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Background: Simultaneous multislice (SMS) technology improves acquisition efficiency of diffusion-
weighted imaging (DWI). This study aimed to evaluate the performance of SMS-DWI in image quality and 
apparent diffusion coefficient (ADC) measurements for focal liver lesions (FLLs) as compared with that of 
conventional DWI (CON-DWI).
Methods: The institutional ethics committee of West China Hospital, Sichuan University approved this 
single-center, prospective study conducted from February 2021 to March 2022. Free-breathing SMS-DWI 
and CON-DWI examinations were acquired on a 3-T scanner with b-values of 50, 400, and 800 s/mm2. 
Qualitative image quality and quantitative measurements of signal-to-noise ratio (SNR), contrast-to-noise 
ratio (CNR), and ADC were compared between SMS-DWI and CON-DWI. The ADC values for FLLs 
were further compared between SMS-DWI and CON-DWI in different patient subgroups. The intra- and 
interreader agreements were assessed. Significance was set at P<0.05.
Results: This study included 116 patients (96 males, 20 females; mean age 52.0±10.7 years) with 119 FLLs. 
No significant differences were observed between SMS-DWI and CON-DWI regarding overall image 
quality in any b-value DWIs, and there were also no differences observed between SMS-DWI and CON-
DWI (b=800 s/mm2) for either SNR or CNR (both P values >0.05). ADC values obtained from CON-DWI 
were higher than those from SMS-DWI in all FLLs [(1.31±0.47)×10−3 vs. (1.26±0.46)×10−3 mm2/s; P=0.004], 
and similar findings were observed across the different patient subgroups. The consistency analysis showed 
intrareader intraclass correlation coefficient (ICC) values of 0.792–0.944 and interreader ICC values of 
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Introduction

Accurate characterization of focal liver lesions (FLLs) is 
essential for appropriate patient management. Benign 
FLLs, such as cysts and hemangiomas, usually require 
need regular follow-up, while malignant liver tumors 
necessitate treatment, such as surgical resection or liver  
transplantation (1). Magnetic resonance imaging (MRI) has 
been widely applied in the differential diagnosis of FLLs 
(2,3), and diffusion-weighted imaging (DWI) is one of the 
most useful tools in this regard (4-9).

The DWI technique is based on the random Brownian 
motion of water molecules within the tissues, and it can 
reflect the degree of restricted diffusion of biological  
tissues (10). The quantitative apparent diffusion coefficient 
(ADC), typically derived using a monoexponential model 
from DWI, offers important diffusional information and 
serves as a valuable imaging biomarker. For instance, 
ADC can be used for the differentiation of benign and 
malignant FLLs (5), the detection and monitoring of liver  
metastases (11), and the prediction of liver tumor aggressiveness 
and patient prognosis (4).

Despite its advantages, the single-shot conventional 
DWI (CON-DWI) still encounters certain problems in 
liver imaging (12), for example, a reduced signal-to-noise 
ratio (SNR) when the breath-hold technique in DWI 
is being employed and a relatively lengthy acquisition 
times associated with triggered DWI techniques. The 
long acquisition duration can lead to patient discomfort 
and hinder efficient clinical workflow. Moreover, artifacts 
such as respiratory motion can degrade the image quality 
by blurring. Simultaneous multislice (SMS) imaging is 
a technique that allows scanning with reduced duration 
via simultaneous excitation and acquisition of multiple  
slices (13). Typically, SMS-DWI uses a multiband radio 

frequency (RF) excitation and echo-planar imaging (EPI) 
readout in combination with the blipped controlled 
aliasing in parallel imaging resulting in higher acceleration 
(CAIPIRINHA) technique (14,15). SMS-DWI has been 
proven feasible, has a significantly shortened scan duration, 
and has shown great promise in the imaging of the liver (16), 
pancreas (17), prostate (18), rectum (19), and kidney (20).

Previous studies have demonstrated that SMS-DWI 
with an acceleration factor of 2 can significantly reduce 
the scan time while maintaining a similar SNR and image 
quality (21). However, the effect of the SMS technique 
on quantitative parameters of abdominal DWI remains 
controversial. Some studies have reported no significant 
difference in liver ADC values between SMS-DWI and 
CON-DWI (22,23). Meanwhile, others have indicated 
that SMS-DWI yields lower or higher ADC values in 
abdominal organs than does CON-DWI (16,21,24,25). 
Moreover, previous research in this area has mainly focused 
on validating the feasibility of SMS-DWI in abdominal 
imaging, often with limited sample sizes (16,21,22,26). 
Therefore, the application of SMS-DWI for patients with 
FLLs remains to be clarified by more intensive investigation.

