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Environmental surveillance is a critical tool for combatting public health threats
represented by the global COVID-19 pandemic and the continuous increase of antibiotic
resistance in pathogens. With its power to detect entire microbial communities,
metagenomics-based methods stand out in addressing the need. However, several
hurdles remain to be overcome in order to generate actionable interpretations from
metagenomic sequencing data for infection prevention. Conceptually and technically,
we focus on viability assessment, taxonomic resolution, and quantitative metagenomics,
and discuss their current advancements, necessary precautions and directions to further
development. We highlight the importance of building solid conceptual frameworks
and identifying rational limits to facilitate the application of techniques. We also
propose the usage of internal standards as a promising approach to overcome
analytical bottlenecks introduced by low biomass samples and the inherent lack of
quantitation in metagenomics. Taken together, we hope this perspective will contribute
to bringing accurate and consistent metagenomics-based environmental surveillance to
the ground.

Keywords: viability, limit of detection, metagenomics, taxonomic resolution, environmental surveillance,
quantitative metagenomics

INTRODUCTION

Approximately 56% of the world’s population lives in urban areas (United Nations, 2018) and
people in developed nations spend at least 90% of the time indoors (Chau et al., 2002; Smith et al.,
2016; Cincinelli and Martellini, 2017), making built environments hotspots with which humans
frequently interact. Understanding and monitoring fomite transmission is critical in infection
prevention (Stephens et al., 2019). The need for environmental surveillance particularly stands
out given emerging issues like the COVID-19 pandemic and the continuous increase of antibiotic
resistance in pathogens. Metagenomics-based methods have shown promising potential to meet
this need, as they can detect entire microbial communities, as opposed to targeted identification.

However, there are several obstacles that we must overcome to bridge the gap between deploying
metagenomics and generating actionable interpretations to guide infection prevention. Cultivation
provides direct evaluation of microbial removal by revealing observable colonies, but this approach
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lacks precision (Popovich et al., 2012). Whole genome
sequencing leads transmission prevention actions by monitoring
strain-level dynamics of the targeted pathogen but is difficult to
apply for multiple organisms simultaneously (Deurenberg et al.,
2017). Although metagenomics dramatically expands the scope
of detectable organisms compared with the aforementioned
methods, it urgently needs the ability to differentiate viability,
which may otherwise cause an overestimation of infection risk,
and reveal the actual load of pathogens (i.e., be quantitative),
for direct correlation with infection risk (Valdez et al., 2015;
Xiao et al., 2017). Finally, the taxonomic resolution needs
to be high enough to discriminate pathogens from closely
related non-pathogens.

These challenges are both conceptual and technical in
nature. They arise from the diversity of metagenomics research
objectives, and are often exacerbated by intrinsic features of low-
biomass environments that need to be monitored. Low-biomass
samples are typical of built environment surface swabs, air, water,
and rocks. Such samples are dilute, containing approximately
102–104 cells/mL for liquid samples (Zhong et al., 2018; Selway
et al., 2020). Moreover, these samples are usually limited in
total cells, making it harder to obtain enough biomass. For
example, when swabbing door handles, the biomass cannot be
increased by enlarging the sampling area, which is finite. Thus,
special precautions are often necessary due to the low success
rate of sample preparation and high possibility of contamination
(Eisenhofer et al., 2019).

In this context, we focus on three critical conceptual and
technical advances that need to be incorporated throughout
the metagenomic environmental surveillance process: viability
assessment, taxonomic resolution, and quantitation (Figure 1A).

VIABILITY ASSESSMENT USING
PROPIDIUM MONOAZIDE (PMA)

Locations of environmental surveillance (e.g., built environment
surfaces) harbor a significant proportion of dead microbes,
which are captured by traditional DNA-based methods, including
metagenomic sequencing (Gomez-Silvan et al., 2018). Failure
to assess viability could cause overestimation of infection risk.
Approaches have been proposed to address this issue, with PMA
treatment as a representative.

PMA treatment directly assesses membrane integrity.
However, viability more broadly includes multiple underlying
features, such as replication, metabolic activity (Codony
et al., 2020), and virulence. These phenomena are not always
interchangeable. In environmental surveillance, connecting
viability to infection risk is the most informative criterion. This
also highlights the importance of clarifying which criteria are
being evaluated in the assessment of methods (Figure 1B).

