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SUMMARY

Intratumor mutational heterogeneity has been documented in primary non-small-cell lung cancer. 

Here, we elucidate mechanisms of tumor evolution and heterogeneity in metastatic thoracic tumors 

(lung adenocarcinoma and thymic carcinoma) using whole-exome and transcriptome sequencing, 

SNP array for copy-number alterations (CNAs), and mass-spectrometry-based quantitative 
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proteomics of metastases obtained by rapid autopsy. APOBEC mutagenesis, promoted by 

increased expression of APOBEC3 region transcripts and associated with a high-risk APOBEC3 
germline variant, correlated with mutational tumor heterogeneity. TP53 mutation status was 

associated with APOBEC hypermutator status. Interferon pathways were enriched in tumors with 

high APOBEC mutagenesis and IFN-γ-induced expression of APOBEC3B in lung 

adenocarcinoma cells, suggesting that the immune microenvironment may promote mutational 

heterogeneity. CNAs occurring late in tumor evolution correlated with downstream transcriptomic 

and proteomic heterogeneity, although global proteomic heterogeneity was significantly greater 

than transcriptomic and CNA heterogeneity. These results illustrate key mechanisms underlying 

multi-dimensional heterogeneity in metastatic thoracic tumors.

In Brief

Roper et al. perform integrated exome, transcriptome, and quantitative proteomics analyses of 

metastases obtained through rapid autopsy of patients with thoracic malignancies. They identify 

APOBEC mutagenesis, driven by germline variants, mutant TP53, and the tumor 

microenvironment, and late copy-number alterations as key mechanisms underlying 

proteogenomic evolution and heterogeneity.

Graphical Abstract

INTRODUCTION

Understanding the mechanisms by which metastatic lung adenocarcinoma (LUAD) and 

thymic carcinoma (TC) evolve may provide greater insight into tumor progression and may 

guide novel therapeutic avenues. Autopsy programs established to harvest tumor tissue from 

metastatic sites at the end of life have demonstrated significant heterogeneity depending on 

tumor type (Campbell et al., 2010; Gundem et al., 2015; Kumar et al., 2016; Liu et al., 2009; 

Patch et al., 2015; Shah et al., 2009). For example, metastatic pancreatic cancer has high 
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inter-metastatic heterogeneity of genomic rearrangements (Campbell et al., 2010), but not of 

driver mutations (Makohon-Moore et al., 2017), whereas metastatic clear-cell renal 

carcinoma has recurrent driver mutations that occur late within individual metastases 

(Gerlinger et al., 2014), resulting in high inter-metastatic heterogeneity. Within non-small-

cell lung cancer (NSCLC), previous work has characterized the evolution of primary tumors 

and has demonstrated significant intra-tumor heterogeneity in copy-number alterations and 

driver mutations (de Bruin et al., 2014; Jamal-Hanjani et al., 2017; Zhang et al., 2014b). In 

these studies, mutations generated by the cytosine deaminase activity of APOBEC 

(apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) family of enzymes 

(substitutions of C with T or G in TCA or TCT motifs (Roberts et al., 2013) were found to 

occur late in the evolution of primary tumors (de Bruin et al., 2014) and were associated 

with subclonal mutations (Jamal-Hanjani et al., 2017). However, it is also critically 

important to understand the evolution of metastatic NSCLC, given metastatic lineages 

develop early in primary tumor development (Zhao et al., 2016). Thus, the evolution of 

metastatic disease may be substantially different from primary tumors. Moreover, previous 

NSCLC tumor heterogeneity studies have largely focused on whole-exome sequencing 

approaches. The evolution of tumors at the level of transcriptome or proteome and the 

underlying mechanisms that may generate multidimensional heterogeneity remain largely 

unknown.

Here, we sought to address the following questions:

1. What is the degree of genomic (mutational and copy number), transcriptomic, 

and proteomic heterogeneity within and between metastases of a given patient?

2. What is the relationship between these three levels of heterogeneity?

3. What are the potential drivers of such heterogeneity?

To address these questions, we performed rapid (“warm”) autopsies on four patients with 

LUAD and one patient with TC. The autopsies were initiated within 3 h of death to allow for 

procurement of sufficient quantity and quality of DNA, RNA, and protein from metastatic 

tumor tissue for whole-exome and transcriptome sequencing, DNA copy-number analysis, 

and mass-spectrometry-based proteomics. Our integrated analysis of the genome, 

transcriptome, and proteome uncovered key mechanisms likely driving proteogenomic 

heterogeneity within and across metastatic sites.

RESULTS

Sampling of Metastatic Tumors through Rapid Autopsy Protocol

We have established a rapid (“warm”) autopsy protocol for thoracic malignancies (including 

lung cancers and thymic epithelial tumors, among others) at the NIH Clinical Center. Under 

this protocol, patients with metastatic disease who are near the end of life receive inpatient 

hospice care. Upon death, an autopsy is performed within 3 h to procure sufficient quantity 

and high-quality of DNA, RNA, and protein from all possible sites of metastatic disease. For 

this study, we enrolled four patients with LUAD: patients RA000 and RA004 with 

oncogenic KRAS mutations who were previous smokers and patients RA003 and RA005 

with EGFR mutations who were both non-smokers. We additionally enrolled patient RA006 
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with squamous cell TC, a non-smoker, who died within 1.5 years of diagnosis after no 

response to treatment (Table S1). All our study patients, except for patient RA000, were 

diagnosed with stage IV disease, had received chemotherapy and/or targeted therapy (range 

2–8 lines of therapy), and were previously enrolled in a clinical trial at the NIH Clinical 

Center (Table S1). For each patient, we harvested 44–183 metastatic tumor lesions from 

multiple organs, including lung, liver, and kidney (Table S1). We selected a total of 40 tumor 

samples for further analyses based on tumor content by histology (Figure 1; Data S1). 

Before analysis, three samples with sequencing data were removed from the study because 

of low tumor content (Table S1). Additional tumor tissue collected from the likely primary 

site at the time of diagnosis was available for whole-exome sequencing in three patients 

(RA000, RA003, and RA006).

Intra- and Inter-Metastatic Mutational Tumor Heterogeneity Is Highly Variable within 
Patients and Can Be Extreme

For each patient, we performed whole-exome sequencing (WES) of the metastatic tumors, 

primary tumors, where available, and matched germline DNA. A range of 182 (RA005) to 

1,058 (RA003) non-silent mutations were identified per patient (Table S2). RNA sequencing 

(RNA-seq) demonstrated a high, independent validation rate of WES (Data S2), similar to 

previous studies (Network, 2014). We found significant mutational heterogeneity within 

each patient with non-truncal variants ranging from 67% in RA000 to 99% in RA003 

(Figure 2A).

Activating mutations in EGFR (RA003) and KRAS (RA000, RA004) were present in 

primary and all metastatic tumors of the respective patients. However, an activating HRAS 
mutation was present in all metastatic sites of patient RA006 at autopsy, but not in the 

primary tumor at the time of diagnosis. Patients RA003 and RA006 had an average of 12 

and 14 non-truncal driver mutations, respectively. In contrast, there was an average of only 

3.7 non-truncal driver mutations in the other three patients (RA005, RA004, and RA000), 

demonstrating variability in metastatic site-specific driver mutation acquisition among 

patients (Figure 2A). Intra-tumor mutational heterogeneity in driver mutations was found 

when tested in RA003 tumors L2d/L2e (Figure 2A).

Next, we calculated Jaccard similarity coefficients (defined as the ratio of shared to all 

mutations between two metastatic tumors) for each patient to quantitatively assess intra- and 

inter-metastatic tumor genomic heterogeneity (values 0–1 correspond to the range from 

minimal to maximal heterogeneity (Blokzijl et al., 2016; Makohon-Moore et al., 2017) 

(Table S3). The means of the Jaccard similarity coefficients for each patient ranged from 

0.25 (RA003) to 0.73 (RA000) and were significantly different between patients (p = 2.2 × 

10−16, Kruskal-Wallis ranksum test; Figure 2B). Two patients, RA003 and RA006, were 

clear outliers and exhibited what we termed “extreme” mutational heterogeneity. These two 

patients had significantly lower combined mean Jaccard similarity coefficients compared to 

the other patients (mean 0.28 vs. 0.57, p = 2 × 10−16, chi-square test) (Figure 2B). Jaccard 

similarity coefficients exhibited a similar trend based on expressed mutations identified by 

RNA-seq analysis (Figure 2C). Additional sequencing resulting in a median exome coverage 
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of 487× (range 435 to 528) for the tumors from patients RA003 and RA006 did not 

substantially alter the observed extreme level of heterogeneity (Figure S1; Table S3).

To further evaluate mutational heterogeneity within each patient, we applied PyClone to 

estimate the proportion of cancer cells identified with a given mutation and the clonal 

structure of each tumor. As expected, truncal, key driver mutations, such as EGFR and 

KRAS, were clonal with high cellular prevalence whereas many shared or private mutations 

had medium to lower cellular prevalence (subclonal) (Table S2). Patient RA003 had the 

highest number of subconal mutations (range 243–506), followed by patients RA006 (range 

23–103) and RA005 (40–85) and then patients RA004 (range 4–50) and RA000 (2–53) 

(Table S2). Similarly, patient RA003 had the largest and highest number of subclonal 

clusters, followed by patients RA006 and RA005 (Figure S2A). In contrast, patients RA004 

and RA000 had very few subclonal clusters (Figure S2A), demonstrating differences in 

clonal structure between patients. However, mutations that may be lost because of copy-

number loss were not accounted for in these analyses (McPherson et al., 2016). Collectively, 

these results indicate that intra- and inter-metastatic mutational heterogeneity can vary 

considerably among patients, with extreme heterogeneity evident in a subset of patients.

