogeneity, the 3-MV plans produced the
most uniform dose distribution (mean HI = 1.26, p < 0.001) at the expense of lowest PTV
mean dose (p < 0.001), followed by the dual energy plans (mean HI = 1.28) and the 6-MV
plans (mean HI = 1.30).
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Table 3. Dosimetric comparison of tumor target coverage.

Clioo® SEP ©
LEPf

Rl SEP
LEP

Rzo%° SEP
LEP

HI¢ SEP
LEP

PTV Dmean(Gy) ~ SEP
LEP

ITV Dnean(Gy) ~ SEP
LEP

6 MV
MeantSD Range
1.0910.14  (0.94-1.42)
1.09+0.10  (0.99-1.28)
4.90£0.93 (3.17-6.17)
4.66+0.71 (3.75-6.14)
28.1+9.30  (9.2-47.1)
34.3t11.3  (16.5-50.1)
1.30+0.08 (1.12-1.46)
1.27+0.09 (1.10-1.37)
59.1#3.50 (50.6-63.7)
53.416.10 (44.7-62.5)
64.4£5.10 (54.3-65.7)
57.0¢6.50 (47.1-65.6)

3 MV
Mean*SD Range
1.07+0.14  (0.91-1.43)
1.11£0.15  (0.97-1.40)
4.68+0.83 (3.15-6.27)
4981095 (3.71-6.10)
27.3t8.40  (9.0-42.6)
36.2+12.0 (18.1-54.2)
1.26+0.06  (1.14-1.36)
1.23+0.09 (1.10-1.41)
58.4+3.60 (48.5-66.1)
52.9+6.50 (44.1-63.5)
62.844.50 (52.7-71.3)
55.916.90 (45.0-66.8)

8Cly009: ratio of prescription isodose volume to PTV volume.
P Rsoe: ratio of the volume of the 50% prescription isodose curve to PTV volume.
°Roq,: ratio of the volume of the 20% prescription isodose curve to PTV volume.
9 HI, Heterogeneity Index: ratio of highest dose received by 5% of PTV to lowest dose received by 95% of PTV.
¢ SEP: short effective path length, i.e., average effective path length (AEP) is less than 10 cm.
T LEP: long effective path length, i.e., average effective path length (AEP) is larger than 10 cm.

doi:10.1371/journal.pone.0145117.t003

Dual Energy
MeanSD Range
1.0720.13  (0.92-1.42)
1.09£0.13  (0.96-1.30)
4.81£0.92 (3.09-6.34)
4.56+£0.61 (3.76-5.35)
27.2+8.80  (8.7-44.1)
34.5+11.3 (16.8-50.8)
1.28+0.07 (1.11-1.42)
1.2520.09 (1.10-1.41)
58.6+3.08 (49.5-65.5)
53.246.01 (44.4-63.2)
63.5+4.08 (54.2-70.7)
55.6+6.05 (46.5-66.7)

6X vs 3X

0.01
0.10
< 0.001
0.05
0.01
0.02
< 0.001
0.01
< 0.001
0.06
< 0.001
0.01

P value

6X vs Dual

0.07
0.41
0.04
0.26
0.01
0.44
< 0.001
0.07
0.04
0.19
< 0.001
0.08

3X vs Dual

0.49
0.09
0.02
<0.05
0.38
< 0.001
0.06
0.02
0.14
0.07
0.03
0.02

Within LEP group of 10 thick patients, the dual energy plans showed slightly better dose
conformity with lowest CIyggo, (1.09£0.13), Rsge, (4.56£0.61) and Ryge, (34.5£11.3) compared
with those in the 6-MV plans. The 3-MV plans still provided the most homogeneous doses in
the PTV (HI = 1.23) with lower ITV and PTV mean dose, due to weaker penetration power of

the 3-MV photons.

OAR doses

The dosimetric indices of OARs for all 31 patients are shown in Fig 5. In general, the 3-MV
plans offered significantly better sparing of the normal tissues compared to the 6-MV plans as
indicated by the reduction of the dose indices for various OARs.