Therefore, this prospective study aimed to evaluate the 
performance of SMS-DWI in image quality [including SNR 
and contrast-to-noise ratio (CNR) measurements] and ADC 
measurements as compared with that of the clinical standard 
CON-DWI. We present this article  in accordance with 
the GRRAS reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-24-341/rc).

Methods

Patient selection

This prospective study was approved by the ethics 

0.758–0.861 for quantitative measurements (SNR, CNR, and ADC) and kappa values of 0.609–0.878 for 
qualitative image quality.
Conclusions: SMS-DWI achieved a 37% reduction in scan time compared to CON-DWI while 
maintaining comparable overall image quality. Notably, the ADC values for FLLs were observed to be 
quantitatively lower with SMS-DWI.
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committee of West China Hospital, Sichuan University 
(No. 2021[107]) and was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). Informed 
consent was obtained from 336 consecutive patients 
between February 2021 and March 2022. The inclusion 
criteria for patients were (I) an age ≥18 years and (II) a 
clinical history, previous radiological exams, or laboratory 
tests suggesting FLLs. Meanwhile, the exclusion criteria 
were as follows: (I) contraindications to MRI examinations; 
(II) the absence of definite lesion; (III) nonprimary lesions; 
and (IV) an unclear diagnosis. All malignant and some 
benign FLLs were confirmed histopathologically, while 
the remaining benign FLLs were identified through 
radiological examinations, serological tumor markers, and 
clinical follow-up.

MRI protocol 

All MRI scans were performed on a 3-T MRI scanner 
(MAGNETOM Skyra, Siemens Healthineers, Erlangen, 
Germany) equipped with an 18-channel phased-array 
coil for abdominal and spine imaging. Patients were 
instructed to fast for 4 to 6 hours before the examination. 
In addition to routine clinical T1-weighted imaging 
(T1WI) and T2-weighted imaging (T2WI) for localization, 
free-breathing SMS-DWI and CON-DWI sequences 
were acquired with b-values of 50, 400, and 800 s/mm2, 
and the SMS acceleration factor was 2. The acquisition 
t ime for  SMS-DWI and CON-DWI was  52  and  
83 seconds, respectively. The corresponding ADC 
maps were generated using the monoexponential fitting  
algorithm (27). The detailed scanning parameters are 
summarized in Table 1.

Image analysis 

Qualitative and quantitative evaluations were independently 
performed by two radiologists with 5 and 7 years of 
experience in abdominal imaging, respectively. The 
radiologists were blinded to the clinical information and 
pathological results of the patients.

Image quality assessment
DWI images (b-values of 50, 400, and 800 s/mm2) were 
reviewed and rated on a 5-point Likert scale for image 
quality evaluation (28). The evaluation indicators included 
overall image quality, clarity of intrahepatic vessels, 
sharpness of hepatic edge, image artifact, and lesion 
conspicuity.

SNR and CNR measurements
The signal intensity (SI) of the lesion and liver parenchyma 
and the standard deviation (SD) of background noise were 
measured using approximately 300-pixel circular regions 
of interest (ROIs) on the DWI image (800 s/mm2), as 
illustrated in Figure 1. The ROI of the lesion was positioned 
centrally within the tumor, with areas of hemorrhage and 
necrosis being avoided, while the ROI of liver parenchyma 
was placed in the right lobe to avoid vasculature and 
prominent artifacts. The ROI for background noise was 
positioned in the upper left corner of the image.