Technical challenges and optimization efforts have
accompanied PMA treatment throughout its development
(Fittipaldi et al., 2012; Elizaquivel et al., 2014; Emerson
et al., 2017; Codony et al., 2020). The outcome is related
to multiple factors, including experimental conditions (e.g.,
dye concentration, incubation time, light exposure time), the

diversity of microbes (e.g., target gene length, differences in
cell membranes, formation of spores), and the complexity of
the matrix (e.g., turbidity, pH, dead cell density). Variations in
these factors make PMA treatment seemingly unreliable. It may
nevertheless be valuable for environmental surveillance when
certain conditions are satisfied.

Application of PMA treatment to environmental samples has
been hindered partly because these samples contain a diverse
microbial community in a complex matrix. As pointed out by
Wang et al., PMA-seq with a universal protocol is not feasible
to quantify viability of realistic communities, even with E. coli
controls spiked in Wang et al. (2020). To facilitate its application
in surveillance, instead of insisting on differentiation of the
viability for every community member, we should start by
identifying sets of similar pathogens, as these groups will have
the highest potential to fit in one protocol while maintaining
relatively good efficiencies. Comparing this to the concept of
pinpointing dynamic range in quantification, by sacrificing
part of metagenomics’ randomness, viability quantification
may be achieved. For example, Yang et al. have tried to
simultaneously detect three viable Salmonella enterica serovars
using multiplexed PCR coupled with PMA treatment (Yang
et al., 2012). Analogous principles have also been applied to the
development of reagent enhancers by focusing on Gram-negative
bacteria (Codony et al., 2020).

Internal standards help address biases introduced by complex
matrices. To that end, peroxide-killed Campylobacter sputorum
cells were spiked into chicken rinses in the quantification of
viable Campylobacter (Pacholewicz et al., 2019) with encouraging
results. Nevertheless, further progress should be made for
widespread adoption of internal standards in risk assessment,
particularly regarding the diversity and viable proportion of
microbes forming the standard. Internal standards containing
more than one organism are necessary to cover the diversity of
the targeted microbial group, with different viable proportions
to account for variations in PMA efficiency at different live/dead
ratios. In routine application, once a stable relative response
factor is determined for a microbe (or microbial group)-
standard combination, the number of internal standards might
be reduced. Creating quality control metrics, analogous to
sequencing coverage and depth in metagenomics, or adopting
calculation schematics exemplified in Fittipaldi et al. (2011) may
also be noteworthy directions for future research.

Briefly, building a well-defined and continuously
polished framework that limits its usage to a feasible scope
but also maximizes the supporting functionality paves
the way toward implementation of PMA treatment in
environmental surveillance.

INFERRING TAXONOMY IN
LOW-BIOMASS METAGENOMES

Short-read shotgun metagenomic analysis reveals taxonomy
without the limitations of amplicon sequencing or culture-based
methods (Quince et al., 2017). However, low-biomass samples
can be more susceptible to technical factors including library
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FIGURE 1 | (A) Best practices in environmental surveillance using metagenomics (with examples). Internal standards are added to collected samples, while external
standards are run in parallel with samples throughout the pipeline to assure its performance. An example is provided for demonstration purposes. Note that the
standards given in this example only have theoretical potentials; more investigations are needed for benchmark and optimization. In this example, species level
resolution is needed to distinguish S. epidermidis, S. aureus, and S. delphini. Assuming S. delphini is a good internal standard for Staphylococcus but not
for Clostridium, in this case, quantitative risk assessment can only be achieved for S. epidermidis and S. aureus, but qualitative lesson can still be gained
for C. difficile. (B) Viability assessment coupled with metagenomic sequencing represents an accessible way to infer infection risk.

size, community complexity, host DNA, and contamination.
Therefore, mitigating strategies should be carefully considered.
Afterward, choosing a suitable taxonomic identification method
is crucial for reliable metagenome analysis and interpretation,
particularly for preventing false over-estimation of pathogens

based on detection of non-pathogenic relatives or under-
estimation of risk from pathogens with very low infective doses
due to limitations in detecting rare taxa.

Differences in coverage and depth can result in differing
estimates of taxonomic richness and diversity in identical
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samples, primarily at low level ranks, such as genus or species
(Table 1; Jovel et al., 2016; Zaheer et al., 2018). Smaller read
libraries are particularly challenged by a diminished capacity
to detect rare taxa and accurately estimate overall taxonomic
abundance of samples (Hillmann et al., 2018) because more
abundant members in the metagenome have a higher likelihood
of detection (Nayfach and Pollard, 2016). Additionally, the
lowered overall information content of low coverage and
depth read libraries impact the ability to identify low level
taxonomic ranks.

