
THORACIC ONCOLOGY

original
reports

Disparities in Tumor Mutational Burden,
Immunotherapy Use, and Outcomes Based on
Genomic Ancestry in Non–Small-Cell
Lung Cancer
Otis W. Brawley, MD1; Patricia Luhn, PhD2; Deonna Reese-White, MD2; Uzor C. Ogbu, MD, PhD2; Sriraman Madhavan, MSc2;

Gerren Wilson, PharmD2; Meghan Cox, BA2; Altovise Ewing, PhD2; Christian Hammer, PhD2; and Nicole Richie, PhD2

abstract

PURPOSE In patients with advanced non–small-cell lung cancer (aNSCLC), tumor mutational burden (TMB)may
vary by genomic ancestry; however, its impact on treatment outcomes is unclear. This retrospective, obser-
vational study describes treatment patterns of patients with aNSCLC by genomic ancestry and electronic health
record (EHR)-reported race and/or ethnicity and evaluates differences in TMB, cancer immunotherapy (CIT)
access, and treatment outcomes across racial and ancestral groups.

METHODS Patients diagnosed with aNSCLC after January 1, 2011, were selected from a real-world deidentified
clinicogenomics database and EHR-derived database; continuously enrolled patients were evaluated. Race
and/or ethnicity was recorded using variables from the EHR database; genomic ancestry was classified by
single-nucleotide polymorphisms on a next-generation sequencing panel. A threshold of 16 mutations per
megabase was used to categorize TMB status.

RESULTS Of 59,559 patients in the EHR-derived database and 7,548 patients in the clinicogenomics database,
35,016 (58.8%) and 4,392 (58.2%) were continuously enrolled, respectively. CIT use was similar across EHR-
reported race groups, ranging from 34.4% to 37.3% for non-Hispanic Asian and non-Hispanic Black patients,
respectively. TMB levels varied significantly across ancestry groups (P, .001); patients of African ancestry had
the highest median TMB (8.75 mutations per megabase; interquartile range, 4.35-14.79). In patients who had
received CIT, high TMB was associated with improved overall survival compared with low TMB (20.89 v
11.83 months; hazard ratio, 0.60; 95% CI, 0.51 to 0.70) across genomic ancestral groups.

CONCLUSION These results suggest that equitable access to next-generation sequencing may improve aNSCLC
outcome disparities in racially and ancestrally diverse populations.
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INTRODUCTION

Non–small-cell lung cancer (NSCLC) comprises 85%-
90% of all primary lung cancer cases, with more than
half of all patients presenting with advanced, unre-
sectable disease at diagnosis.1,2 The 5-year relative
survival rate is 23% in all stages of NSCLC combined.3

The overall prognosis for NSCLC remains poor, and
prognostic factors associated with shorter survival
include sex, race, and smoking status.4-6 Generally,
African American patients have disproportionately
higher NSCLC incidence rates and worse outcomes
compared with White patients.7-9 Multiple factors
contribute to racial disparities in the incidence and
survival of patients with NSCLC.10,11 Frequently, these
differences are attributed to social determinants, such
as differing smoking habits and access to and quality
of care.12 Retrospective cohort studies have reported
that lower socioeconomic status is an independent

prognostic factor for poor survival in patients with early
or advanced NSCLC (aNSCLC).13,14

Although studies have shown that African American
patients are overall less likely to receive treatment,
when treatment is controlled for, survival outcomes are
similar across racial and ethnic groups.15,16 Variations
in biologic drivers may also contribute to outcomes;
recent studies have reported that the genomic profile
of several cancers, including NCSLC, vary by race and
ethnicity. This supports the need for greater under-
standing of the intersection between social determi-
nants of health and biologic drivers in treatment
disparities in NSCLC.

The prognosis for patients with NSCLC has improved
because of emerging therapies, including cancer
immunotherapy (CIT), and increased understanding
of disease drivers. Tumor mutational burden (TMB) is
a biomarker that may predict response to CIT.17 High
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TMB was predictive of better outcomes in patients with
aNSCLC treated with CIT, compared with those who had high
TMB but did not receive CIT.18-20 As with other genetic bio-
markers and targetable mutations, racial differences in TMB
have been reported.21,22 Although differences in TMB levels
have been described in NSCLC, the impact on treatment
outcomes by ancestral composition has not been evaluated.