APOBEC Mutagenesis Strongly Correlates with Mutational Tumor Heterogeneity

Next, we generated phylogenetic trees by two independent methods, and both showed a 

similar evolutionary pattern (Figures 3 and S2B–S2E). We then analyzed mutational 

signature profiles for each tumor by layering phylogenetic trees with mutational signatures 

to elucidate whether specific mutational processes could explain the observed variability in 

mutational tumor heterogeneity. Smoking signature mutations (C → A) were highly 

prevalent in patients RA000 and RA004, who were smokers (Figure 3). Mutations generated 

by the cytosine deaminase activity of APOBEC were most prevalent in patients RA003, 

RA005, and RA006, all of whom were non-smokers (Figure 3; Data S3). Smoking signature 

mutations were generally truncal, whereas APOBEC signature mutations were largely in the 

shared and private branches of the phylogenetic trees (Figures 3A–3E; Data S3).

To further assess the timing of APOBEC-induced mutagenesis, we evaluated mutational 

signatures in available tumors collected at the time of diagnosis. We found no evidence of 

APOBEC mutagenesis in these samples, including those from patients RA003 and RA006 

(Figures 3A and 3B), indicating that APOBEC signature mutations were acquired later 

during further progression of metastatic disease. Next, we evaluated the relationship between 

APOBEC mutagenesis and mutational heterogeneity. APOBEC mutation fold enrichment, a 

measure of APOBEC mutagenesis (Roberts et al., 2013) (Table S4), strongly correlated with 

Jaccard similarity coefficients based on WES variants (Pearson rho = −0.66, p = 2.2 × 10−16) 

and expressed variants by RNAseq (Pearson rho = −0.55, p = 7.704 × 10−8) (Figures 3F and 

3G). To validate this finding, we examined the relationship between APOBEC mutagenesis 

and mutational heterogeneity in the TRACERx cohort of 17 LUAD patients with five or 

more sites of multi-region exome sequencing (133 total tumors)(Jamal-Hanjani et al., 2017). 

In line with findings in our cohort, we found APOBEC mutagenesis strongly correlated with 

Jaccard similarity coefficients (Pearson rho = −0.4689, p = 1.255 × 10−8) in the TRACERx 
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cohort (Figure 3H). Thus, these results suggest that APOBEC mutagenesis is a significant 

contributor to the generation of mutational tumor heterogeneity.

Expression of APOBEC3 Region Transcripts Correlates with APOBEC Mutagenesis

Previous analyses of early-stage TCGA LUAD patients have shown a weak but significant 

association between expression of APOBEC3 transcripts and APOBEC mutagenesis (Chan 

et al., 2015). We examined RNA-seq data from our metastatic cohort to determine whether 

APOBEC3 region transcript expression contributed to the observed variability in APOBEC 

mutagenesis. Among the LUAD patients, we found APOBEC3B to be expressed at higher 

levels than APOBEC3A; this was particularly evident in the tumors of patient RA003 

(Figure 4A). APOBEC mutagenesis (measured here by the counts of tCw to tTw and tGw 

mutations) (Roberts et al., 2013) was highly correlated with APOBEC3B expression 

(Pearson rho = 0.68, p = 9.4 × 10−5), but not with APOBEC3A expression (Pearson rho = 

0.19, p = 0.34) (Figures S3A and S3b). Analysis of isoform-specific expression of 

APOBEC3A and APOBEC3B with custom TaqMan assays confirmed these results (Figures 

S3C and S3D). Moreover, in multiple tumors of patient RA003 with significant APOBEC 

mutagenesis, APOBEC3B was expressed 20- to 50-fold higher than APOBEC3A (Figures 

4A and 4B).

To elucidate factors affecting APOBEC mutagenesis in our patients, we genotyped an 

APOBEC3 germline variant, rs12628403, associated with increased APOBEC mutagenesis 

(Nik-Zainal et al., 2014). This germline variant is a proxy for a 30-kb deletion that fuses the 

coding region of APOBEC3A with the 3′ UTR of APOBEC3B to generate a chimeric 

APOBEC3A-APOBEC3B (APOBEC3AB) transcript. This chimeric transcript is more 

stable than the APOBEC3A transcript and leads to higher APOBEC3A protein levels in 
vitro (Caval et al., 2014). Only patient RA006, the TC patient, was a carrier of the 

rs12628403 allele and was predicted to generate the APOBEC3AB transcript (Figure 4A). 

Indeed, APOBEC3AB expression in tumors of this patient was identified by RNA-seq 

(Figure 4A) and validated using a TaqMan assay (Figure 4C). However, the APOBEC3B 
transcript was also expressed in tumors from this patient, suggesting that both may have 

contributed to APOBEC mutagenesis. Expression of APOBEC3B (Pearson rho = 0.77, p = 

0.08) and APOBEC3AB (Pearson rho = 0.62, p = 0.18), but not APOBEC3A (Pearson rho = 

0.23, p = 0.67), significantly correlated with APOBEC mutagenesis in all tumors from 

patient RA006 (Figures S4A–S4C).

Although expression of APOBEC3AB was lower than APOBEC3B (Figure 4C), 

APOBEC3A encoded by APOBEC3AB is considered a more potent inducer of mutagenesis 

than APOBEC3B (Caval et al., 2014; Landry et al., 2011). Therefore, we quantified the 

contribution of APOBEC3A and APOBEC3B to APOBEC mutagenesis by calculating 

YTCA and RTCA enrichment (where Y is a purine and R is a pyrimidine), attributed to 

differential activity of these enzymes (Chan et al., 2015). In all tumors with high APOBEC 

mutagenesis from patient RA006, there was significant enrichment of YTCA compared to 

RTCA (Figure S4D), thereby suggesting APOBEC3A-like mutagenesis as a likely driver of 

extreme heterogeneity in this metastatic TC patient with a germline APOBEC3AB deletion. 
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Together, our results implicate expression of APOBEC3 region transcripts as a mediator of 

APOBEC mutagenesis in metastatic LUAD and TC.

TP53 Mutations Are Associated with APOBEC Hypermutator Status in LUAD

Given the role of TP53 in repressing APOBEC3B expression (Periyasamy et al., 2017), we 

hypothesized that mutant TP53, detected only in the LUAD patient RA003, may be 

contributing to high APOBEC3B expression and increased APOBEC mutagenesis. We 

found mutant TP53 was associated with APOBEC hypermutator status (Nik-Zainal et al., 

2014) in our cohort and in three independent LUAD datasets (Imielinski et al., 2012; Jamal-

Hanjani et al., 2014; Network, 2014) (Table S5). Moreover, mutant TP53 was also 

associated with significantly higher counts of APOBEC signature mutations, higher 

expression of APOBEC3B, and an increase in APOBEC3A, compared with wild-type TP53 
tumors in the TCGA dataset (Figures 4D–4H). Thus, our results suggest mutant TP53 
contributes to increased APOBEC3B expression, APOBEC mutagenesis, and is associated 

with APOBEC hypermutator status in LUAD.

Integration of Copy Number, Transcript, and Protein Abundance Highlights Mechanisms of 
Proteomic Heterogeneity

To evaluate multi-dimensional heterogeneity, we plotted Pearson correlation coefficients 

(PCCs) for each data type between pairs of tumors for each patient across all genes for 

which copy number, transcript expression, and protein abundance data were available 

(Figures 5A–5E). Each patient displayed variable patterns of heterogeneity across each data 

type. Patient RA003 exhibited the least (Figure 5A), whereas patient RA004 the most 

(Figure 5D) heterogeneity. Patient RA005 showed the most heterogeneity in gene expression 

and protein abundance only between tumor L5d and tumors L2a/L2b/L5c (Figure 5C). 

Patient RA006 showed lower heterogeneity in copy number, gene expression, and protein 

abundance within three pairs of tumors (L20b/L5a, Li3c/Li1a, L12a/L3a) compared to other 

pairs (Figure 5B).

Next, we plotted PCCs within each patient for each data type. Protein heterogeneity was 

significantly greater than gene expression and copy-number alteration (CNA) heterogeneity 

within all patients (Figure 5F). We then performed pairwise comparison of the PCCs of each 

data type, including a separate analysis using exome copy-number data that was corrected 

for tumor purity (Figure S5; Table S6). We found a strong, positive linear correlation 

between CNA heterogeneity and protein heterogeneity for patients RA004 and RA006, but 

not for the other patients (Figures S5A, S5D, S5G, S5J, and S5M), providing evidence that 

CNAs can lead to protein heterogeneity in these patients. Gene expression heterogeneity was 

also associated with protein heterogeneity but only in patients RA000 and RA006 (Figures 

5B and 5N). Together, these results demonstrate high heterogeneity in protein abundance 

between metastases of these patients that partly stems from heterogeneity in CNAs and gene 

expression.