The SNR was calculated as the ratio of the average SI of 
the liver parenchyma to the SD of the background noise for 

Table 1 The detailed acquisition parameters of SMS-DWI and 
CON-DWI 

Parameter SMS-DWI CON-DWI

Image acquisition technique Free-breathing Free-breathing

Repetition time (ms) 2,000 3,200

Echo time (ms) 63 63

Echo spacing (ms) 0.5 0.5

Field of view (mm2) 400×288 400×288

Scan matrix 128×94 128×94

Slice thickness (mm) 5 5

Slice gap (mm) 1.5 1.5

No. of slices 22 22

Bandwidth (Hz/pixel) 2,442 2,442

b-value (s/mm2) 50, 400, 800 50, 400, 800

No. of signals acquired 1, 2, 4 1, 2, 4

Diffusion mode 3-Scan Trace 3-Scan Trace

Diffusion scheme Monopolar Monopolar

Parallel acceleration GRAPPA 2 GRAPPA 2

SMS acceleration factor 2 –

Fat saturation* Fat sat Fat sat

Acquisition time (s) 52 83

*, fat saturation was performed with the chemical shift method. 
SMS, simultaneous multislice; DWI, diffusion-weighted imaging; 
CON, conventional; GRAPPA, generalized autocalibrating partial 
parallel acquisition.
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DWI images with b-values of 800 s/mm2 as follows (23,29):

liver parenchyma backgroundSNR SI SD=  	 [1]

The CNR was calculated as the absolute difference 
between the SI of the lesion and the SI of the liver divided 
by the SD of the background noise for images with b-values 
of 800 s/mm2 as follows (30,31):

lesion liver parenchyma backgroundCNR SI SI SD= − 	 [2]

ADC measurements
Quantitative ADC analysis was conducted 1 month after 
subjective scoring, with each radiologist independently 
performing two measurements. The average ADC 
measurements from the two radiologists were used for 
statistical analysis. The specific measurement steps were as 
follows: the slice with the maximum section of the tumor 
tissue on the DWI image (b=400 s/mm2) and the slice 
above and below it (a total of three slices) were selected to 
delineate the tumor, with T1WI and T2WI images serving as 
the reference. A free-hand ROI was manually drawn along 
the entire tumor margin on each of the three slices, with 
hemorrhage, necrosis, and calcification within the tumor 
being avoided. The ROIs in the DWI images (b=400 s/mm2) 
were then copied to the ADC maps, as illustrated in Figure 2. 
The ROIs on the axial planes of the SMS-DWI and CON-
DWI sequences were kept as consistent as possible.

Statistical analysis 

Descriptive statistics are presented as the mean ± SD or as 
the median and interquartile range depending on the data 
distribution. The Wilcoxon signed-rank test was used to 
compare the image quality between SMS-DWI and CON-
DWI. For quantitative data, normality was tested with 
the Kolmogorov-Smirnov test and Shapiro-Wilk test, and 
the Wilcoxon signed-rank test or paired t-test was used 
to compare the SNR, CNR, and the ADC measurements 
between SMS-DWI and CON-DWI. The inter- or 
intrareader agreement was computed by weighted kappa 
coefficients or intraclass correlation coefficients (ICCs), 
with 0.01–0.20 representing slight agreement, 0.21–0.40 fair, 
0.41–0.60 moderate, 0.61–0.80 good, and 0.81–1.00 excellent 
agreement (32). The comparison of ROI segmentations 
by two radiologists was assessed using the Dice similarity 
coefficient (DSC) calculated in Python (Python Software 
Foundation, Wilmington, DE, USA); details of the 
segmentation and calculation process are provided in the 
Appendix 1. Qualitative image quality assessment and 
quantitative measurements were analyzed with the MR 
Body Diffusion tool v. 1.4.0. The ROI segmentations 
were performed using ITK-SNAP v. 4.2.0) (33). Statistical 
analysis was performed using SPSS 25 (IBM Corp., Armonk, 
NY, USA) and MedCalc v. 20.1 (MedCalc Software, Ostend, 
Belgium) software. Differences were considered statistically 
significant at a bilateral P value <0.05.

Results

Patients and lesions

A total of 116 patients (96 males and 20 females; mean age 
52.0±10.7 years) comprising 119 FLLs were included in this 
study. The basic clinical information of the included patients 
is summarized in Table 2. FLLs included hepatocellular 
carcinoma (n=79), intrahepatic cholangiocarcinoma (iCCA) 
(n=10), combined hepatocellular and cholangiocarcinoma 
(n=2), hemangioma (n=15), focal nodular hyperplasia 
(n=5), hepatic cyst (n=3), hepatocellular adenoma (HCC) 
(n=2), angiomyolipoma (n=1), hepatic regenerative nodule 
(n=1), and inflammatory myofibroblastic tumor (n=1). 
Representative images obtained by SMS-DWI and CON-
DWI are shown in Figures 3-6.