The objectives of this study were to describe the charac-
teristics and treatment patterns of patients with aNSCLC by
genomic ancestry and electronic health record (EHR)-
reported race and/or ethnicity and to explore potential
differences in TMB and disparities in the access to CIT and
treatment outcomes across genomic ancestral groups. We
also sought to assess the degree of concordance between
genomic ancestry and EHR-reported race and/or ethnicity.

METHODS

Data Sources

This retrospective, observational study used secondary data
evaluating outcomes of patients diagnosed with aNSCLC
between January 1, 2011, and March 31, 2020, who were
selected from the nationwide (US-based) deidentified Flat-
iron Health (FH)-Foundation Medicine Inc (FMI)-linked
clinicogenomics database (CGDB) and FH EHR-derived
database. Patients included in the FH-FMI aNSCLC CGDB
had undergone comprehensive genomic profiling (CGP) by
FMI at any point. The deidentified data originated from ap-
proximately 280 US cancer clinics (≈800 sites of care).
Retrospective longitudinal clinical data were derived from
EHR data, comprising patient-level structured and un-
structured data, curated via technology-enabled abstraction,
and linked to genomic data derived from FMI CGP tests in the
FH-FMI CGDB by deidentified, deterministic matching.

Genomic alterations were identified via CGP of . 300
cancer-related genes on FMI’s next-generation sequencing
(NGS)-based FoundationOne panel.23-25 To date, more
than 400,000 samples have been sequenced from patients

across the United States. The majority of patients in the
database were from community oncology settings, but
relative community or academic proportions may vary
depending on study cohort.

Study Population

Patients who met specific criteria in the aNSCLC FH da-
tabase and FMI-linked CGDB were included in cohort 1
and cohort 2, respectively. Cohort 3 and cohort 4 com-
prised patients from cohorts 1 and 2, respectively, who
were continuously enrolled in the FH network, defined as
no visit gap of. 90 days from date of aNSCLC diagnosis to
death or last visit. Cohorts 3 and 4 were used for the main
analyses as this allowed for appropriate classification of a
patient’s line of therapy (LOT; ie, treatment sequence).
Detailed inclusion criteria for the four analytic cohorts are
described in the Data Supplement.

Patients from the FH database (cohort 1) were categorized
into the following groups using the race and ethnicity
variables provided: non-Hispanic White, non-Hispanic
Black, non-Hispanic Asian, Hispanic or Latino, other
non-Hispanic (ethnicity not recorded as Hispanic or Latino
and race recorded as Other), or unknown (both race and
ethnicity were recorded as null). For the CGDB cohort
(cohort 2), a single race and/or ethnicity variable was
provided by FH (White, Black, Asian, other, or missing).
These variables were used for EHR-reported race com-
parisons. Derivation of genomic ancestry (European, Afri-
can, Asian, American, and unknown) has been described
previously by FMI.24 Briefly, approximately 40,000 single-
nucleotide polymorphisms (SNPs) across multiple baitsets
(exact number of SNPs may vary by baitset) were used to
classify patients into ancestral groups using a principal
component analysis with the publicly available 1000 Ge-
nomes data as the reference genome. TMB status was
categorized as high or low using a threshold of 16mutations
per megabase (mut/Mb). A single, fixed TMB threshold has
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not yet been defined, and different TMB thresholds have
been used in previous studies.26-28 Patients with missing
ancestry and/or TMB results were excluded from analysis.

Outcomes

The primary outcome was overall survival (OS). OS was
defined as the time from the date of advanced diagnosis
until death; however, patients did not enter the risk set until
their FMI report date to account for the immortal time bias
that exists in the database. As month and year of death
were provided, the date of death was imputed to the 15th of
the month for all patients with a death date recorded.

Statistical Analyses

Analysis of variance for continuous variables and χ2

analysis for categorical variables were used to summarize
the demographic and clinical characteristics for the dif-
ferent cohorts.