Fig 5(A) showed the percentage differences of the lung indices for the 3-MV and dual energy
plans compared to the 6-MV plans. Large variations were observed among 31 patients. The mean
reductions for Vg, and Vs, were 5.2% and 8.2%, and 4.5% and 8.1% for the 3-MV and the dual
energy plans, respectively (p < 0.05), as marked with a symbol of X in Fig 5(A). Comparable
MLDs were observed for all three types of plans. A majority of the patients benefited from the con-
tralateral lung sparing and the mean dose reduction of contralateral lung were 8.4% and 8.6% for
the 3-MV and dual energy plans, respectively (p < 0.001). More detailed dosimetric comparisons
are shown in Fig 6 for the lung and the spinal cord. For SEP group, the 3-MV and dual energy
plans were almost identical in terms of lung dosimetric indices. The average/maximum reductions
of Vaogy» Vsagy and MLD of the lung were 7%/20%, 9%/30% and 5%/10%, respectively in the
3-MV plans (all p < 0.05). On average, the contralateral lung received 11% less dose in SEP group.
For LEP group, the dual energy plans showed slightly superior results in lung dose reduction.

In terms of cord dose, compared to the 6-MV plans, the 3-MV and the dual energy plans
delivered 7.0% and 5.2% less doses to D5, and 7.8% and 4.4% less doses to D, of the spinal
cord, respectively, as shown in Fig 5(B). Meanwhile, the mean cord dose was 3.5% and 3%
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Fig 5. The percentage dosimetric differences for the lung (a), cord (b), esophagus (c), trachea (d), and the heart (e). The percentage difference was

calculated as =7
index for the whole group is marked with a cross x.

Duavjowa Dy, ooy patient is illustrated by a red symbol (left) for 3-MV and green one (right) for dual energy plan. The mean difference of each

doi:10.1371/journal.pone.0145117.9005
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Patients were categorized into short effective path length (SEP, < 10 cm) and Long effective path length (LEP, > 10 cm) groups.
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lower in the 3-MV and dual energy plans, respectively (all p < 0.05). As shown in Fig 6, in SEP
group, the 3-MV and dual energy plans performed equally well with 9% reduction of D5, and
more than 5% reduction in mean dose of cord (p < 0.05). In LEP group, no significant differ-
ence was observed among three types of plans in terms of cord dose distributions (p > 0.05).

For the esophagus and trachea, both the 3-MV and the dual energy plans yielded reduced
mean dose and decreased Dsq, and Dy, as shown in Fig 5(C) and 5(D). For all patients, the
Dso, and Dy, of the esophagus were reduced by 6.7% and 7.5% for the 3-MV and 5.0% and
4.9% for the dual energy plans respectively, as compared to the 6-MV plans. For the trachea,
the Dsg, and D¢, reductions were 9.0% and 6.6% for the 3-MV and 5.2% and 4.6% for the dual
energy plans, respectively. In SEP group, significant sparing was observed in the 3-MV plans as
10.6% and 11.4% Dse, reductions (p<0.05) for the esophagus and trachea, respectively, while
almost identical mean doses were observed in LEP group (p > 0.05).

For the 13 patients with non-negligible heart dose (mean heart dose > 0.7 Gy), both 3-MV
and dual energy plans showed better heart sparing. Compared to the 6-MV plans, the Dsq, and
Do, reductions were 7.4% and 9.3% for the 3-MV and 10.1% and 8.3% for the dual energy
plans, respectively (p < 0.05). The mean heart dose varied from 1.1 to 12.2 Gy in the 6-MV
plans depending on tumor locations, and they were 0.78 to 12.1 Gy in the 3-MV plans and 0.76
to 12.2 Gy in the dual energy plans. On average, the 3-MV and dual energy plans spared the
mean heart doses by 8.5% and 12.5%, respectively (p < 0.05).
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Integral dose and delivery efficiency

Integral dose, defined as the volume integral of the dose deposited in the patient anatomy with
PTV excluded, was compared in Fig 7 for all the 31 patients. Only 3 out of 31 patients received
more than 5% higher integral dose in the 3-MV plans as compared to the 6-MV plans, all of
whom were thick patients with long average effective path length (> 10 cm). For other patients,
the integral dose was comparable to or even lower than the 6-MV plans (p < 0.05). The results
also showed that for thick patients in LEP group, the 6-MV plans were more preferable with
less integral dose, followed by the dual energy plans.