Comparison of image quality

The subjective scores for SMS-DWI and CON-DWI of 

Figure 1 Measurement of SI and SD of the background noise on 
the diffusion-weighted image (b=800 s/mm2). A circular ROI of 
approximately 300 pixels was used. The lesion ROI was placed 
centrally within the tumor, with areas of hemorrhage and necrosis 
being excluded. The liver parenchyma ROI was placed in the right 
lobe, with vasculature and prominent artifacts being avoided. The 
background noise ROI was positioned in the upper left corner 
of the image. ROI, region of interest; SI, signal intensity; SD, 
standard deviation.

https://cdn.amegroups.cn/static/public/QIMS-24-341-Supplementary.pdf
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Table 2 Basic clinical information of the included patients 

Characteristics All patients (n=116) Patients with malignant FLLs (n=90) Patients with benign FLLs (n=26)

Age (years)† 52.0±10.7 [28–76] 53.4±10.6 [29–76] 46.8±10.6 [28–67]

Male/female 96/20 77/13 19/7

BMI (kg/m2) 23.4±2.8 23.1±2.8 24.2±2.8

Etiology of liver disease

Hepatitis B virus 72 (62.1) 67 (74.4) 5 (19.2)

Hepatitis C virus 2 (1.7) 2 (2.2) 0 (0)

Both hepatitis B & C virus 2 (1.7) 2 (2.2) 0 (0)

Others 40 (34.5) 19 (21.1) 21 (80.8)

Tumor size (cm)†* 5.50±2.7 [1.1–13.2] 5.8±2.5 [1.1–10.5] 4.3±2.8 [1.5–13.2]

Cirrhosis 46 (39.7) 41 (45.6) 5 (19.2)

BCLC stage‡

0 – 5 (6.3) –

A – 57 (72.2) –

B – 17 (21.5) –
†, data are expressed as the mean ± standard deviation with ranges in square brackets; *, data were calculated by the size of each lesion; 
‡, BCLC stage is suitable for hepatocellular carcinoma (n=79). Unless indicated otherwise, data represent the number of patients, with 
percentages in parentheses. FLL, focal liver lesion; BMI, body mass index; BCLC, Barcelona Clinic Liver Cancer.

Figure 2 The illustrations of the ROI delineation process for quantitative ADC measurements of FLLs. (A,C) The diffusion-weighted 
images acquired at 400 s/mm2. First, the lesion ROI is defined on the DWI image (b=400 s/mm2) and then applied to the corresponding 
ADC maps (B,D). ROI, region of interest; ADC, apparent diffusion coefficient; FLL, focal liver lesion.

A B

C D
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each b-value are summarized in Table 3. No significant 
differences were observed between SMS-DWI and CON-
DWI regarding overall image quality, sharpness of hepatic 
edge, and image artifact in any b-values. However, CON-
DWI demonstrated significantly superior clarity of 

intrahepatic vessels (4.33±0.61 vs. 4.29±0.62; P=0.031) on 
b=50 s/mm2 images. Additionally, on b=400 s/mm2 and 
b=800 s/mm2 images, SMS-DWI exhibited significantly 
better lesion conspicuity than did CON-DWI (b=400 s/mm2: 
4.50±0.72 vs. 4.47±0.73, P=0.037; b=800 s/mm2: 4.14±0.84 

Figure 3 Representative images with SMS-DWI (upper row) and CON-DWI (lower row) of a 58-year-old male patient with pathologically 
confirmed hepatocellular carcinoma. Diffusion-weighted trace images with three different b-values (b=50, b=400, b=800 s/mm2) and the 
corresponding ADC maps are shown, with the arrows pointing to the lesion. The average ADC measurements were 1.10×10−3 mm2/s in 
SMS-DWI and 1.14×10−3 mm2/s in CON-DWI. SMS, simultaneous multislice; DWI, diffusion-weighted imaging; ADC, apparent diffusion 
coefficient; CON, conventional.

Figure 4 Representative images with SMS-DWI (upper row) and CON-DWI (lower row) of a 29-year-old male patient with pathologically 
confirmed hepatocellular carcinoma. Diffusion-weighted trace images with three different b-values (b=50, b=400, b=800 s/mm2) and the 
corresponding ADC maps are shown, with the arrows pointing to the lesion. The average ADC measurements were 1.08×10−3 mm2/s  
in SMS-DWI and 1.11×10−3 mm2/s in CON-DWI. SMS, simultaneous multislice; DWI, diffusion-weighted imaging; ADC, apparent 
diffusion coefficient; CON, conventional.
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vs. 4.08±0.92, P=0.013). The interreader agreement of the 
two radiologists was good to excellent, with kappa values 
ranging from 0.609 [95% confidence interval (CI): 0.479–
0.782] to 0.878 (95% CI: 0.792–0.936), as presented in 
Table S1.