For analysis of CIT use, the first LOT that included any CIT
(atezolizumab, pembrolizumab, ipilimumab, durvalumab,
or nivolumab) was considered the index CIT. The duration
of CIT was calculated using time-to-event analysis (Kaplan-
Meier method). Two calculations were used: overall CIT
duration and CIT duration of a given LOT. Overall CIT
duration was determined using the time to last adminis-
tration regardless of changes in other treatments as long as
CIT was given continuously, to allow for treatment with CIT
through multiple lines. CIT duration of a given LOT was
determined using the date of first administration of CIT after
a given start date, until there was a treatment switch, gap in
treatment, or death, whichever occurred first.

Event-free survival estimates were generated for cohorts 2
and 4. The association between TMB and OS was estimated
using a series of univariate and multivariate Cox proportional

hazards models using the advanced diagnosis date as the
index date with delayed entry into the cohort at the FMI
report date to account for the left-truncated nature of the
data set. The assumption of proportional hazards was tested
using the Schoenfeld residuals. Multivariate models used in
this study are described in the Data Supplement. Analyses
were further stratified by genomic ancestry and use of CIT at
any point after advanced diagnosis date. Additional sub-
group analysis included CIT-treated patients only.

RESULTS

Patient Populations

A total of 59,559 patients with aNSCLC were selected from
the FH EHR-derived database (cohort 1); 67.2% (n = 40,
003) identified as non-Hispanic White, 8.4% (n = 4,977) as
non-Hispanic Black, 2.6% (n = 1,523) as non-Hispanic
Asian, 3.3% (n = 1,955) as Hispanic, 8.2% (n = 4,869) as
non-Hispanic other, and 10.5% (n = 6,232) as unknown.
Smoking was less prevalent in non-Hispanic Asian patients
(50.2%) compared with . 80% in non-Hispanic White,
non-Hispanic Black, and non-Hispanic other populations.
The prevalence of stage IV aNSCLC at diagnosis was
highest in non-Hispanic Asian patients (70.5%) followed by
69.0%-60.9% in all other ethnic groups. Median duration
of follow-up was longest in non-Hispanic Asian patients
(431 days) versus 205-313 days in other ethnic groups.

A total of 7,548 patients were included from the FH-
FMI–linked CGDB (cohort 2). The CGDB provides EHR-
reported race information; ethnicity was unavailable. Ge-
nomic ancestry distribution was 71.4% (n = 5,387) Eu-
ropean, 6.6% (n = 501) African, 4.3% (n = 326) American,
3.7% (n = 282) Asian, and 13.9% (n = 1,052) unknown. A
high degree of concordance was seen between EHR-
reported race and genomic ancestry (Fig 1).
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FIG 1. Correlation of EHR-reported race with genomic ancestry (cohort 2). EHR, electronic health record.
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Of the patients in FH EHR-derived database (cohort 1),
35,016 (58.8%) were continuously enrolled until death or
end of study (cohort 3), and from the CGDB (cohort 2),
4,392 (58.2%) were continuously enrolled (cohort 4).
The continuous enrollment criteria led to the exclusion
of 5,990 and 1,881 patients who received CIT in the
EHR-derived database and CGDB, respectively. Contin-
uously enrolled patients in the CGDB (cohort 4) were
more likely to be White, male, and stage IV at diagnosis

compared with patients who were not continuously en-
rolled (Table 1).

CIT Use on the Basis of EHR-Reported Race and

Genomic Ancestry

In continuously enrolled patients with aNSCLC in the FH
EHR-derived database (cohort 3), there was no difference
in the prevalence of CIT use on the basis of EHR-reported
race. CIT use ranged from 34.4% in non-Hispanic Asian

TABLE 1. Demographics and Clinical Characteristics of Continuously Enrolled Patients With Advanced Non–Small-Cell Lung Cancer in the Clinicogenomics
Database (Cohort 4)
Characteristic Continuously Enrolled (n = 4,392) Not Continuously Enrolleda (n = 3,156) P

Age at advanced diagnosis, median (range), years 68 (61-75) 68 (60-75) .009

Sex, No. (%)

Female 2,129 (48.5) 1,723 (54.6) ,.001

Male 2,263 (51.5) 1,433 (45.4)

Stage at initial diagnosis, No. (%)

0-I/occult 320 (7.3) 350 (11.1) ,.001

II 298 (6.8) 274 (8.7)