Low-biomass samples are especially sensitive to the presence
of contaminants, as the true signal can be easily overwhelmed
(Eisenhofer et al., 2019). Multiple avenues of contamination
exist, including sample preparation and DNA extraction, from
either the reagents or the researchers themselves, and carryover
between sequencing runs. Methods to reduce contamination
include UV radiation and DNase treatment of kit reagents
to specialized library preparation workflows (Tamariz et al.,
2006; Silkie et al., 2008; Seitz et al., 2015; Minich et al.,
2018). Metagenomic samples should be accompanied with kit
extraction negative controls and DNA-spiked positive/internal
controls during sequencing runs to identify sources of
contamination (Minich et al., 2018; Eisenhofer et al., 2019;
McLaren et al., 2019).

Given the susceptibility of low biomass samples to
contamination, special care should be taken in preparing
appropriate controls to avoid misidentifying contaminants
as true signals, as cross-contamination can confound
epidemiological or strain-tracking efforts (Lusk, 2014; Lauder
et al., 2016). The simplest approach is to remove sample reads
that align to taxa found in the negative controls (Breitwieser et al.,
2017). This can result in removing reads belonging to the true
taxonomic composition of a sample, and especially problematic
in instances where negative controls are contaminated by
sample DNA or belong to a pathogen under surveillance.
Other approaches include filtering sequences that fall below
a designated relative abundance threshold or map to taxa in
a contaminant database (Davis et al., 2018). Approaches that
remove low frequency sequences are not recommended for
low biomass samples. Employing blank negative controls and
study-specific kit negative controls could help in identifying
genuine instances of contamination in low biomass samples and
detecting kit-based contamination. Bioinformatics pipelines that
incorporate either one or a combination of the above approaches
have been developed to streamline identification of contaminants

and/or cross-contamination (Schmieder and Edwards, 2011;
Davis et al., 2018; Martí, 2019).

A variety of tools are available to characterize the taxonomic
composition of a metagenomic sample and broadly follow two
approaches: using reads as inputs or assembling reads and then
using the genes/contigs as input (Breitwieser et al., 2017; Ye et al.,
2019). Both approaches have tools that use k-mer, alignment,
and marker gene matching implementations. A meta-analysis
of both approaches demonstrated that at artificially lowered
read library sizes, read-based classification methods maintained
their accuracy compared to assembly based methods (Tamames
et al., 2019) because assembly based methods rely on having
sufficient overlapping read depths. Metagenomic samples from
low-biomass environments with insufficient coverage (<20X
read depth over the whole metagenome) may require read-
based taxonomic classification (Quince et al., 2017; Tamames
et al., 2019). Similarly, inherently low read depths may limit the
level of taxonomic resolution, as strain-level analysis requires
high read depth to distinguish between SNP variants or marker
gene variants (e.g., characterizing the relatedness of strains
during an outbreak using SNPs) (Truong et al., 2015; Brito
and Alm, 2016; Roe et al., 2016; Hillmann et al., 2018). If
strain-level variants are desired, merging paired-end reads or
using sequencing technologies that generate longer reads may be
necessary (Brito and Alm, 2016).

Choosing an appropriate taxonomic reference database can
greatly impact the breadth of taxa identified (Pereira-Marques
et al., 2019; McArdle and Kaforou, 2020). For example, a
reference database built from gut bacteria may not identify
environmental taxa but may be suitable for identifying gut
pathogens in the environment. Many tools offer the option
of using either precompiled or custom reference databases
(Breitwieser et al., 2017). CAMISIM, a tool that simulates
microbial metagenomic datasets, can be used by researchers to
test different approaches (Fritz et al., 2019).

QUANTITATIVE METAGENOMICS IN
ENVIRONMENTAL SURVEILLANCE

Conceptually, quantitative metagenomics has appeared in many
ways in microbiome research, ranging from performing basic
calculations of abundance, to normalizating metrics to these
calculations, to the ultimate goal of absolute quantification as in
qPCR (Pons et al., 2010).

TABLE 1 | Definitions and calculations of common sequencing terms.