The beam-on time (BOT), calculated as the total monitor units (MU) per fraction divided by the
dose rate of 600 MU/minute commonly used in SBRT, were used to evaluate the delivery efficiency.
As shown in Fig 8, the BOT's were similar among three plans for thin patients (SEP). For thick
patients (LEP), the 3-MV plans required the longest beam-on-time to deliver the prescription doses.

Discussion

In this work, we studied the dosimetric effects of 3-MV photon beams for lung SBRT treat-
ments. Compared to the 6-MV plans, the 3-MV plans showed better target dose conformity
and homogeneity (Fig 4 and Table 3) as well as better sparing of the OARs (Figs 5 and 6) for
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Fig 7. Comparison of integral dose for three plans. Individual patients were represented with the average effective path length (AEP) and categorzed into
two groups (short effective path legnth (SEP) and long effective path legnth (LEP)). Integral doses were calcuated as Dyneangody X Vaody — Dmeanprv X Verv
and normalized to 6-MV plans.

doi:10.1371/journal.pone.0145117.g007
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Fig 8. Comparison of Beam-On-Time for three plans. Individual patients were represented with the average effective path length (AEP) and categorized
into two groups (short effective path legnth (SEP) and long effective path legnth (LEP)).

doi:10.1371/journal.pone.0145117.g008

the thin lung cancer patients. For thick patients, 3-MV photon beams were shown less benefi-
cial due to their weaker penetration power, while those thick patients could benefit from the
dual energy plans with comparable PTV coverage, integral dose and reduced dose to the critical
structures.

Previous studies have demonstrated that intermediate energy photons have potential dosi-
metric benefits for intracranial stereotactic radiosurgery (1.2-MV) [5] and extracranial robotic
IMRT (2-MV/6-MV) [4]. Specifically, Dong et al. investigated the feasibility of using 2-/6-MV
photons for extracranial robotic IMRT treatments of a variety of lesions with one patient per
lesion site [4]. In their study on lung IMRT treatment, Dong et al. showed that 2-MV photons
can reduce the Vogy, Vsy and mean dose of lung tissues by 13%, 30% and 24%, respectively,
compared to 6-MV photons. In this work, we investigated the effects of 3-MV photons on
Linac-based SBRT treatments of 31 lung cancer patients. With 31 lung cancer patients covering
a full range of clinical conditions in terms of patient size, age, gender, tumor volume, tumor
location and tumor laterality, we were able to summarize the dosimetric variations with statisti-
cal significance for plan comparison. Overall, our results indicate that on average, 3-MV pho-
tons can reduce the Vo, Vsgy and MLD by 5.2%, 8.2% and 3.6%, respectively, in comparison
to 6-MV photons. In addition, for thin patients with short effective path length (< 10 cm), the
average/maximum reductions of the Vo, Vs, and MLD were 7%/20%, 9%/30% and 5%/
10%, respectively in the 3-MV plans. The large disparity between Dong et al.’s results and our
results may largely be due to the sample size and different energy of photons being used.
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However, both studies have confirmed more conformal target coverage, better homogeneity
and better OAR sparing in lung IMRT treatments with intermediate energy photons.