III 792 (18.0) 606 (19.2)

IV 2,904 (66.1) 1,832 (58.0)

Unknown 78 (1.8) 94 (3.0)

EHR-reported race, No. (%)

Non-Hispanic White 3,106 (70.7) 2,060 (65.3) ,.001

Non-Hispanic Black 257 (5.9) 185 (5.7)

Non-Hispanic Asian 96 (2.2) 135 (4.3)

Non-Hispanic other 601 (13.7) 485 (15.4)

Hispanic/Latino 2 (, 1.0) 2 (, 1.0)

Unknown 330 (7.5) 289 (9.2)

Genomic ancestry, No. (%)

African 292 (6.6) NA NA

American 175 (4.0) NA

Asian 125 (2.8) NA

European 3,193 (72.7) NA

Unknown 607 (13.8) NA

CIT use, No. (%)

Yes 2,793 (63.6) 1,881 (59.6) ,.001

No 1,599 (36.4) 1,275 (40.4)

Insurance at advanced diagnosis, No. (%)

Commercial 1,967 (44.8) 1,239 (39.3) ,.001

Medicaid 65 (1.5) 27 (0.9)

Medicare 930 (21.2) 668 (21.2)

Other 159 (3.6) 64 (2.0)

Missing 1,271 (28.9) 1,158 (36.7)

Time from advanced diagnosis to NGS test, median (IQR), days 44 (29-122) NA NA

Abbreviations: CIT, cancer immunotherapy; EHR, electronic health records; IQR, interquartile range; NA, not assessed; NGS, next-generation sequencing.
aIncludes patients with visit gap(s) of . 90 days from date of advanced non–small-cell lung cancer diagnosis to death or last visit; these patients were

excluded from further analysis.
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patients to 37.3% in non-Hispanic Black, Hispanic, and
non-Hispanic other patients (Table 2). The overall preva-
lence of CIT use was higher in the CGDB (cohort 4) and was
similar across genomic ancestry groups, with 55.2% of
Asians having received any CIT, followed by 62.3% of
Americans, 62.7% of Europeans, 65.4% of Africans, and
69.7% of patients of unknown ancestry (data not shown).
There were no differences on the basis of EHR-reported
race or genomic ancestry for the CIT LOT, duration of CIT,
or if treatment was monotherapy or combination therapy.

Association of TMB With Genomic Ancestry and

Smoking Status

In continuously enrolled patients with aNSCLC in the CGDB
(cohort 4), 13.8% (n = 605) of patients’ samples were
classified as high TMB and 71.1% (n = 3,121) as low TMB

on the basis of the 16-mut/Mb threshold. TMB data were
unavailable or missing for 15.2% (n = 666) of patients in
cohort 4. TMB status was not associated with any patient
characteristics except smoking. The high-TMB group was
composed of an increased proportion of patients who
smoked (Data Supplement). In addition, there was no
difference in the time from advanced diagnosis to FMI test
on the basis of TMB status. Across all genomic ancestries,
patients with a history of smoking had significantly higher
TMB scores when compared with patients with no smoking
history (P , .001, Data Supplement).

Patients of African ancestry had the highest median TMB
level (8.75 mut/Mb; interquartile range [IQR], 4.35-14.79),
and patients of Asian ancestry had the lowest median TMB
level (3.75 mut/Mb; IQR, 1.74-6.96) (Fig 2). High TMB
accounted for 19.6% of patients of African ancestry

TABLE 2. CIT Use in the Electronic Health Record-Derived Database by Electronic Health Record-Reported Race (Cohort 3)

Treatment
Non-Hispanic White

(n = 24,147)
Non-Hispanic Black

(n = 2,908)
Non-Hispanic

Asian (n = 703)
Non-Hispanic Other

(n = 2,770)
Hispanic
(n = 948)

Unknown
(n = 3,540)

Line of treatment received
(any treatment), No. (%)

1L 19,179 (79.4) 2,302 (79.2) 606 (86.2) 2,199 (79.4) 792 (83.5) 2,556 (72.2)

2L 9,049 (37.3) 1,133 (39.0) 339 (48.2) 1,049 (37.9) 370 (39.0) 971 (27.4)