Comparison of SNR and CNR measurements

The SNR and CNR values for SMS-DWI and CON-
DWI are presented in Table 4. There were no statistically 
significant differences in SNR or CNR between SMS-DWI 

Figure 5 Representative images with SMS-DWI (upper row) and CON-DWI (lower row) of a 59-year-old male patient with pathologically 
confirmed hepatic cavernous hemangioma. Diffusion-weighted trace images with three different b-values (b=50, b=400, b=800 s/mm2) and 
the corresponding ADC maps are shown, with the arrows pointing to the lesion. The average ADC measurements were 1.76×10−3 mm2/s  
in SMS-DWI and 1.81×10−3 mm2/s in CON-DWI. SMS, simultaneous multislice; DWI, diffusion-weighted imaging; ADC, apparent 
diffusion coefficient; CON, conventional.

Figure 6 Representative images with SMS-DWI (upper row) and CON-DWI (lower row) of a 37-year-old female patient with hepatic 
cavernous hemangioma as confirmed through imaging and follow-up. Diffusion-weighted trace images with three different b-values (b=50, 
b=400, b=800 s/mm2) and the corresponding ADC maps are shown, with the arrows pointing to the lesion. The average ADC measurements 
were 2.46×10−3 mm2/s in SMS-DWI and 2.47×10−3 mm2/s in CON-DWI. SMS, simultaneous multislice; DWI, diffusion-weighted imaging; 
ADC, apparent diffusion coefficient; CON, conventional.
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and CON-DWI on the DWI (b=800 s/mm2). Specifically, 
the SNR values for SMS-DWI and CON-DWI were 
140.6±58.1 and 138.5±54.6 (P=0.47), respectively, while the 
CNR values were 308.6±245.3 and 304.7±227.0 (P=0.33), 
respectively. The intra- and interreader agreement for 
SNR and CNR measurements between the two radiologists 
ranged from moderate to excellent, with ICC values from 
0.758 (95% CI: 0.668–0.809) to 0.821 (95% CI: 0.805–
0.851), as presented in Table S2.

Comparison of ADC measurements

The ADC measurements of SMS-DWI and CON-DWI 
based on the category of FLLs are presented in Table 5. 

ADC values obtained from CON-DWI were higher than 
those from SMS-DWI in all FLLs (P=0.004). Specifically, 
for HCC and iCCA, CON-DWI yielded higher ADC 
values than did SMS-DWI [HCC: (1.14±0.22)×10−3 vs. 
(1.09±0.25)×10−3 mm2/s, P=0.003; iCCA: (1.14±0.22)×10−3 
vs. (1.09±0.25)×10−3 mm2/s, P=0.040]. Furthermore, similar 
findings were observed in the other types of FLLs, although 
the differences were not statistically significant.

The intra- and interreader agreement for quantitative 
ADC measurements between the two radiologists ranged 
from moderate to excellent, with ICC values from 0.776 
(95% CI: 0.691–0.832) to 0.944 (95% CI: 0.925–0.973), 
as presented in Table S3. The DSC values for ROI 
segmentations by the radiologists on SMS-DWI and CON-

Table 3 Comparison of image quality between SMS-DWI and CON-DWI 

Category
SMS-DWI CON-DWI

P value
Reader 1 Reader 2 Average Reader 1 Reader 2 Average

Overall image quality

b=50 s/mm2 4.61 [4–5] 4.56 [4–5] 4.58 [4–5] 4.60 [4–5] 4.55 [4–5] 4.58 [4–5] 0.317

b=400 s/mm2 4.26 [4–5] 4.24 [4–5] 4.25 [4–5] 4.28 [4–5] 4.25 [4–5] 4.27 [4–5] 0.059

b=800 s/mm2 3.85 [3–4] 3.81 [3–4] 3.82 [3–4] 3.87 [3–4] 3.84 [3–4] 3.85 [3–4] 0.058