Late-Event CNAs Contribute to Heterogeneity in Gene Expression and Protein Abundance

Next, we performed hierarchical clustering by chromosomal cytoband, gene expression, and 

protein abundance to further evaluate heterogeneity within each data type. Metastases from 
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each patient clustered together for CNAs, gene expression, and protein abundance (Figures 

6A and S6A–S6C). Metastases from patients RA004 and RA006 showed the lowest 

correlation in protein abundance (Figures S6D and S6E) and clear differences in CNAs 

(Figure 6A; Table S7). To explore the downstream effects of CNAs, we plotted gene 

expression and protein abundance ratios of genes within each chromosomal arm between 

metastatic lineages of each patient (Figures 6B and 6C; Table S8; Data S4). Arm-level 

CNAs within tumors of patients RA006 and RA004 corresponded with changes in gene 

expression and protein abundance of genes at the corresponding arm level. For example, 

copy-number differences in arm 4p between RA006 tumors corresponded with changes in 

expression and protein abundance (Figure 6B). Where there were no copy-number 

differences, such as in arm 7q in patient RA006 and arms 4p/7q of patient RA003, there 

were no corresponding changes in gene expression and protein abundance (Figure 6C).

Heterogeneity in focal-level CNAs also corresponded with changes in RNA and protein. For 

example, CCND1 was highly amplified in patient RA004 tumors L2a, L3a, and L8b (Table 

S9), which corresponded with high gene and protein expression. On the other hand, tumors 

L1b and L1c in which there was minimal increase in CCND1 copy number and gene and 

protein expression were low (Figures 6D and 6E). Interestingly, among patient RA004 liver 

and kidney tumors, Li1b and K1, CCND1 was highly amplified with correspondingly high 

protein but moderate gene expression, suggesting tissue-specific discordance of gene and 

protein expression of select genes (Figures 6D and 6E).

Next, we constructed circos plots (Data S5) and phylogenetic trees based on CNAs for each 

patient. Both arm- and focal-level CNAs largely occurred early in tumor development (i.e., 

truncal) in patients RA000, RA003, and RA005 (Figures 3 and S7A, S7B, and S7D) but 

occurred later in tumor development (i.e., shared and private) in patients RA004 and RA006 

(Figures 3, S7C, and S7E). These results suggest that late, not early, CNAs likely contributed 

to the observed changes in gene expression and protein abundance between metastases of 

these patients. Differential focal and arm-level CNAs may reflect ongoing chromosomal 

instability as well as selective pressure during evolution of metastatic lineages.

Enrichment of Interferon Signaling Pathways in Tumors with High APOBEC3 Expression 
and Immune Heterogeneity

Next, we sought to decipher common gene sets or pathways within the RNA-seq and mass-

spectrometry-based quantitative proteomics data that were heterogeneously enriched within 

each patient. Using an unbiased approach with single-sample gene set enrichment analysis 

(ssGSEA) (Barbie et al., 2009; Subramanian et al., 2005), we found interferon (IFN)-

signaling pathways (related to possible activity of the IFNs: type I [IFN-α, IFN-β], type II 

[IFN-γ], and type III [IFN-λ1–4]), were the most significantly and differentially enriched 

pathways within patient RA003 (tumors L1 and L4a) and RA006 (tumors L20b, L5a, Li1a, 

and Li3c) (Figures 7A–7D) at both gene expression and protein abundance levels. No 

common outlier gene sets were identified for the negatively enriched pathways. Within the 

tumors from patients RA000, RA004, and RA005, no recurrent, common pathways were 

identified by GSEA of both the transcriptome and proteome (Table S9). The six tumors from 

patients RA003 and RA006 that were enriched in IFN-signaling pathways also had the 
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highest expression of APOBEC3 region transcripts (Figure 4A). To validate these findings in 

a larger cohort, we interrogated the TCGA LUAD dataset. We found the expression of 

STAT1, a downstream effector of IFN-γ signaling, was higher in LUAD tumors with 

increased expression of both APOBEC3A and APOBEC3B (Figures S8A and S8B). 

Multiple other genes within IFN-α and IFN-γ pathways were also significantly associated 

with expression of APOBEC3A and APOBEC3B in the TCGA LUAD dataset (Table S10). 

To test whether APOBEC3A and APOBEC3B can be induced by IFNs, we treated three 

LUAD (A549, HCC4006, and H1975) and two immortalized normal lung epithelial cell 

lines (HBEC and HPL1D) with IFN-γ. These cell lines were chosen to represent major 

driver subtypes of LUAD (KRAS and EGFR) and normal lung epithelium. At baseline, 

expression of APOBEC3B was generally higher than expression of APOBEC3A. Treatment 

with IFN-γ led to a significant increase in expression of APOBEC3B, whereas expression of 

APOBEC3A increased significantly, but marginally, in only A549 and HCC4006 cells 

(Figure 7E). Thus, our results suggest IFN-signaling contributed, in part, by the tumor 

microenvironment, is a potential mechanism of heterogeneity of LUAD tumors with 

increased APOBEC3B transcript expression.

To further interrogate heterogeneity in the immune microenvironment between tumors of 

each patient in an unbiased manner, we analyzed the gene expression and protein abundance 

data using ssGSEA based on CIBERSORT immune genes (Newman et al., 2015) and an 

alternative immune scoring method (Aran et al., 2017) (Table S10). The overall immune 

signature score for tumors within each patient considerably varied between transcriptome 

and proteome in patients RA003 and RA005 (Figures 7F and 7G). Patients RA000 and 

RA004 showed low and high overall immune signature scores, respectively. In contrast, 

tumors from patient RA006 showed large and consistent differences in immune signature 

scores across both the transcriptome and proteome (high in L20b and L5a vs. low in L12a, 

L3a, Li1a, Li3c), demonstrating heterogeneous immune cell infiltration in the tumor 

microenvironment of this patient (Figures 7F and 7G).

DISCUSSION

Genomic, transcriptomic and proteomic analyses of tumors from multiple anatomic sites 

sampled through rapid autopsy offer a unique opportunity to comprehensively explore the 

biological processes that shape the evolution of metastatic tumors. Here, we have 

characterized the proteogenomic evolution of metastatic lung and thymic carcinoma through 

exome and transcriptome sequencing, CNA analysis, and unbiased quantitative mass 

spectrometry-based proteomics of 37 metastatic tumors acquired through rapid autopsy. 

Through this integrative analysis, we have uncovered insights into the mechanisms likely 

driving the mutational, transcriptomic, and proteomic landscape of these metastatic tumors.

At the genomic level, we provide evidence that APOBEC mutagenesis is a driver of 

mutational heterogeneity in metastatic lung and thymic carcinoma tumors. APOBEC 

mutagenesis has been described as one of the most common mutational processes second 

only to “ageing” (Alexandrov et al., 2013). To date, however, within thoracic tumors, this 

process has been described mostly in primary tumors (Burns et al., 2013a, 2013b; de Bruin 

et al., 2014). These studies have shown APOBEC mutagenesis to be associated with 
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subclonal mutations that occur late in the evolution of primary tumors and within spatially 

distinct regions (de Bruin et al., 2014; Jamal-Hanjani et al., 2017). In our study, we 

identified a subset of patients with high APOBEC mutagenesis in metastases, but not in the 

primary tumors, suggesting APOBEC mutagnesis can generate mutations late in the 

evolution of metastatic disease.

Given that all patients in our cohort received prior treatment, we cannot exclude the 

possibility that therapy contributed to the observed findings. However, recent studies 

assessing tumors pre- and post-chemotherapy in multiple tumor types did not find an 

increase in overall mutational load or a significant increase in APOBEC signature mutations 

(Liu et al., 2017; Noorani et al., 2017). Moreover, the patients in our cohort with the highest 

level of APOBEC mutagenesis, RA003 and RA006, received the least therapy. Additionally, 

we demonstrated increased mutational heterogeneity with increasing APOBEC mutagenesis 

among the TRACERx cohort, which explored intra-tumor heterogeneity in primary lung 

cancer among patients without previous chemotherapy, further validating the results in our 

cohort of metastatic tumors (Figure 3H).

While the existence of mutational heterogeneity in metastases has been previously described 

(Campbell et al., 2010; Yachida et al., 2010), the mechanisms remained unclear (Vogelstein 

et al., 2013). Our data suggest APOBEC mutagenesis can generate both putative driver and 

passenger mutations late in metastases, thereby generating inter-metastatic mutational 

heterogeneity that in some cases can be extreme. These results stand in contrast to recent 

genomic studies of the metastases of patients with pancreatic (Makohon-Moore et al., 2017) 

and prostate (Kumar et al., 2016) cancer, which have shown limited mutational 

heterogeneity and no significant APOBEC mutagenesis (Roberts et al., 2013). Both of these 

tumor types have shown no evidence of APOBEC mutagenesis within primary tumors 

highlighting the likely histologic specificity of this process. Ultimately, the clinical 

importance of APOBEC mutagenesis will be determined by the response of heterogeneous 

metastatic tumors—with and without APOBEC signature mutations—to chemotherapy, 

targeted agents and/or immunotherapy.