Term Definition Approach(es) Reference(s)

Read library The number of reads generated from a
single metagenomics sample

– –

Coverage The fraction of a metagenome
represented by the read library

Taxonomy-based rarefaction curve
Read redundancy-based rarefaction curve

Huson et al., 2007; Rodriguez and
Konstantinidis, 2014b

Read depth The number of times a particular base
is captured by a read

base × reads that map to base Li et al., 2009; Quinlan and Hall, 2010

Mean read depth The read depth averaged across the
metagenome assembly

reads mapped to assembly × average read length
assembly size Vezzulli et al., 2017
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At any level, parameters or metrics for profiling a microbial
community are the basis of analysis. As such, selecting
meaningful parameters is the first step toward quantitative
metagenomics. Of the five parameters summarized in their
review (Nayfach and Pollard, 2016; Table 2), Nayfach and
Pollard suggested that cellular relative abundance and
average genomic copy number are the more biologically
meaningful and quantitative strategies. However in reality,
relative abundances are more frequently used. For instance,
quantitative metagenomics is applied in gut microbiome studies
to identify unique biomarkers (Le Chatelier et al., 2013; Wen
et al., 2017), to compare disease and health states (Qin et al.,
2014), and to predict resistome (Ruppe et al., 2019), all of which
use cellular/gene relative abundance normalized by genome/gene
length through mapping reads to reference genomes/genes (e.g.,
the MetaHIT gene catalog).

However, cellular and gene absolute abundances are the most
promising parameters in environmental surveillance, which is
predicated on the actual load of pathogens or pathogenic genes.
Moreover, absolute abundances allow better comparisons across
samples (Satinsky et al., 2013) and across taxa/genes (Frank and
Sørensen, 2011; Nayfach and Pollard, 2016).

Technically, several challenges remain to be overcome toward
accurate and unbiased estimation of absolute abundances. It
requires careful re-design of the entire study in a stringently
quantitative framework, beginning with sample collection.
Samples should be collected in an absolute framework (per
unit volume, weight, area, etc.), and this framework should
be maintained throughout sample preparation. Taking surface
microbiome studies as an example, extra considerations include
the measurement and documentation of the swabbing area as
well as volume of sampling buffer and other solutions used in
the entire workflow, and the examination of the recovery rate
where sample loss is non-negligible. Furthermore, normalization
by genome/gene length is necessary to account for the varying
representativity in sequencing a read from genomes/genes of
different lengths.

This is not always easy in reality. For example, the sampling
area of sink biofilms is difficult to assess when destructive

TABLE 2 | Parameters to profile microbial communities summarized by
Nayfach and Pollard.

Parameter Theoretical calculation equation

Cellular relative
abundance

CRA(i) =
number of cells of taxon i

number of cells in the community

Gene relative
abundance

GRA(i) =
number of gene i

number of genes in the community

Average genomic
copy number

AGCN(i) =
number of gene i

number of cells in the community
AGCN(i) = GRA(i)×average genome size (in number of genes)

Cellular absolute
abundance

CAA(i) =
number of cells of taxon i

volume/weight/area

Gene absolute
abundance

GAA(i) =
number of gene i

volume/weight/area

Theoretical calculation equations are created based on our interpretation of the
authors’ descriptions, which are also adapted to the context of environmental
surveillance.

sampling is not permitted. Even if the samples are collected
in a strictly quantitative way, other steps in the sample
treatment process still need to be conducted quantitatively.
Taking DNA extraction as an example, instructions like “transfer
up to 600 µL of supernatant to a clean tube” destroy the
quantitative chain and prevent us from calculating dilution
factors. Accurate normalization by genome/gene length requires
continuous effort in expanding genome/gene databases and in
incorporating genome/gene normalization into bioinformatic
pipelines (Kerepesi and Grolmusz, 2016). In the interim,
mapping reads to a set of well-studied while also universal (within
the study scope) marker genes (e.g., 16S rRNA genes in bacteria)
could serve as a workaround (Nayfach and Pollard, 2016) but
unfortunately introduces its own biases.