Clarity of intrahepatic vessels

b=50 s/mm2 4.32 [4–5] 4.27 [4–5] 4.29 [4–5] 4.39 [4–5] 4.26 [4–5] 4.33 [4–5] 0.031*

b=400 s/mm2 3.95 [3–4] 3.92 [3–4] 3.93 [3–4] 3.93 [3–4] 3.91 [3–4] 3.92 [3–4] 0.275

b=800 s/mm2 3.54 [3–4] 3.50 [3–4] 3.52 [3–4] 3.55 [3–4] 3.50 [3–4] 3.53 [3–4] 0.157

Sharpness of hepatic edge

b=50 s/mm2 4.51 [4–5] 4.45 [4–5] 4.48 [4–5] 4.50 [4–5] 4.47 [4–5] 4.48 [4–5] 0.739

b=400 s/mm2 4.23 [4–5] 4.12 [4–5] 4.18 [4–5] 4.27 [4–5] 4.13 [4–5] 4.20 [4–5] 0.058

b=800 s/mm2 3.86 [3–4] 3.71 [3–4] 3.74 [3–4] 3.87 [3–4] 3.70 [3–4] 3.76 [3–4] 0.157

Artifacts

b=50 s/mm2 3.98 [3–4] 3.97 [3–4] 3.97 [3–4] 3.99 [3–4] 3.98 [3–4] 3.99 [3–4] 0.074

b=400 s/mm2 3.91 [3–4] 3.88 [3–4] 3.90 [3–4] 3.93 [3–4] 3.91 [3–4] 3.92 [3–4] 0.051

b=800 s/mm2 3.80 [3–4] 3.82 [3–4] 3.81 [3–4] 3.85 [3–4] 3.82 [3–4] 3.83 [3–4] 0.089

Lesion conspicuity

b=50 s/mm2 4.72 [4–5] 4.74 [4–5] 4.73 [4–5] 4.71 [4–5] 4.73 [4–5] 4.72 [4–5] 0.480

b=400 s/mm2 4.49 [4–5] 4.50 [4–5] 4.50 [4–5] 4.46 [4–5] 4.47 [4–5] 4.47 [4–5] 0.037*

b=800 s/mm2 4.15 [4–5] 4.12 [4–5] 4.14 [4–5] 4.09 [3–5] 4.06 [3–5] 4.08 [3–5] 0.013*

The subjective scores on a 5-point scale are presented as means [interquartile ranges], with 1 indicating the lowest quality and 5 indicating 
the highest quality. The P values were calculated as a comparison of the average ratings between the SMS-DWI and CON-DWI. *, 
statistically significant (P<0.05). SMS, simultaneous multislice; DWI, diffusion-weighted imaging; CON, conventional. 
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DWI ranged from 0.749 to 0.789, as shown in Table S4. 
This indicates consistent results between the radiologists, 
with no significant difference in DSC values between the 
SMS-DWI and CON-DWI sequences (P=0.101–0.582).

Discussion

Our study demonstrated that  SMS-DWI with an 
acceleration factor of 2 can reduce the acquisition time by 
37% while maintaining or slightly improving diagnostic 
image quality without significant artifacts. The consistency 
analysis showed moderate-to-excellent agreement for both 
intrareader and interreader reliability, indicating robust 

results.
SMS technology improves scanning efficiency, shortens 

acquisition time, expedites clinical examinations, and 
enhances patient comfort and cost-effectiveness. Previous 
studies have demonstrated how SMS-DWI can be used 
to reduce the scan time in various imaging examinations 
such as abdominal imaging (21,24,34), whole-body imaging 
(35,36), prostate imaging, and breast imaging (18,37,38), 
with comparable or improved image quality (16,17). 

In SMS technology, multiple slices are simultaneously 
excited and correspondingly read out (15,39).  By 
incorporating a blipped CAIPIRINHA technique, the 
reconstruction algorithm can separate the concurrently 

Table 5 Comparisons of ADC measurements for different FLL categories between SMS-DWI and CON-DWI 

Lesion type N
SMS-DWI CON-DWI

P values
Reader 1 Reader 2 Average Reader 1 Reader 2 Average

All lesions 119 1.25±0.47 1.27±0.46 1.26±0.46 1.32±0.49 1.30±0.48 1.31±0.47 0.004*

