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ABSTRACT
Using transmission electron microscopy (TEM) we recently characterized a microglial phenotype
that is induced by chronic stress, fractalkine receptor deficiency, aging, or Alzheimer disease
pathology. These ‘dark’ microglia appear overly active compared with the normal microglia,
reaching for synaptic clefts, and extensively engulfing pre-synaptic axon terminals and post-
synaptic dendritic spines. From these findings we hypothesized that dark microglia could be
specifically implicated in the pathological remodeling of neuronal circuits, which impairs learning,
memory, and other essential cognitive functions. In the present addendum we further discuss about
the possible causes of their dark appearance under TEM.
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Introduction

Using immunohistochemical TEM we recently uncov-
ered the existence of an ultrastructurally distinct micro-
glial phenotype that is predominantly associated with
pathological states.1 These cells are rare under steady
state conditions, but become prevalent upon chronic
unpredictable stress, aging, or Alzheimer disease (AD)
pathology, accounting for almost one third of the normal
microglial population in APP-PS1 mice. We named these
cells ‘dark’ microglia because of their characteristic dark
appearance under TEM.1

The physiological significance of these dark microglia
remains to be elucidated, but they appear extremely
active. They frequently reach for synaptic clefts, while
extensively encircling axon-terminals, dendritic spines,
and entire excitatory synapses with their highly ramified
and thin processes. They strongly express CD11b, which
forms the complement receptor 3 involved in develop-
mental pruning,2 as well as myeloid-cell specific TREM2
when associated with the amyloid-b plaques.1 In AD
pathology, TREM2 positive cells were recently shown to
express the phagocytic effectors MERTK and AXL.3

These findings suggest that dark microglia could repre-
sent a subset of cells that become stressed as a result of
their hyperactivity under adaptive pressure, leading to
abnormal (or perhaps specialized) interactions with
synapses.

Below we discuss about the possible causes of their
darkness, considering what is known about 1) how
contrast is generated in biological samples prepared for
TEM, and 2) the literature describing at the ultrastruc-
tural level changes in the electron density of cells across
functional states.

Contrast in transmission electron microscopy

The contrast in TEM is generated by scattering of the
electrons that interact with the specimen.4 The 2 factors
that determine this scattering are the thickness of the
sample (more electrons are scattered in thicker samples)
and its molecular composition: the higher the atomic
number, the more scattered are the electrons, and the
greater is the contrast. Since thickness of the ultrathin
tissue sections examined by TEM is very uniform, as
they are generated at high precision with an ultramicro-
tome, their contrast primarily results from the nature
and concentration of the cellular constituents being visu-
alized. Considering that biological tissues are composed
of atoms of low atomic number, mainly carbon, oxygen,
nitrogen, and hydrogen, contrast is greatly enhanced by
their staining with heavy metals.4

The dark microglia we uncovered typically display an
electron-dense cytoplasm and nucleoplasm giving them
a ‘dark’ appearance in electron microscopy. Our
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observations were made in brain tissue fixed with
acrolein (or glutaraldehyde) and paraformaldehyde,
post-fixed with osmium tetroxide and embedded in a
hydrophobic plastic resin as required for ultrathin
sectioning. Whether these steps aimed at altering the
tissue-constituents to prevent autolysis and decay
through the action of micro-organisms, as well as the
distortions obtained by tissue processing, could result in
their dark appearance is analyzed below.

Neither lipids nor carbohydrates are essential for
cohesion of the protoplasm and nucleoplasm. For this
reason, tissue fixation primarily stabilizes proteins
constituting the framework of its cells. Aldehydes mainly
link proteins, while osmium tetroxide acts both on lipids
and proteins. In addition, the rapid penetration and
cross-linking abilities of acrolein quickly stabilize
proteins, preserving even small peptides which can be
successfully immunolabeled.5,6 The fixatives that we used
in our preparation for TEM are considered “non-coagu-
lant” fixatives, given that gels of membranous and
fibrous proteins retain their original appearance under
their action. Osmium tetroxide also renders proteins
non-coagulable by ethanol,7 a solution used with ascend-
ing concentrations to dehydrate our samples prior to
embedding in resin.