Both APOBEC3A and APOBEC3B have been shown to localize to the nucleus (Lackey et 

al., 2013) leading to potent DNA damage (Taylor et al., 2013), deaminase activity and base 

substitutions in the genome (Burns et al., 2013a; Shinohara et al., 2012). Upregulation of 

APOBEC3B causes APOBEC signature mutations in vitro (Akre et al., 2016). Expression of 

APOBEC3A and APOBEC3B also has been associated with APOBEC signature mutations 

in primary tumors from multiple cancer types including LUAD (Burns et al., 2013a, 2013b; 

Chan et al., 2015; Leonard et al., 2013). However, it is unclear whether the same transcripts 

promote APOBEC mutagenesis in metastatic lung and thymic carcinoma tumors. In our set 

of metastatic tumors, we observed a strong correlation between expression of APOBEC3B 
and APOBEC3AB transcripts and APOBEC mutagenesis, suggesting expression of such 

transcripts may be a more dominant mechanism of APOBEC mutagenesis in metastatic 

thoracic tumors as opposed to earlier stage disease. These results are in line with recent 

work in breast cancer that has shown higher APOBEC3B expression in metastatic disease 

compared to early-stage primary tumors (Sieuwerts et al., 2017).
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Mutant TP53 has been previously associated with higher APOBEC signature mutations in 

breast cancer (Burns et al., 2013a) and there is recent evidence that TP53 can repress 

APOBEC3B expression through direct transcriptional regulation of its promoter (Burns et 

al., 2013a; Menendez et al., 2017; Periyasamy et al., 2017). Our results suggest mutant TP53 
may be an important contributor of increased APOBEC3B and subsequent generation of 

APOBEC signature mutations in LUAD. In particular, we show mutant TP53 is associated 

with APOBEC hypermutator status in LUAD using three large-scale independent datasets. It 

is important to analyze APOBEC hypermutator and TP53 mutation status and the resultant 

mutational heterogeneity in future clinical trials.

Expression of the APOBEC3AB transcript was captured in our study by the presence of the 

APOBEC3 germline variant, rs1262840, within thymic carcinoma patient RA006. This 

germline variant has been previously associated with increased APOBEC signature 

mutations in primary breast cancer tumors (Nik-Zainal et al., 2014). Whether this variant is 

also associated with high APOBEC mutagenesis and mutational heterogeneity within thymic 

carcinoma is unknown, as no previous multi-region sequencing study has been performed on 

this rare tumor type. Additionally, to our knowledge, apart from the current study, this 

variant has not been examined in relation to APOBEC mutagenesis in metastatic disease. 

Given that this germline variant can be easily tested utilizing blood DNA, our results warrant 

further testing of the association between this APOBEC3 germline variant with APOBEC 

mutagenesis and mutational tumor heterogeneity in thymic carcinoma as well as other 

metastatic tumor types.

Our integrated CNA, RNA-seq, and quantitative mass spectrometry study demonstrates that 

late-event CNAs can be important drivers in the evolution of metastatic cancer through 

downstream changes in transcript and protein abundance. Early studies in yeast showed 

CNAs for a given gene lead to proportional increases in protein abundance (Hughes et al., 

2000; Pavelka et al., 2010; Rancati et al., 2008; Torres et al., 2007). More recently, studies in 

primary tumors demonstrated variability in CNA to protein cis-effects (Mertins et al., 2016; 

Zhang et al., 2014a, 2016). In metastatic disease, multiple studies have reported late-event 

CNAs (Campbell et al., 2010; Ding et al., 2010; Gerlinger et al., 2014; Hieronymus et al., 

2014; Robinson et al., 2015; Yates et al., 2015), but the effect of CNAs on transcript and 

protein abundance has not been examined.

In one recent metastatic pancreatic cancer study, CNA differences among tumor suppressor 

genes were not evident at the protein level by IHC suggesting late-event CNAs can be 

stochastic changes rather than evolutionary selected events (Makohon-Moore et al., 2017). 

In the current study, all patients had some evidence of late-event CNAs. However, only 

patients with significant differences in late-event CNAs between tumors exhibited 

corresponding differences in transcript and protein abundance. In light of the recent 

association between copy-number heterogeneity and increased recurrence and death in early-

stage NSCLC (Jamal-Hanjani et al., 2017), our results raise the question of whether late-

event CNAs, through downstream effects on gene expression and protein abundance, can 

result in worse outcomes for a subset of patients with metastatic cancer. Proteomic 

heterogeneity induced, in part, by CNAs may also explain why chromosomal instability 

(CIN) has been associated with poor outcomes in cancer (Carter et al., 2006; Choi et al., 
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2009; Jamal-Hanjani et al., 2017; Walther et al., 2008). Importantly, proteomic heterogeneity 

in our set of metastatic tumors, was much higher than CNA and transcriptomic 

heterogeneity, suggesting other mechanisms, such as epigenetic and post-translational 

modifications, also may be important drivers of proteomic heterogeneity.

Through our unbiased analysis of transcriptomic and proteomic data, we found enrichment 

of IFN signaling within the microenvironment of tumors of patients with the highest 

APOBEC3 region transcript expression. Moreover, we show that in LUAD and normal lung 

epithelial cell lines, APOBEC3B expression, and in some LUAD cell lines, APOBEC3A 
expression can be induced by IFNγ treatment. These data suggest IFN signaling within the 

tumor microenvironment may, in part, influence APOBEC3 region transcript expression and 

thereby contribute to heterogeneity in APOBEC signature mutations within the tumors of a 

given patient.

We also found transcriptomic and proteomic heterogeneity in immune signatures within and 

between patients. Major advances have been made in the treatment of metastatic tumors, 

including LUAD and TC, through immunotherapies such as immune checkpoint blockade 

(Borghaei et al., 2015; Giaccone et al., 2018). Nonetheless, only a subset of patients 

responds and multiple metastases within a given patient may respond differently because of 

immune heterogeneity (Reuben et al., 2017). Even without immunotherapy, metastases 

within a patient may also have differing tumor immune microenvironments, as we 

demonstrate within TC patient RA006 and as has been recently shown within an ovarian 

cancer patient (Jiménez-Sánchez et al., 2017). We further demonstrate that, within a given 

patient, the tumor immune microenvironment may exhibit substantial differences between 

the transcript and protein expression, adding to the complexity of assessing the immune 

microenvironment.

One of the strengths of our study is the comprehensive examination of tumor heterogeneity 

by integrating genomic (exome, CNA), transcriptomic (RNA-seq) and proteomic (global 

mass spectrometry analysis for protein abundance) data from multiple metastatic tumors 

procured through rapid autopsy. One of the limitations of our study is that all autopsy 

patients in this study were diagnosed at the late stage of metastatic disease. Hence, we were 

unable to conduct a complete temporal analysis of tumor evolution from early- to late-stage 

disease. The ongoing TRACERx study (Jamal-Hanjani et al., 2014, 2017) and corecruitment 

of those patients to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) 

post-mortem study (Abbosh et al., 2017) will allow for better elucidation of the evolution 

primary tumor to metastatic advanced disease, including at the end of life.

In conclusion, in this report, we present the heterogeneous genomic, transcriptomic, and 

proteomic landscape of metastatic lung and thymic carcinoma as well as identify possible 

mechanisms underlying such multi-level heterogeneity. High activity of the APOBEC3 

enzymes, represented by transcript expression, and modulated by germline variation, mutant 

TP53, and the immune microenvironment, can greatly alter the genomic landscape between 

metastatic tumors of a given patient. Arm-level and focal CNAs occurring later in tumor 

evolution can generate significant downstream heterogeneity through effects on gene 

expression and protein abundance. Further studies by comprehensive analyses of multiple 
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metastatic sites from larger patient populations, including different tumor types, are 

warranted to validate these mechanisms. Such an endeavor requires development of rapid 

autopsy programs, meticulous collection and processing of tumors from all possible sites of 

disease and integrated “omics” analyses. These tumor heterogeneity studies will be integral 

for evaluating the outcomes of ongoing clinical trials, developing new paradigms in clinical 

trial design, and, ultimately, to improve survival for patients with metastatic cancer.

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCES SHARING

Further information and requests for reagents may be directed to and will be fulfilled by the 

Lead Contact, Udayan Guha (udayan.guha@nih.gov).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Biospecimen Acquisition—Samples were obtained from five patients diagnosed with 

thoracic malignancies who underwent rapid autopsy. Informed consent for rapid autopsy was 

obtained under an IRB approved protocol 13-C-0131 (NCT01851395) entitled “A Pilot 

Study of Inpatient Hospice with Procurement of Tissue on Expiration in Thoracic 

Malignancies.” Patients previously treated at the NCI and with life expectancy less than 3 

months were offered inpatient hospice treatment at the Clinical Center of the National 

Institutes of Health and upon death autopsies were initiated within 3 hours. Clinical 

information, including the sex, gender of each patient is available in Table S1. One patient, 

RA003, elected to receive end of life care at home and was subsequently transported to the 

NIH Clinical Center post-mortem. Prioritization of lesions removed at autopsy was based on 

CT scan performed within one month before death. All tumors within each patient were 

removed by an experienced pathologist and macro dissected to remove surrounding non-

neoplastic tissue. Punch biopsy needles were used to obtain spatially distinct cores from 

each tumor. One-third of each tissue core sample was fixed in 10% buffered formalin, one-

third in optimal cutting temperature compound (OCT) and the remaining tissue was 

immediately flash frozen in liquid nitrogen and stored at −80°C. For each tissue sample, a 5-

μm section was taken to create a hematoxylin and eosin slide to visualize neoplastic 

cellularity using a microscope.