HCC 79 1.09±0.25 1.10±0.24 1.09±0.24 1.16±0.27 1.15±0.25 1.16±0.26 0.001*

iCCA 10 0.99±0.16 1.01± 0.17 1.00±0.16 1.05±0.17 1.04±0.14 1.05±0.16 0.040*

CHC 2 1.03±0.02 1.08± 0.01 1.06±0.02 1.05±0.01 1.08±0.01 1.06±0.01 –

Hemangioma 15 1.95±0.58 1.98±0.55 1.96±0.57 1.97±0.57 2.01±0.59 1.99±0.59 0.420

FNH 5 1.40±0.08 1.37±0.09 1.38±0.09 1.41±0.07 1.38±0.06 1.40±0.07 0.457

Cyst 3 2.37±0.07 2.33±0.08 2.35±0.06 2.38±0.12 2.35±0.09 2.37±0.10 0.601

Adenoma 2 1.22±0.07 1.25±0.06 1.24±0.06 1.27±0.07 1.33±0.06 1.31±0.06 –

IMT 1 1.00±0.03 0.95±0.02 0.98±0.05 1.04±0.04 1.03±0.02 1.04±0.03 –

Angiomyolipoma 1 1.11±0.02 1.08±0.02 1.10±0.03 1.20±0.04 1.22±0.04 1.21±0.04 –

RN 1 1.55±0.02 1.52±0.04 1.54±0.04 1.56±0.03 1.53±0.03 1.55±0.04 –

ADC measurements are presented as the mean ± standard deviation (×10−3 mm2/s). The P values were calculated as a comparison of the 
average ADC measurements between the SMS-DWI and CON-DWI. *, statistically significant (P<0.05). ADC, apparent diffusion coefficient; 
FLL, focal liver lesion; SMS, simultaneous multislice; DWI, diffusion-weighted imaging; CON, conventional; N, number of lesions; HCC, 
hepatocellular carcinoma; iCCA, intrahepatic cholangiocarcinoma; CHC, combined hepatocellular and cholangiocarcinoma; FNH, focal 
nodular hyperplasia; IMT, inflammatory myofibroblastic tumor; RN, regenerative nodule.

Table 4 Comparisons of SNR and CNR between SMS-DWI and CON-DWI 

Parameter
SMS-DWI CON-DWI

P value
Reader 1 Reader 2 Average Reader 1 Reader 2 Average

SNR 133.5±61.2 143.9±54.5 140.6±58.1 136.1±57.3 144.4±52.2 138.5±54.6 0.47

CNR 296.5±227.8 315.0±251.4 308.6±245.3 301.6±219.7 311.9±238.5 304.7±227.0 0.33

Data are expressed as the mean ± standard deviation. The SNR and CNR were measured on DWI (b=800 mm2/s) images. The P values 
were calculated as a comparison of the average SNR and CNR measurements between the SMS-DWI and CON-DWI. SNR, signal-to-
noise ratio; CNR, contrast-to-noise ratio; SMS, simultaneous multislice; DWI, diffusion-weighted imaging; CON, conventional.
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acquired multiple slices (13,21), reducing repetition time 
(TR) or allowing broader coverage (36), thinner slice gaps 
(39,40), and more advanced diffusion protocols (23,41-43).  
Unlike parallel imaging, SMS technology does not 
involve reduced k-space sampling and is not susceptible to 
SNR loss, although SNR can decrease with significantly 
shortened TR (13). An acceleration factor of 2 is optimal 
for liver imaging, balancing scan time, image quality, and 
ADC measurements (15,23).

In liver imaging, SMS-DWI yields image quality 
comparab l e  to  o r  be t t e r  than  doe s  CON-DWI 
(17,22,23,39,44,45). Obele et al. (22) found that in high 
b-value (b=800 s/mm2) images, SMS-DWI achieved 
significantly higher overall image scores compared to 
CON-DWI. Tavakoli et al. (46) reported that respiratory-
triggered SMS-DWI optimized image quality, provided 
better anatomical details, and reduced artifacts. Additionally, 
the high scanning efficiency of SMS-DWI can be used to 
enhance spatial resolution, thereby improving the detection 
rate of small lesions. Xu et al. (45) reported that SMS-DWI 
could detect more liver metastases (n=523) within the same 
scan time as compared to CON-DWI (n=348).