Besides incorporating qPCR or flow cytometry, introducing
standards has great potential to enhance the quantitation
ability of metagenomics. In this context, internal standards
outcompete external standards, partly because variations in
sample treatment seem inevitable (e.g., shotgun libraries undergo
equimolar normalization) and because the relationship between
the amount of input material and the number of output reads
remains obscure. Internal standards also compensate for errors
resulting from any non-quantitative processing steps following
their addition. Some efforts have been made to incorporate
internal standards into the metagenomic pipeline, such as spiking
mock-community cells into the collected samples (McLaren
et al., 2019), adding genomic DNA just prior to cell lysis in
DNA isolation (Satinsky et al., 2013, 2014), and including a
set of synthetic DNA before library preparation (Blackburn
et al., 2019). Despite these advances, systematic investigations
are needed to benchmark methods, identify limitations, and
validate use in various contexts. Clearly, a set of standards
are needed to account for the complexity of samples and
the diversity of targets. But which performs the best among
mock communities, genomic DNA isolated from cultured
microorganisms, and synthetic DNA remains unclear. Nor
is it known at which step the standards should be added
and at what dose. Moreover, when exogenous materials are
hard to find, the standard addition method may be worth
exploring (Danzer, 2007). Finally, the standards should be
evaluated holistically at the pipeline level for their compatibility
and functionality across multiple steps (e.g., PMA treatment,
metagenomic sequencing). Ideally, an optimal pipeline should
also be equipped with quality control compartments such as
external standards and mathematical models which assess and
calibrate biases (McLaren et al., 2019).

LIMITS OF DETECTION

Incorporating viability assessment, adequate taxonomic
resolution, and quantitation into metagenomics will yield
invaluable insights into environmental surveillance. But perhaps
more critical than interpreting observed data is interpreting
non-detects. Ultimately, a viable signal must be linked to
infection risk by determining the threshold load of pathogens
to cause an infection when they are contracted from a fomite.
This threshold is pathogen-specific. Thus, reference values, like
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clinical standards for antimicrobial susceptibility testing (CLSI,
2018), as technological standards are necessary.

Moreover, sensitivity of every step in the pipeline must be
accounted for in data interpretation, as the overall sensitivity is
determined by the lowest step. As mentioned above, features of
the community being sampled can affect the expected breadth
of coverage. Complex samples with many taxa, host DNA, or
stochastic eukaryotic DNA (for example in surface swabs) may
require high read library sizes to ensure sufficient breadth of
coverage (Ballenghien et al., 2017; Pereira-Marques et al., 2019).
This is especially important when non-target DNA can represent
the majority of the reads generated, resulting in decreased
capacity to detect rare taxa and at fine-grained resolutions.
Pilot studies that assess coverage using taxonomy or read
redundancy-based rarefaction analysis can help determine an
appropriate library size (Rodriguez and Konstantinidis, 2014a).
When pathogens are rare compared to other organisms, limit
of detection (LoD) is a crucial parameter as it determines the
maximum possible load of pathogens when they are not detected.
Given the inherent nature of metagenomic shotgun sequencing
that a fixed total number of reads are distributed based on
the relative proportion of genetic materials present in a batch,
LoD must be approximated with the microbial community to
be sequenced at a batch-based pace. Because of this matrix-
dependent characteristic, it is impractical to get a universal LoD
for the technique “metagenomic sequencing.” Empirically, LoD
can be estimated relative to the least abundant but detected
members in the internal standards or the sample itself.

DISCUSSION

In summary, metagenomics has enormous potential in
environmental surveillance of pathogens as it simultaneously
detects multiple organisms and functional genes of interest, e.g.,
antibiotic resistance. However, the following steps need to be
taken to ensure that metagenomic data can practically be applied
to risk assessment:

1. Rationally address inherent conceptual limitations
regarding viability. For example, PMA treatment assesses
membrane integrity, not infectivity; but relationships can
be deduced between intact cells and infectious organisms.

2. Rationally address inherent limitations regarding
taxonomy. For example, while almost all Salmonella are
pathogenic, higher taxonomic resolution is needed to
distinguish pathogenic Pseudomonas.

3. Incorporate internal standards. Doing so will compensate
for biases introduced by complex environmental matrices,
yield quantitative results, and correct both random and
systematic errors.

4. Holistically integrate multiple steps in pipeline
optimization. Specifically, internal standards can be
incorporated for multiple operations including PMA
treatment, taxonomic inference, and quantification.

Metagenomics-based environmental surveillance has
potential for developing rich datasets that aid surveillance.
Metagenomic data can aid in linking taxa with virulence factors
and antibiotic resistance genes. Strain-level data can further track
transport of pathogens in the environment or reveal microbial
networks of interactions among patients, employees, medical
devices or wastewater. Promoting crucial standardizations
ranging from sampling protocols to data analysis, curation and
presentation, cannot only help produce internally consistent
results but also increase external compatibility with data
generated in different studies (Nayfach and Pollard, 2016) or
with different protocols (Sinha et al., 2017).
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