For each patient, normal tissue, if available, and/or a blood sample was used as a normal 

control. DNA and RNA was isolated from approximately 30 mg of snap-frozen tumor tissue 

using the All Prep DNA/RNA Mini Kit (QIAGEN). RNA was partially degraded with an 

average RNA integrity number 5.17 but was comparable between organs of different patients 

and similar in quality to previous postmortem studies. To ensure adequate quality, samples 

RA003_L2f, RA006_LN2a, RA005_L4a were removed post-sequencing but before analyses 

due to low tumor content (less than 20 percent) based on Sequenza purity estimates.

METHOD DETAILS

Whole-exome sequencing data processing, variants calling, filtering and 
annotation—Whole-exome sequencing of tumor and normal samples was performed at a 

sequencing core at the NCI Frederick National Laboratory at the National Cancer Institute 
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(NCI). Libraries were constructed and then sequenced as 2 × 126 nt paired-end reads with 

Illumina HiSeq2500 sequencers. Mean coverage depth was 161x (range 114x to 231x). Raw 

sequencing data in FASTQ format were aligned against the reference human genome (hg19) 

with BWA (Li and Durbin, 2009). The alignment BAM files were further processed 

following GATK’s best practices (McKenna et al., 2010) with Picard tools, namely 

MarkDuplicates, IndelRealigner, and BaseRecalibrator. Somatic variants were then called 

from the processed BAM files using Strelka (v1.0.10) (Saunders et al., 2012) with the 

default version of BWA configuration file. The identified somatic variants reported in the 

“passed” vcf files by Strelka were used for further analysis. Variants were functionally 

annotated using snpEff/snpSift version 3.4 (see URLs) with databases of GRCh37.70 and 

dbNSFP version 3.4, and the types of variants were filtered using snpSift (Cingolani et al., 

2012). If a variant was also reported in one of the three public databases: 1000 Genomes 

Project, ExAC, and ESP-NHLBI with a MAF greater than 5%, the variant was removed. For 

each patient, variants identified by Strelka (Saunders et al., 2012) from all tumor regions 

were combined to get a unique variant list. Using this patient-specific list, if a variant in a 

particular tumor site was not called by Strelka, the Samtools mpileup was used to retrieve 

the reference and alternative reads coverage for each SNV site. If the site had > = 2 

alternative reads and VAF > = 1%, the SNV was considered present in the tumor site. For 

short indels, if the variant site was not in the “passed” vcf file, the Strelka called “all” vcf 
file is used to retrieve the reference and alternative reads coverage; if missing in the “all” vcf 
file, the indel site was considered absent. Patient RA000 was previously known to have a 

KRAS G12C mutation based on molecular profiling. Although this mutation did not pass 

variant filtering, it was noted on manual review. Identified missense mutations were 

manually reviewed using the Integrative Genomics Viewer version 2.4 (Robinson et al., 

2011; Thorvaldsdóttir et al., 2013).

Phylogenetic analysis—Phylogenetic analysis was conducted using Phangorn (Schliep, 

2011) and phytools R packages with all identified variants (silent and non-silent) from all 

tumor sites in each patient after converting the mutation profile into binary format. The 

initial phylogenetic relationships between tumor regions for an individual patient was 

inferred using both the Maximum Parsimony and the Unweighted Pair Group Methods 

(UPGMA). Phylogenetic trees were then redrawn by hand in Adobe Illustrator with branch 

length proportional to the number of mutations specific to one tumor (private), two or more 

tumors (shared) or all tumors (trunk). Driver mutations and focal CNAs were added to the 

branches. All non-synonymous and synonymous mutations were used for tree construction. 

Phylogenetic trees were also constructed for each patient using the Treeomics computational 

tool (Reiter et al., 2017) using bootstrapping values from 1,000 samples except for patient 

RA004, which failed to run likely due to the large number of tumors. Signature analysis was 

performed for each individual tumor as well as trunks and each subsequent branch point for 

each tumor using deconstructSigs (Rosenthal et al., 2016). Mutations that were not signature 

1, 2, 4, 5, or 13-type were labeled as “unclassified.” Mutational signature analysis was 

restricted to branches with at least 10 mutations. COSMIC mutational signatures were 

calculated for each branch using the R “deconstrucSigs” package (Rosenthal et al., 2016). 

Arm-level amplification and deletions were also added to previously generated phylogenetic 
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trees for each patient (Figure S7). For these trees, branch lengths were redrawn for 

visualization purposes only.

Identification and classification of driver mutations—All identified 

nonsynonymous mutations were filtered to include only driver genes based on large-scale 

non-small cell lung cancer sequencing studies (Campbell et al., 2016; Ding et al., 2008; 

Govindan et al., 2012; Imielinski et al., 2012; Lawrence et al., 2014; Network, 2014; Weir et 

al., 2007) and in the COSMIC cancer gene census (downloaded June 2016). We classified all 

nonsynonymous mutations into the three categories. Category 1 ‘high-confidence driver 

mutations’ contained all disrupting mutations (nonsense, frameshift, splicing or ‘deleterious’ 

missense) in tumor suppressor genes or activating amino acid substitutions in non-small cell 

lung cancer oncogenes as described in lung cancer sequencing studies. Category 2 ‘putative 

driver mutations’ contained amino acid substitutions located at the same position or up to 5 

amino acids away from a substitution present in COSMIC. Category 3 ‘low confidence 

driver mutations’ contained all other nonsilent mutations in genes that were present in the 

lists of cancer-related genes described above. Mutations were then analyzed using COSMIC 

to determine whether the amino acid substitution has been previously identified. Category 2 

were further scored as ‘deleterious’ when at least two out of the three predictors classified 

the mutation as deleterious Functional prediction scores (SIFT, PolyPhen2, and Provean). 

All category 1 mutations were considered deleterious and category 3 mutations were not 

included as driver mutations in any analyses.

APOBEC germline deletion genotyping—Germline APOBEC3AB deletion was 

genotyped by a proxy SNP rs12628403 using a custom-designed TaqMan genotyping assay, 

as described previously (Middlebrooks et al., 2016). For patient RA006, the deletion status 

was also confirmed in all six tumors by Sanger sequencing, and by expression analysis.

qRT–PCR analysis—Lung cell lines A549, HCC4006, and H1975 and lung epithelial cell 

lines HBEC-3KT and HPL1D (Masuda et al., 1997) were grown on 6-well plates in 

triplicate until confluent, followed by treatment with IFNγ (1 ng/ml, R&D Systems) for 8 

and 24 hours. Cells were lysed with RLT buffer supplemented with B-mercaptoethanol. 

Total RNA for cell lines and tumors was isolated with the QIAGEN All Prep DNA/RNA 

Mini Kit with on-column DNase I treatment. cDNA was prepared from equal amounts of 

total RNA for each sample with the RT2 first-strand cDNA kit and random hexamers with an 

additional DNA removal step (QIAGEN). Expression of APOBEC3A, APOBEC3B, and 

APOBEC3AB deletion and endogenous controls GAPDH and PPIA was measured in each 

cDNA with TaqMan expression assays from Thermo Fisher. Custom assays were used for 

APOBEC3B: (F: TGCTGGGAAAACTTTGTGTACAAT; R: ATG 

TGTCTGGATCCATCAGGTATCT; Probe: FAM-ATTCATGCCTTGGTACAAA), and 

APOBEC3AB (F: ATCATGACCTACGATGAATTT AAGCA; R: 

AGCACATTGCTTTGCTGGTG; Probe: FAM-CATTCTCCAGAATCAGGG), and 

commercial assay Hs00377444_m1 was used for APOBEC3A, 4326317E for GAPDH and 

4326316E for PPIA (Thermo Fisher Scientific). Reactions were performed in four technical 

replicates on QuantStudio 7 (Life Technologies) using TaqMan Gene Expression buffer 

(Life Technologies); water and genomic DNA were used as negative controls for all assays. 
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Expression was measured by Ct values (PCR cycle at detection threshold). Expression of 

APOBEC3A, APOBEC3B and APOBEC3AB was individually normalized by the geometric 

mean of endogenous controls (GAPDH and PPIA) based on relative quantification method 

as ΔCt = Ct (control) – Ct (target).

Analysis of APOBEC mutagenesis—APOBEC-signature mutation analysis for all 

autopsy tumor samples was determined using an R software package kindly provided by Dr. 

Dmitry A. Gordenin. We used two variables in the file *_sorted_sum_all_fisher_Pcorr.txt: 

the ‘tCw_to_G+tCw_to_T’ variable, which represents total counts of APOBEC-signature 

mutations, and the ‘APOBEC_Enrich’ variable, which accounts for statistical significance of 

enrichment and represents the level APOBEC mutagenesis pattern per sample. This second 

variable is more stringent, as many samples were not enriched at a statistically significant 

level and were classified as negative for APOBEC-signature mutations. We identified 

APOBEC ‘hypermutators’ as those with signature 2 + 13 mutations (TCGA and Broad 

datasets) or total APOBEC mutations (TRACERx and our dataset) exceeding 1.5 times the 

length of the interquartile range from the 75th percentile (Nik-Zainal et al., 2014). We also 

used the same R software package to determine RTCA and YTCA enrichment for patient 

RA006. A less stringent filtering of whole-exome variants was used to provide sufficient 

sample size for this analysis. A Benjamin-Hochberg P value of 0.05 was used as a threshold 

for significance, unless specified otherwise, and all tests were two-sided.