Currently, there is conflicting evidence regarding the 
impact of the SMS technique on liver DWI quantitative 
parameters. Some studies have found no significant 
difference in liver ADC values between SMS-DWI and 
CON-DWI, while others suggest that SMS-DWI increases 
liver ADC values (22,25). In our study, ADC values 
measured by CON-DWI exceeded those from SMS-DWI, 
especially in the HCC and iCCA groups. Similar findings 
were observed in other groups, but the differences were 
not statistically significant, likely due to the small sample 
size. Taron et al. also found that SMS-DWI resulted in 
lower ADC values in abdominal organs than did CON-
DWI (16,21,24), with more significant differences at 
an acceleration factor of 3. They speculate that this 
might be due to incomplete recovery of the longitudinal 
magnetization vector (T1 saturation effect) affecting DWI 
and ADC signals. The partial volume effect of intravoxel fat 
signals can also affect ADC values (47). The ADC may be 
influenced by field strength, scanner type, the combination 
of b-values used, and different respiratory schemes 
(12,44,48). Absolute ADC values can differ among imaging 
protocols, complicating direct comparisons and potentially 
requiring different ADC thresholds for each sequence (49).

Notably, recent studies have indicated that T2 relaxation 
time significantly impacts ADC measurements, often more 
than does molecular diffusion (50-52). Wáng et al. found that 

short T2 times (<60 milliseconds) are negatively correlated 
with ADC values, while long T2 times (>80 milliseconds)  
are positively correlated (51). Liver tumors typically exhibit 
longer T2 times but lower ADC values, suggesting that 
T2 time has a more significant effect on DWI signals than 
does actual diffusion (52). Thus, in clinical applications, 
it is crucial to consider the impact of T2 time on ADC 
measurements to improve the accuracy of MRI diffusion 
imaging.

Different breathing schemes can affect absolute ADC 
values (16,26). Pei et al. found that breath-holding SMS-
DWI provided comparable scan time reduction, image 
quality, good SNR, and the highest ADC repeatability 
at 3-T MRI as compared to CON-DWI and other 
breathing schemes (26). However, their study involved 
young, healthy volunteers with good breath-holding 
capability. Multiple studies have shown that SMS-DWI 
combined with respiratory triggering improves the image 
quality of the liver and kidneys compared to CON-DWI 
(16,20,46). Our study conducted DWI under free-breathing 
conditions without cardiac gating, potentially leading to 
motion artifacts and signal loss, especially in the left liver 
lobe (53). These artifacts degrade image quality, affecting 
lesion visibility and diagnostic accuracy. Incorporating 
motion compensation techniques such as advanced image 
registration or motion correction algorithms could address 
these challenges (53-55). Führes et al. (55) evaluated several 
postprocessing algorithms for improving flow-compensated 
liver diffusion image quality, finding the weighted averaging 
algorithm particularly effective in enhancing image quality 
and lesion conspicuity.

This study involved several limitations which should 
be acknowledged. First, the protocol was designed to be 
concise for routine clinical workflows, with only a single 
SMS acceleration setting being used (acceleration factor 
of 2). The potential of using higher acceleration factors 
remains unexplored and warrants further investigation, 
including in phantom model experiments. Second, the 
effects of other MRI sequences or different breathing 
schemes were not examined. We focused on applying 
SMS technology to DWI imaging in free-breathing mode, 
assessing its impact on scan time, image quality, and ADC 
measurements. Third, we only analyzed the average ADC 
measurements and did not include other relevant variables 
(such as maximum, minimum, or percentile) (56). Fourth, 
the sample size in some groups was relatively small, 
limiting further analysis. Fifth, subjective assessments of 
image quality and manual ROI drawings for quantitative 
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measurement could have introduced bias.
Future studies should be based on larger sample sizes to 

clarify the effects of SMS on quantitative measurements, 
image quality, and diagnostic performance with different 
acquisition parameters (scanners, breathing schemes, spatial 
resolutions, b-value combinations), diffusion models, 
postprocessing techniques, ROI delineation methods for 
lesions, and selection of ADC values (mean, minimum, etc.). 
This will help determine the optimal liver SMS settings 
for clinical use. Additionally, exploring other clinical 
applications of SMS technology beyond DWI sequences is 
recommended.

Conclusions

SMS-DWI achieved a 37% reduction in scan time 
compared to CON-DWI, maintaining similar overall image 
quality. This positions SMS-DWI as a viable alternative to 
CON-DWI within standard liver protocols; however, some 
caution should be used in interpreting its lower ADC values 
in diagnostic assessments.
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