3L+ 3,828 (15.9) 449 (15.4) 174 (24.8) 447 (16.1) 168 (17.7) 327 (9.2)

Patients receiving CIT, No. (%) 8,556 (35.4) 1,086 (37.3) 242 (34.4) 1,014 (36.6) 349 (36.8) 1,027 (29.0)

Line of treatment for first CIT,
No. (%)

1L 4,489 (23.4)a 539 (23.4)a 99 (16.3)a 530 (24.1)a 185 (23.4)a 614 (24.0)a

Duration, median (IQR),
days

70 (21-175) 72 (21-189) 52 (18-203) 84 (21-182) 85 (28-196) 63 (14-136)

Monotherapyb 2,185 (48.7) 246 (45.6) 48 (48.5) 235 (44.3) 74 (40.0) 252 (41.0)

Combo therapyb 2,304 (51.3) 293 (54.4) 51 (51.5) 295 (55.7) 111 (60.0) 362 (59.0)

2L 3,089 (34.1)a 428 (37.8)a 79 (23.3)a 363 (34.6)a 115 (31.1)a 332 (34.2)a

Duration, median (IQR),
days

70 (28-163) 70 (28-196) 56 (21-131) 70 (21-168) 84 (15-167) 59 (14-126)

Monotherapyb 2,789 (90.3) 383 (89.5) 62 (78.5) 326 (89.8) 100 (87.0) 294 (88.6)

Combo therapyb 300 (9.7) 45 (10.5) 17 (21.5) 37 (10.2) 15 (13.0) 38 (11.4)

3L+ 978 (25.5)a 119 (26.5)a 64 (36.8)a 121 (27.1)a 49 (29.2)a 81 (24.8)a

Duration, median (IQR),
days

63 (26-140) 45 (16-126) 81 (21-181) 58 (28-105) 83 (28-175) 52 (0-109)

Monotherapyb 886 (90.6) 112 (94.1) 45 (70.3) 108 (89.3) 40 (81.6) 67 (82.7)

Combo therapyb 92 (9.4) 7 (5.9) 19 (29.7) 13 (10.7) 9 (18.4) 14 (17.3)

CIT monotherapy versus combo
therapy, No. (%)

Monotherapy 5,860 (68.5) 741 (68.2) 155 (64.0) 669 (66.0) 214 (61.3) 613 (59.7)

Combo therapy 2,696 (31.5) 345 (31.8) 87 (36.0) 345 (34.0) 135 (38.7) 414 (40.3)

Duration of CIT treatment,
median (IQR), days

70 (21-175) 70 (21-189) 63 (19-168) 77 (21-168) 84 (22-196) 63 (14-133)

Abbreviations: 1L, first line; 2L, second line; 3L, third line; CIT, cancer immunotherapy; combo, combination; IQR, interquartile range.
aDenominators are those who received any treatment in a given line.
bDenominators are those who received CIT in a given line.
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compared with only 3.3% of patients with Asian ancestry
(Data Supplement). In patients of European ancestry,
median TMB was 6.96 mut/Mb (IQR, 3.48-13.05), and
16.7% were categorized as high TMB. A history of smoking
was equally prevalent in patients of African and European
ancestry (85%), which was significantly higher than in

patients of American (69%) and Asian (45%) ancestry
(data not shown). Differences in median TMB scores
across genomic ancestral groups were statistically signifi-
cant (P , .001), and among patients with a history of
smoking, those of African ancestry had significantly higher
TMB scores (Data Supplement).
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FIG 2. TMB scores by genomic ancestry (co-
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Association of TMB Status and CIT With OS

In patients who had ever received CIT, high TMB was
associated with improved median OS (20.89 months; 95%
CI, 17.97 to 23.43) compared with low TMB
(11.83 months; 95% CI, 11.04 to 12.68; hazard ratio, 0.61;
95% CI, 0.52 to 0.71; Fig 3). There were no significant
differences in median OS between TMB groups in patients
who did not receive CIT (hazard ratio, 1.07; 95% CI, 0.91 to
1.26; Fig 3). In CIT-treated patients, high TMB was as-
sociated with improvedmedian OS compared with low TMB
when patients were stratified by genomic ancestry
(Table 3), with similar magnitudes of effect. There was an
improvement in OS with CIT use in both high-TMB (20.89 v
5.13 months; 95% CI, 4.47 to 6.47 for no CIT) and low-TMB
(11.83 v 5.29 months; 95% CI, 4.79 to 5.88 for no CIT)
groups.