TCGA analyses—TCGA data for lung adenocarcinoma were downloaded directly from 

the Firehose pipeline of the Broad Institute. For gene expression, we used both RNA-SeqV1 

(Reads Per Kilobase per Million, RPKM) or RNA-SeqV2 (RNA-Seq by Expectation 

Maximization, RSEM).

Copy Number Alteration Analysis—Copy number alteration (CNA) analysis was 

performed using MIP array technology (Affymetrix OncoScan FFPE Express 2.0) with 

334,183 sequence tag site probes which were used to measure DNA copy number at 

different loci across the human genome. Copy number data were processed and using the 

Affymetrix OSCHP-SNP-FASST2 algorithm within the Nexus Copy Number Software, 

which corrects for tumor ploidy using median centering. We used a log2 ratio cut-off of 

± 0.5 to define focal copy number amplifications and deletions and ± 0.25 to define arm-

level copy number amplifications and deletions. To minimize overcalling heterogeneity of 

copy number alterations, we employed the following methods: 1) tumors without ± 0.5 focal 

amplification/deletion were included if they had at log2 ratio ± 0.2 and tumors without 

± 0.25 arm-level amplification/deletion were included if they had a log2 ratio ± 0.10; 2) at 

least two tumors within a patient were required to have an amplification or deletion above 

the threshold of ± 0.5 for focal and ± 0.25 for arm; 3) an amplification/deletion was 

considered truncal if present in > 80% of the tumors within a given patient. Allele-specific 

focal copy number profiles were determined for primary tumors (available for three patients) 

using the Sequenza package. Circos plots were generated using segmented GISTIC-output 

file for all tumors using circos v0.69–4, for every track the min and max are set to −1 and 1 

respectively, values between −0.2 and 0.2 are not shown in the figure (Mermel et al., 2011). 

Arm-level changes as depicted in the copy number phylogenetic trees were determined using 
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GISTIC. We also determined allele-specific copy number, corrected for tumor ploidy and 

purity, from whole exome sequencing data using the FACETS package (Shen and Seshan, 

2016).

RNA-sequencing and data processing—RNA-seq sequencing was performed on 31 

out of 37 tumor sites. RNA-seq was done on Illumina HiSeq2500 platform to yield at least 

100 million reads/sample using Illumina TruSeq V4 chemistry at 2 × 125 nt paired-end. 

Sequencing reads were aligned with TopHat version 2.0.13 (Trapnell et al., 2009) against the 

reference human genome hg19, with UCSC known gene transcripts as the gene model 

annotation. Expression on gene and isoform level was quantified with Cufflinks version 

2.2.1 (Trapnell et al., 2012).

RNA-seq variant calling and mutation validation—For RNASeq variants calling, 

sequencing reads were first aligned to hg19 with STAR version 2.4.2a (Dobin et al., 2013) 

and then with a second pass alignment to the transcriptome generated by STAR for each 

patient. For each identified SNV in WES, its expression was confirmed by the presence of 

sequencing reads of the alternative allele assessed by Samtools mpileup on TopHat 

generated BAM files from RNASeq data, whereas alternative reads coverage for indels were 

extracted from vcf files generated by the GATK best practices variant calling on RNASeq 

(see URLs). 69% of whole exome variants had a minimum 1X RNA depth and of these 

expressed variants 59% were confirmed by RNA-seq (data not shown). 55% of whole exome 

variants had minimum of 5X RNA depth and of these expressed variants 69% were 

confirmed by RNA-seq (data not shown). Validation rates for different variant types across 

all tumor samples were similar (range 42% silent to 56% nonsense) (see Data S1).

RNA-seq data analysis—Cufflinks outputted FPKM values for each gene were 

normalized for all samples within each patient using limma package voom quantile method 

(Law et al., 2014). This expression data was used to predict enrichment scores among 

immune genes obtained from CIBERSORT for each sample (Newman et al., 2015) and then 

using single-sample GSEA (ssGSEA) from GenePattern. Using the R package “fgsea,” 

GSEA preranked we performed to determine enrichment scores for REACTOME pathways. 

Pathways with q-value less than 0.05 were considered significantly enriched. Principal 

component analysis (PCA) was used to combine clustered samples prior to conducting this 

analysis.

Protein Extraction—All but one tumor (RA004 – Li1a) had sufficient tissue for mass-

spectrometry (MS)-based proteomic characterization. About 10–15 mg of tumor tissue 

fresh-frozen in liquid nitrogen was lysed in 400μl of urea lysis buffer (20 mM HEPES pH 

8.0, 8 M urea, 1 mM sodium orthovanadate, 2.5 mM sodium pyrophosphate and 1 mM β-

glycerophosphate) using a tissue lyser (QIAGEN). Lysates were centrifuged at 14,000 rpm 

at 4°C for 10 mins and the clear supernatants were transferred to new tubes. Protein 

concentrations were determined by the Modified Lowry method (BioRad).

Enzymatic Digestion—The protein lysate was reduced with 45 mM dithriothreitol 

(Sigma Aldrich, MO), alkylated with 100 mM iodoacetamide (Sigma Aldrich, MO), and 

subsequently digested with modified sequencing grade Trypsin (Promega, Madison, WI) at 
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30°C overnight. The digest was then acidified using 0.1% TFA and the peptides were 

desalted using solid phase extraction C18 column (Supelco, Bellefonte, PA), and vacuum 

dried in a centrifugal evaporator.

TMT-Labeling—TMT10plex amine reactive reagents (0.8 mg per vial) (Thermo Fisher 

Scientific) were resuspended in 41 μL of anhydrous acetonitrile (ACN) and all 41 μL of each 

reagent was added to each sample and mixed briefly on a vortexer. Reactions were incubated 

at room temperature for 1 h, and then quenched by the addition of 8 μL of 5% 

hydroxylamine for 15 min and then combined at equal amount. All tumor tissues of LUAD 

patients RA000, RA003, RA005 and RA006 were pooled together to make a reference 

channel and labeled with TMT10-126. In a separate TMT labeling experiment, tumor tissues 

from patient RA006 were pooled together to make a reference channel.

Basic reversed phase liquid chromatography (RPLC) fractionation—Basic 

RPLC separation was performed with a XBridge C18, 100 × 2.1 mm analytical column 

containing 5μm particles and equipped with a 10 × 2.1 mm guard column (Waters, Milford, 

MA) with a flow rate of 0.25 mL/min. The solvent consisted of 10 mM triethylammonium 

bicarbonate (TEABC) as mobile phase A, and 10 mM TEABC in ACN as mobile phase B. 

Sample separation was accomplished using the following linear gradient: from 0 to 1% B in 

5min, from 1 to 10% B in 5min, from 10 to 35% B in 30min, and from 35 to 100% B in 

5min, and held at 100% B for an additional 3min. A total of 96 fractions were collected 

during the LC separation in a 96-well plate in the presence of 12.5 μL of 1% formic acid. 

The collected fractions were concatenated into 12 fractions and dried in a vacuum 

centrifuge. One tenth of the peptides were injected directly for LC-MS/MS analysis.

LC-MS/MS analyses—Peptides separated/fractionated by basic reversed-phase 

chromatography were analyzed on an LTQ-Orbitrap Elite interfaced with an Ultimate™ 

3000 RSLCnano System (Thermo Scientific, San Jose, CA). The dried peptides were loaded 

onto a nano-trap column (Acclaim PepMap100 Nano Trap Column, C18, 5 μm, 100 Å, 100 

μm i.d. × 2 cm) and separated on an Easy-spray™ C18 LC column (Acclaim PepMap100, 

C18, 2 μm, 100 Å, 75 μm i.d. × 25 cm). Mobile phases A and B consisted of 0.1% formic 

acid in water and 0.1% formic acid in 90% ACN, respectively. Peptides were eluted from the 

column at 300 nL/min using the following linear gradient: from 4 to 35% B in 60min, from 

35 to 45% B in 5min, from 45 to 90% B in 5min, and held at 90% B for an additional 5min. 

The heated capillary temperature and spray voltage were 275°C and 2kV, respectively. Full 

spectra were collected from m/z 350 to 1800 in the Orbitrap analyzer at a resolution of 

120,000, followed by data-dependent HCD MS/MS scans of the fifteen most abundant ions 

at a resolution of 30,000, using 40% collision energy and dynamic exclusion time of 30 s.

Proteomic Data Analysis—Peptides and proteins were identified and quantified using 

the Maxquant software package (version 1.5.3.30) (Tyanova et al., 2016) with the 

Andromeda search engine (Cox and Mann, 2008). MS/MS spectra were searched against the 

Uniprot human protein database (May 2013, 38523 entries) and quantification was 

performed using default parameters for TMT10plex in MaxQuant. Corrected intensities of 

the reporter ions from TMT labels were obtained from the MaxQuant search. The relative 
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ratios were calculated for each channel to the reference channel. These ratios were then used 

to predict enrichment scores of overall immune signatures obtained from CIBERSORT 

(Newman et al., 2015) and Xcell (Aran et al., 2017) using single-sample GSEA (ssGSEA) 

from GenePattern and for REACTOME pathways by GSEA preranked through the R 

package “fgsea.” Pathways with p value less than 0.10 were considered significantly 

enriched. Samples were similarly combined as described for the RNA-seq data analysis. 