Osmium tetroxide oxidizes the fatty acid’s unsatu-
rated double bonds and gets reduced to a black metallic
osmium which is electron dense and adds contrast to
especially lipids.8 Unsaturated fatty acids are considered
to have a high affinity for osmium tetroxide.9 Osmium
tetroxide also links proteins, especially the oxidizable
moieties of lysine, arginine, histidine, proline and trypto-
phan’s amino acid chains.10 This explains the differing
affinity of this heavy metal for various organelles. Friend
and Brassil suggested steroid biogenesis to be, at least
partially, responsible for the intense osmium staining of
mitochondria, the endoplasmic reticulum and the Golgi
apparatus.11 Biological membranes enclosing cells and
organelles are typically delineated by the metallic
osmium. Structures enriched in proteins for instance the
nuclear heterochromatin, which has a high concentra-
tion of histones (and DNA) similarly show an increased
electron density.12 In addition, osmium straining is con-
sidered to result from the bonding to hydrogen of the
reduced osmium forms. Ferrocyanide-reduced osmium
fixation,13 a modification of the conventional glutaralde-
hyde-osmium tetroxide fixation technique developed by
Karnovsky, indeed provides contrast enhancement,
allowing a better delineation of cellular boundaries and
visualization of glycogen.14,15

Together, these pieces of information suggest that the
dark microglia’s electron density might result from the
particular nature and distribution of their cytoplasmic

and nucleoplasmic proteins and lipids, especially those
having high affinity for osmium tetroxide.

An image of cellular phenotypes?

The contrast in biological samples observed under TEM
is not only determined by the structural constituents of
the cells being observed, but also by their phenotypic
transformations.

Various changes in cellular composition following tis-
sue damage are evidenced under TEM, and are reflected
by modifications in the electron density of cells. It was
recently demonstrated that after ischemic stroke, peri-
vascular astrocytes are filled by glycogen granules of
small sizes (»20 nm), with their cytoplasm changing
from a characteristic electron lucent appearance to a
denser and punctiform aspect.16 Astrocytes also display
well-defined morphological alterations under TEM in
the traumatic human edematous cerebral cortex, where
they can be differentiated by the electron density of their
cytoplasm, becoming either dense reactive hypertrophic
astrocytes characterized by an electron lucent cytoplasm,
dilated endoplasmic reticulum, and the appearance of
swollen mitochondria, or phagocytic astrocytes engulfing
degenerated presynaptic endings and remnants of dead
nerve cells.17 Oligodendrocytes also dramatically change
their morphology following injury. In human, it was
reported that oligodendrocytes acquire distinct ultra-
structural properties upon traumatic brain edema,
adopting phenotypes that were designated as reactive,
anoxic-ischemic, or hypertrophic phagocytic. The post-
traumatic reactive type displays enlargement of their
endoplasmic reticulum, accompanied by increased num-
bers of free ribosomes and swollen mitochondria, while
hypertrophic phagocytic oligodendrocytes display lobu-
lated nucleus, swollen mitochondria, dense inclusion
bodies and increased numbers of free ribosomes, all
clearly distinctive under TEM.18

The dark microglia’s electron density was accompa-
nied by endoplasmic reticulum dilation which is the best
characterized sign of oxidative stress at the ultrastruc-
tural level.19 There was also mitochondrial disruption
and a nearly complete loss of heterochromatin pattern,
especially in the context of amyloid-b pathology. Oxida-
tive stress is a condition where the levels of toxic reactive
oxygen or nitrogen species are higher than the levels of
counteracting antioxidant molecules, caused by elevated
production of free radicals or decreased antioxidant
activity.20 The excessive reactive species generated have
detrimental effects on nucleic acids, lipids and proteins,
leading to cellular dysfunction due to disrupted physio-
logical processes and metabolic pathways.21 Oxidative
stress as a result of psychological stress, infection, lesion,
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toxicity or aging is accompanied by distinctive ultra-
structural changes. Aside from endoplasmic reticulum
dilation, one of the earliest manifestations of oxidative
stress in several cell types that include glial cells and
aging red blood cells, is the rapid and substantial
decrease in cell volume, likely affecting a range of cellular
functions.22,23 Oxidative stress is causally linked to the
induction of apoptosis,24 but can also be rescued depend-
ing on the organism’s interaction with its environment.
Cells undergoing apoptosis typically display shrinkage,
blebbing, rounding and fragmentation of their nucleus,
as well as condensation and margination of their hetero-
chromatin. By contrast, necrosis refers to cellular death
associated with the loss of control of ionic balance,
uptake of water, swelling, and cellular lysis.25

The dark microglia display ultrastructural features
of cells undergoing oxidative challenge. In addition to
their electron-dense cytoplasm and nucleoplasm, they
have a dilated endoplasmic reticulum and loss of het-
erochromatin pattern. The cellular shrinkage induced
by oxidative stress likely induces condensation of their
cytoplasmic and nucleoplasmic contents, including lip-
ids and proteins visible with osmium tetroxide, which
could explain why the dark microglia are dark. Previ-
ously, ‘dark’ neurons and oligodendrocytes were also
documented,26,27 notably by Peters.26,27 Although dark
microglia show several features of oxidative stress,
they do not appear to be apoptotic considering their
lack of blebbing, rounding and fragmentation of their
nucleus, and neither necrotic cells given their overall
ultrastructural characterization. The dark microglia
abundantly contact synapses with their highly ramified
processes, which most probably reflect an extreme
phagocytic or stripping activity.
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