DISCUSSION

Using a large, comprehensive data set, we demonstrated
that genomic ancestry was associated with EHR-reported
race. Overall, the results presented here are generally
consistent with published literature with respect to

distribution of race or ancestry, as well as outcomes in
aNSCLC.9,11,12

Differences in TMB on the basis of genomic ancestry were
observed; patients of African ancestry had significantly
higher TMB scores (median, 8.75 mut/Mb), whereas lower
TMB scores were observed in patients of Asian ancestry
(median, 3.75 mut/Mb). These results are consistent with a
previous study in prostate cancer that demonstrated ele-
vated TMB in patients of African ancestry.29 When stratified
by smoking status, TMB status was also significantly as-
sociated with genomic ancestry; patients of African an-
cestry had the highest median TMB score (10.44 mut/Mb).
Across all genomic ancestral groups, patients with a history
of smoking had significantly higher TMB scores than those
who had never smoked. Previous studies have also dem-
onstrated that smoking is generally associated with higher
TMB levels, although the underlying cause is unknown.30-32

In this study, median TMB scores across all genomic an-
cestral groups were lower than the 16-mut/Mb threshold for
high TMB. Although a single, fixed TMB threshold has not
yet been defined, a TMB threshold of ≥ 10 mut/Mb has
been used for patients with NSCLC and established as an

TABLE 3. Multivariate Adjusted Models for Association of TMB With Overall Survival
Model High TMB, n/events Low TMB, n/events TMB, HR (95% CI) Ancestry, P CIT 3 TMB, P

All aNSCLC in CGDB (cohort 2)

Univariate 1,069/617 5,312/3,285 0.84 (0.77 to 0.92) NA NA

Multivariate 1,069/617 5,312/3,285 0.80 (0.73 to 0.87) ,.001 NA

Continuously enrolled patients in the CGDB (cohort 4)a

Model 1 (univariate) 605/391 3,121/2,219 0.82 (0.73 to 0.91) NA NA

Model 2 (multivariate) 605/391 3,121/2,219 0.79 (0.71 to 0.88) .001 NA

Model 3 (multivariate + interaction) 605/391 3,121/2,219 1.22 (1.04 to 1.43) .000 .000

CIT-exposed patients

All patients (model 4) 386/201 1,937/1,278 0.61 (0.52 to 0.71) NA NA

European (model 4a) 332/174 1,633/1,085 0.61 (0.52 to 0.72) NA NA

African (model 4a) 36/20 150/102 0.71 (0.40 to 1.26) NA NA

Other (Asian/American) (model 4a) 18/7 153/90 0.30 (0.12 to 0.78) NA NA

Asian (model 4a) 3/1 65/31 NA NA NA

American (model 4a) 15/6 88/59 0.08 (0.02 to 0.31) NA NA

Non-European (model 4a) 54/27 303/192 0.56 (0.36 to 0.89) NA NA

CIT-unexposed patientsa

All patients (model 5) 469/190 2,528/941 1.07 (0.91 to 1.26) NA NA

European (model 5a) 393/166 2,043/804 1.05 (0.88 to 1.25) NA NA

African (model 5a) 47/17 167/67 1.06 (0.58 to 1.93) NA NA

Other (Asian/American) (model 5a) 28/7 306/63 2.78 (1.11 to 7.00) NA NA

Asian (model 5a) 6/1 157/23 2.11 (0.15 to 29.31) NA NA

American (model 5a) 22/6 149/40 4.60 (1.41 to 15.02) NA NA

Non-European (model 5a) 75/24 473/130 1.33 (0.82 to 2.14) NA NA

Abbreviations: aNSCLC, advanced non–small-cell lung cancer; CGDB, clinicogenomics database; CIT, cancer immunotherapy; HR, hazard ratio; NA, not
assessed; TMB, tumor mutational burden.

aA detailed description of the models used in this study are shown in Data Supplement.
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indicator for enhanced response to CIT.26-28 These results
were consistent when a 10-mut/Mb threshold was used;
however, because of the reduced response to CIT, the
observed differences in OS between high- and low-TMB
groups were less pronounced (Data Supplement).