The lower penetration power and higher skin dose are thought to be the limitations of inter-
mediate energy photon beams. However, with modulated dose delivery, it has been shown that
radiotherapy has become less restricted by these limitations in low energy X-rays [24,25]. This
is because as photon beams go through patient anatomy from multiple angles, the dose delivery
burden will be largely diluted [26]. In this study, compared to the 6-MV plans, the absolute
mean skin dose increased in the range of 46 to 330 mGy and 2 to 152 mGy for the 3-MV and
dual energy plans, respectively. The median/maximum values of D1% for the skin were found
to be 10.2/21.3 Gy, 12.9/23.0 Gy and 12.4/23.0 Gy for the 6-MV, 3-MV and dual energy plans,
respectively, which were still much lower than the tolerance (maximum dose < 30 Gy). Thus,
skin dose will not be a serious concern in the adoption of intermediate energy photon beams
for clinical applications.

Due to rapid dose fall-off with small penumbra at the field edge, 3-MV photon beams can
help reduce the doses deposited to the adjacent critical structures in lung cancer treatments as
shown in this study. The clinical benefits can be multi-folds. First, our study indicated that
3-MYV photons can on average reduce V,ogy and Vsgy by 7% and 9%, respectively compared to
6-MV photons. Reduced V4G, and Vsgy can potentially reduce the risk of radiation pneumo-
nitis and pulmonary fibrosis, which could compromise the patient’s quality of life [27]. Second,
in this study, 3-MV photons were shown to reduce Dsq, of the cord, trachea and esophagus by
6.7 to 9% and reduce Dy, by 6.6 to 7.8% as compared to 6-MV photons. As the spinal cord, tra-
chea and esophagus are serial organs, even a small volume irradiated beyond its threshold can
potentially lead to whole organ failure [28]. Hence, it is very important to reduce the high
doses to these critical organs. Third, when the lung tumor is proximal to the heart, a fraction of
heart volume could receive a relatively high dose which raises potential risk of radiation-related
heart diseases [29,30]. Our study indicated that the 3-MV plans outperformed the 6-MV plans
with an average of 7.4% Ds,, reduction (p < 0.05) and 8.5% mean dose reduction to the heart
(p < 0.05), which translated into 0.72 Gy and 0.35 Gy in absolute dose reduction in Ds,, and
mean heart dose, respectively.

Another potential benefit of using 3-MV photon beams could be in the treatment of pediat-
ric cancer patients who have relatively small dimensions with close proximity between the
tumor and the critical structures. As children are far more susceptible to radiation induced sec-
ondary malignancies than adults, the radiation induced toxicities to pediatric cancer patients
have been actively investigated in the past 50 years [31]. In this study, the considerable
improvement in target coverage, target homogeneity and OAR sparing related to 3-MV photon
beams in thin lung cancer patients implies that intermediate energy photon beams such as
3-MV photons could be a better choice for radiation treatments of pediatric cancer patients.
Further study will be needed to explore the role of intermediate energy photons in the radio-
therapeutic management of pediatric cancers.

It has been shown that MV fan beam CT (MVCT) with effective energy of 3.5-MV from a
Helical Tomotherapy unit can provide sufficient contrast for soft-tissue delineation [32,33].
Several studies have further shown that with low-Z targets in linear accelerators producing
photon beams at 2.35-MV and 1.9-MV, the image quality could be greatly enhanced as com-
pared to the 6-MV photons [34,35]. In fact, 2.5-MV photon beams from a Varian TrueBeam
linac have been available in the clinic for routine portal imaging with better image quality than
conventional 6-MV photons. Hence, it is likely that a single intermediate energy photon beam
can be used for both radiation treatments and image guidance concurrently for certain applica-
ble situations such as lung cancer treatments and pediatric patients. We will report our investi-
gation results on this topic in our future communications.
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Conclusion

Compared to 6-MV photon beams, 3-MV photon beams have statistically significant dosimet-
ric benefits in treating lung tumors in terms of improved tumor coverage and reduced doses to
the adjacent critical structures. Intermediate energy photons (<6-MV) could be considered
and added into current radiotherapy arsenal to reduce the radiation-related toxicities while
maintaining sufficient tumor control in lung cancer radiotherapy.
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