CIT use was not found to vary significantly by EHR-reported
race or genomic ancestry, with similar results observed
across patient cohorts. However, CIT use was numerically
lower for patients of Asian ancestry, who tended to receive
CIT in later lines of therapy. This may be attributed to the
higher prevalence of EGFR mutations in this ancestral
group, which renders them suitable candidates for first-line
treatment with tyrosine kinase inhibitors rather than CIT.33

Treatment with CIT improved OS regardless of TMB status.
For patients treated with CIT, TMB status was predictive of
improved OS across all genomic ancestral groups with a
longer OS observed for high-TMB versus low-TMB groups.
However, for patients who did not receive CIT, OS was
similar between TMB groups. Additionally, OS was shorter
in non–CIT-treated patients than has been previously re-
ported, which may suggest that FMI-tested patients had a
poorer prognosis compared with the broader NSCLC
population.34-36 The median time from advanced diagnosis
to FMI NGS testing for continuously enrolled patients in the
CGDB ranged from 29 to 122 days, suggesting that some
patients may undergo NGS testing later in the course of
treatment. Patients who had undergone NGS testing may
have more complex or advanced cancer, which may be
reflected by the shorter OS observed in this study. It is likely
that this discrepancy in OS will change over time as NGS
testing becomes more widely incorporated into routine
clinical care in the first-line setting.37

A limitation of this study is the lack of racial and ancestral
diversity in the study population. Approximately 70% of
patients identified as non-Hispanic White (cohort 1) or were
of European ancestry (cohort 2). In addition, EHR-reported
race was highly correlated with genomic ancestry (as de-
fined by FMI). However, capture of EHR-reported race (self
or physician reported) was limited to a few predefined
categories, whereas genomic ancestry was on the basis of a
small number of SNPs; neither method accounts for the
influence of genetic admixture. The limited race and eth-
nicity designations in this real-world database may have
increased the potential for missing data. Similarly, the re-
quirement of NGS/TMB testing in the CGDB may introduce
selection bias for those with access to, and under the care

of, physicians with distinct practice patterns; thus, patients
may not be fully representative of the overall aNSCLC
population. Engagement with physicians in the FH network
may indicate a generally high level of health care access
and interaction with the health care network, which may
affect the interpretation of any racial disparities. Since all
participants had access to NGS/TMB testing and CIT, any
observed differences in health outcomes would likely be
attributable to biologic factors rather than inequitable ac-
cess to care. Additionally, because of the current lack of
available data, other broader social determinants were not
assessed in this analysis.

Overall, no obvious disparities in the use of emerging
treatments (CIT) on the basis of EHR-reported race or
genomic ancestry were observed. However, there were
statistical differences in the prevalence of emerging bio-
markers (TMB) by genomic ancestry, with higher TMB in
patients of African ancestry despite a similar prevalence of
patients with a history of smoking. Although race is a
sociocultural categorization, the racial differences in TMB
remain poorly understood. Racial differences in TMB
status may be influenced by different patterns of tobacco
consumption, including the type of tobacco consumed.
For example, more than 80% of non-Hispanic Black
cigarette smokers in the United States use menthol cig-
arettes compared with approximately 25% of non-
Hispanic White smokers.38,39 Menthol cigarettes have
been shown to produce positive sensory effects, and
evidence suggests that their use is associated with an
increased risk of nicotine addiction and long-term daily
cigarette use.40

Since clinical and demographic characteristics, except
smoking, were not associated with TMB status, it appears
that high TMB is not associated with more severe disease
characteristics. High TMBwas predictive of improved OS in
patients from different ancestral groups (European, African,
and Asian/American ancestries) who were treated with CIT.
Given that previous studies using real-world data have
reported racial disparities in access to NGS/TMB testing,41

the results presented here suggest that equal access to
testing and CIT results in improved outcomes in patients
with aNSCLC, regardless of ancestral background. These
results further underscore the need to ensure equitable
access to NGS testing and CIT across racially and an-
cestrally diverse populations to address and improve dis-
parities in NSCLC outcomes.
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