Cufflinks outputted FPKM values for each gene were normalized for all samples within each 

patient using limma package voom quantile method.

Construction and Immunohistochemistry of Tissue Microarray—The physical 

construction of the TMA followed the guidelines previously used by the NCI Tissue Array 

Project. Each tumor from each autopsy patient was represented by 1 tumor core of 1mm that 

was taken from the original paraffin block. Serial 5μm sections were cut from the TMA 

block and used for immunohistochemical analysis. We used previously reported methods for 

immunohistochemical staining of TMAs (Hewitt, 2004).

Integrating copy number, gene expression and protein abundance—Pearson 

correlation coefficients (PCCs) were calculated across all common genes in copy number, 

gene expression and protein abundance data for each patient. Prior to calculating PCCs, gene 

expression data (RNA-seq FPKM) and protein abundance (protein ratios) were further 

normalized within each patient using the limma package with its voom quantile method. 

3DPlots were created using the R package “scatterplot3d.” For arm-level analyses, 

normalized gene expression and protein abundance data was categorized by chromosomal 

arm. The mean of clusters of tumors, as determined previously by PCA, were calculated for 

both sets of data. Ratios were calculated between clusters and then log2 transformed. 

Probability density plots were generated with 1% outliers removed and x axis of plots were 

restricted to −1 to 1 (log2 scale) for gene expression and −0.1 and +0.1 (log2 scale) for 

protein abundance for visualization purposes.

QUANTIFICATION AND STATISTICAL ANALYSIS

All figures and graphs were generated using the “ggplot2” package available through the R 

statistical program. Linear regression, correlations and t tests were conducted though the R 

base packages. All tests were two-tailed and p values less than 0.05 were considered 

significant.

DATA AND SOFTWARE AVAILABILITY

The sequencing and genotype data have been deposited at the database of Genotypes and 

Phenotypes (dbGaP), which is hosted by the National Center for Biotechnology Information 

(NCBI). The MS proteomics data in this study have been deposited in the ProteomeXchange 

Consortium (http://proteomecentral.proteomeexchange.org) via the PRIDE partner 

repository. The accession numbers for the data reported in this paper are dbGaP: 

phs001432.v1.p1 and PRIDE: PXD012845. Additional analyses, data and code are available 

at: https://github.com/nitinroper/Rapid-Autopsy-NCI.

Roper et al. Page 19

Cell Rep. Author manuscript; available in PMC 2019 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://proteomecentral.proteomeexchange.org/
https://github.com/nitinroper/Rapid-Autopsy-NCI


Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

We thank Dr. Ann Berger and Dr. Jennifer Cheng from the Pain and Palliative Care Team; Susan Perry and 
Emerson Padiernos; clinical and research nurses; and social work and spiritual care teams for their clinical care of 
the patients in this study who were enrolled in hospice prior to autopsy. We also thank Willie Young and the 
Pathology residents who assisted with the autopsies. We thank Dr. Dmitry A. Gordenin, Dr. Kin Chan, Dr. Bing 
Zhang, and Dr. Jing Wing for their helpful discussions. The study was supported by federal funds from the 
Intramural Research Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health. 
A.R.B. and L.P-O. were supported by the Intramural Research Program, Division of Cancer Epidemiology and 
Genetics (DCEG), National Cancer Institute, National Institutes of Health. A.G., A.-L.B., and A.R.P. were 
supported by the Intramural Research Program, National Library of Medicine, National Institutes of Health.

REFERENCES

Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, Le Quesne J, Moore 
DA, Veeriah S, Rosenthal R, et al.; TRACERx consortium; PEACE consortium (2017). 
Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 545, 446–451. 
[PubMed: 28445469] 

Akre MK, Starrett GJ, Quist JS, Temiz NA, Carpenter MA, Tutt AN, Grigoriadis A, and Harris RS 
(2016). Mutation processes in 293-based clones overexpressing the DNA cytosine deaminase 
APOBEC3B. PLoS ONE 11, e0155391. [PubMed: 27163364] 

Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, 
Borg A, Børresen-Dale AL, et al.; Australian Pancreatic Cancer Genome Initiative; ICGC Breast 
Cancer Consortium; ICGC MMML-Seq Consortium; ICGC PedBrain (2013). Signatures of 
mutational processes in human cancer. Nature 500, 415–421. [PubMed: 23945592] 

Aran D, Hu Z, and Butte AJ (2017). xCell: digitally portraying the tissue cellular heterogeneity 
landscape. Genome Biol. 18, 220. [PubMed: 29141660] 

Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, Schinzel AC, Sandy P, Meylan E, 
Scholl C, et al. (2009). Systematic RNA interference reveals that oncogenic KRAS-driven cancers 
require TBK1. Nature 462, 108–112. [PubMed: 19847166] 

Blokzijl F, de Ligt J, Jager M, Sasselli V, Roerink S, Sasaki N, Huch M, Boymans S, Kuijk E, Prins P, 
et al. (2016). Tissue-specific mutation accumulation in human adult stem cells during life. Nature 
538, 260–264. [PubMed: 27698416] 

Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, 
Holgado E, et al. (2015). Nivolumab versus docetaxel in advanced nonsquamous non-small-cell 
lung cancer. N. Engl. J. Med 373, 1627–1639. [PubMed: 26412456] 

Burns MB, Lackey L, Carpenter MA, Rathore A, Land AM, Leonard B, Refsland EW, Kotandeniya D, 
Tretyakova N, Nikas JB, et al. (2013a). APOBEC3B is an enzymatic source of mutation in breast 
cancer. Nature 494, 366–370. [PubMed: 23389445] 

Burns MB, Temiz NA, and Harris RS (2013b). Evidence for APOBEC3B mutagenesis in multiple 
human cancers. Nat. Genet 45, 977–983. [PubMed: 23852168] 

Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA, Morsberger LA, 
Latimer C, McLaren S, Lin ML, et al. (2010). The patterns and dynamics of genomic instability in 
metastatic pancreatic cancer. Nature 467, 1109–1113. [PubMed: 20981101] 

Campbell JD, Alexandrov A, Kim J, Wala J, Berger AH, Pedamallu CS, Shukla SA, Guo G, Brooks 
AN, Murray BA, et al.; Cancer Genome Atlas Research Network (2016). Distinct patterns of 
somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet 
48, 607–616. [PubMed: 27158780] 

Carter SL, Eklund AC, Kohane IS, Harris LN, and Szallasi Z (2006). A signature of chromosomal 
instability inferred from gene expression profiles predicts clinical outcome in multiple human 
cancers. Nat. Genet 38, 1043–1048. [PubMed: 16921376] 

Roper et al. Page 20

Cell Rep. Author manuscript; available in PMC 2019 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Caval V, Suspène R, Shapira M, Vartanian JP, and Wain-Hobson S (2014). A prevalent cancer 
susceptibility APOBEC3A hybrid allele bearing APOBEC3B 3’UTR enhances chromosomal 
DNA damage. Nat. Commun 5, 5129. [PubMed: 25298230] 

Chan K, Roberts SA, Klimczak LJ, Sterling JF, Saini N, Malc EP, Kim J, Kwiatkowski DJ, Fargo DC, 
Mieczkowski PA, et al. (2015). An APOBEC3A hypermutation signature is distinguishable from 
the signature of background mutagenesis by APOBEC3B in human cancers. Nat. Genet 47, 1067–
1072. [PubMed: 26258849] 

Choi CM, Seo KW, Jang SJ, Oh YM, Shim TS, Kim WS, Lee DS, and Lee SD (2009). Chromosomal 
instability is a risk factor for poor prognosis of adenocarcinoma of the lung: Fluorescence in situ 
hybridization analysis of paraffin-embedded tissue from Korean patients. Lung Cancer 64, 66–70. 
[PubMed: 18814932] 

Cingolani P, Patel VM, Coon M, Nguyen T, Land SJ, Ruden DM, and Lu X (2012). Using Drosophila 
melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. 
Front. Genet 3, 35. [PubMed: 22435069] 

Cox J, and Mann M (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-
range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol 26, 1367–1372. 
[PubMed: 19029910] 

de Bruin EC, McGranahan N, Mitter R, Salm M, Wedge DC, Yates L, Jamal-Hanjani M, Shafi S, 
Murugaesu N, Rowan AJ, et al. (2014). Spatial and temporal diversity in genomic instability 
processes defines lung cancer evolution. Science 346, 251–256. [PubMed: 25301630] 

Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, Sougnez C, Greulich H, Muzny 
DM, Morgan MB, et al. (2008). Somatic mutations affect key pathways in lung adenocarcinoma. 
Nature 455, 1069–1075. [PubMed: 18948947] 

Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW, Harris CC, McLellan MD, Fulton RS, Fulton 
LL, et al. (2010). Genome remodelling in a basal-like breast cancer metastasis and xenograft. 
Nature 464, 999–1005. [PubMed: 20393555] 

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, and Gingeras 
TR (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21. [PubMed: 
23104886] 

Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I, Fisher R, McGranahan N, Matthews 
N, Santos CR, et al. (2014). Genomic architecture and evolution of clear cell renal cell carcinomas 
defined by multiregion sequencing. Nat. Genet 46, 225–233. [PubMed: 24487277] 

Giaccone G, Kim C, Thompson J, McGuire C, Kallakury B, Chahine JJ, Manning M, Mogg R, 
Blumenschein WM, Tan MT, et al. (2018). Pembrolizumab in patients with thymic carcinoma: a 
single-arm, single-centre, phase 2 study. Lancet Oncol. 19, 347–355. [PubMed: 29395863] 

Govindan R, Ding L, Griffith M, Subramanian J, Dees ND, Kanchi KL, Maher CA, Fulton R, Fulton 
L, Wallis J, et al. (2012). Genomic landscape of non-small cell lung cancer in smokers and never-
smokers. Cell 150, 1121–1134. [PubMed: 22980976] 

Gundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JMC, Papaemmanuil E, Brewer DS, 
Kallio HML, Högnäs G, Annala M, et al.; ICGC Prostate Group (2015). The evolutionary history 
of lethal metastatic prostate cancer. Nature 520, 353–357. [PubMed: 25830880] 

Hewitt SM (2004). Design, construction, and use of tissue microarrays. Methods Mol. Biol 264, 61–
72. [PubMed: 15020780] 

Hieronymus H, Schultz N, Gopalan A, Carver BS, Chang MT, Xiao Y, Heguy A, Huberman K, 
Bernstein M, Assel M, et al. (2014). Copy number alteration burden predicts prostate cancer 
relapse. Proc. Natl. Acad. Sci. USA 111, 11139–11144. [PubMed: 25024180] 

Hughes TR, Roberts CJ, Dai H, Jones AR, Meyer MR, Slade D, Burchard J, Dow S, Ward TR, Kidd 
MJ, et al. (2000). Widespread aneuploidy revealed by DNA microarray expression profiling. Nat. 
Genet. 25, 333–337. [PubMed: 10888885] 

Imielinski M, Berger AH, Hammerman PS, Hernandez B, Pugh TJ, Hodis E, Cho J, Suh J, Capelletti 
M, Sivachenko A, et al. (2012). Mapping the hallmarks of lung adenocarcinoma with massively 
parallel sequencing. Cell 150, 1107–1120. [PubMed: 22980975] 

Roper et al. Page 21

Cell Rep. Author manuscript; available in PMC 2019 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Jamal-Hanjani M, Hackshaw A, Ngai Y, Shaw J, Dive C, Quezada S, Middleton G, de Bruin E, Le 
Quesne J, Shafi S, et al. (2014). Tracking genomic cancer evolution for precision medicine: the 
lung TRACERx study. PLoS Biol. 12, e1001906. [PubMed: 25003521] 

Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S, Shafi S, Johnson 
DH, Mitter R, Rosenthal R, et al.; TRACERx Consortium (2017). Tracking the evolution of non-
small-cell lung cancer. N. Engl. J. Med 376, 2109–2121. [PubMed: 28445112] 

Jiménez-Sánchez A, Memon D, Pourpe S, Veeraraghavan H, Li Y, Vargas HA, Gill MB, Park KJ, 
Zivanovic O, Konner J, et al. (2017). Heterogeneous tumor-immune microenvironments among 
differentially growing metastases in an ovarian cancer patient. Cell 170, 927–938.e20. [PubMed: 
28841418] 

Kumar A, Coleman I, Morrissey C, Zhang X, True LD, Gulati R, Etzioni R, Bolouri H, Montgomery 
B, White T, et al. (2016). Substantial interindividual and limited intraindividual genomic diversity 
among tumors from men with metastatic prostate cancer. Nat. Med 22, 369–378. [PubMed: 
26928463] 

Lackey L, Law EK, Brown WL, and Harris RS (2013). Subcellular localization of the APOBEC3 
proteins during mitosis and implications for genomic DNA deamination. Cell Cycle 12, 762–772. 
[PubMed: 23388464] 

Landry S, Narvaiza I, Linfesty DC, and Weitzman MD (2011). APOBEC3A can activate the DNA 
damage response and cause cell-cycle arrest. EMBO Rep. 12, 444–450. [PubMed: 21460793] 

Law CW, Chen Y, Shi W, and Smyth GK (2014). voom: precision weights unlock linear model 
analysis tools for RNA-seq read counts. Genome Biol. 15, R29. [PubMed: 24485249] 

Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel 
SB, Lander ES, and Getz G (2014). Discovery and saturation analysis of cancer genes across 21 
tumour types. Nature 505, 495–501. [PubMed: 24390350] 

Leonard B, Hart SN, Burns MB, Carpenter MA, Temiz NA, Rathore A, Vogel RI, Nikas JB, Law EK, 
Brown WL, et al. (2013). APOBEC3B upregulation and genomic mutation patterns in serous 
ovarian carcinoma. Cancer Res. 73, 7222–7231. [PubMed: 24154874] 

Li H, and Durbin R (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. 
Bioinformatics 25, 1754–1760. [PubMed: 19451168] 

Liu W, Laitinen S, Khan S, Vihinen M, Kowalski J, Yu G, Chen L, Ewing CM, Eisenberger MA, 
Carducci MA, et al. (2009). Copy number analysis indicates monoclonal origin of lethal metastatic 
prostate cancer. Nat. Med 15, 559–565. [PubMed: 19363497] 

Liu D, Abbosh P, Keliher D, Reardon B, Miao D, Mouw K, Weiner-Taylor A, Wankowicz S, Han G, 
Teo MY, et al. (2017). Mutational patterns in chemotherapy resistant muscle-invasive bladder 
cancer. Nat. Commun 8, 2193. [PubMed: 29259186] 

Makohon-Moore AP, Zhang M, Reiter JG, Bozic I, Allen B, Kundu D, Chatterjee K, Wong F, Jiao Y, 
Kohutek ZA, et al. (2017). Limited heterogeneity of known driver gene mutations among the 
metastases of individual patients with pancreatic cancer. Nat. Genet 49, 358–366. [PubMed: 
28092682] 

Masuda A, Kondo M, Saito T, Yatabe Y, Kobayashi T, Okamoto M, Suyama M, Takahashi T, and 
Takahashi T (1997). Establishment of human peripheral lung epithelial cell lines (HPL1) retaining 
differentiated characteristics and responsiveness to epidermal growth factor, hepatocyte growth 
factor, and transforming growth factor beta1. Cancer Res 57, 4898–4904. [PubMed: 9354455] 

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, 
Gabriel S, Daly M, and DePristo MA (2010). The Genome Analysis Toolkit: a MapReduce 
framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303. 
[PubMed: 20644199] 

McPherson A, Roth A, Laks E, Masud T, Bashashati A, Zhang AW, Ha G, Biele J, Yap D, Wan A, et 
al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous 
ovarian cancer. Nat. Genet 48, 758–767. [PubMed: 27182968] 

Menendez D, Nguyen TA, Snipe J, and Resnick MA (2017). The cytidine deaminase APOBEC3 
family is subject to transcriptional regulation by p53. Mol. Cancer Res. 15, 735–743. [PubMed: 
28232385] 

Roper et al. Page 22

Cell Rep. Author manuscript; available in PMC 2019 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, and Getz G (2011). GISTIC2.0 
facilitates sensitive and confident localization of the targets of focal somatic copy-number 
alteration in human cancers. Genome Biol. 12, R41. [PubMed: 21527027] 

Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P, Wang X, Qiao JW, Cao S, 
Petralia F, et al.; NCI CPTAC (2016). Proteogenomics connects somatic mutations to signalling in 
breast cancer. Nature 534, 55–62. [PubMed: 27251275] 

Middlebrooks CD, Banday AR, Matsuda K, Udquim KI, Onabajo OO, Paquin A, Figueroa JD, Zhu B, 
Koutros S, Kubo M, et al. (2016). Association of germline variants in the APOBEC3 region with 
cancer risk and enrichment with APOBEC-signature mutations in tumors. Nat. Genet. 48, 1330–
1338. [PubMed: 27643540] 

Network, T.; Cancer Genome Atlas Research Network (2014). Comprehensive molecular profiling of 
lung adenocarcinoma. Nature 511, 543–550. [PubMed: 25079552] 

Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, and Alizadeh AA 
(2015). Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–
457. [PubMed: 25822800] 

Nik-Zainal S, Wedge DC, Alexandrov LB, Petljak M, Butler AP, Bolli N, Davies HR, Knappskog S, 
Martin S, Papaemmanuil E, et al. (2014). Association of a germline copy number polymorphism of 
APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast 
cancer. Nat. Genet 46, 487–491. [PubMed: 24728294] 

Noorani A, Bornschein J, Lynch AG, Secrier M, Achilleos A, Eldridge M, Bower L, Weaver JMJ, 
Crawte J, Ong CA, et al.; Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS) 
Consortium (2017). A comparative analysis of whole genome sequencing of esophageal 
adenocarcinoma pre- and post-chemotherapy. Genome Res. 27, 902–912. [PubMed: 28465312] 

Patch AM, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday S, Nones K, Cowin P, 
Alsop K, Bailey PJ, et al.; Australian Ovarian Cancer Study Group (2015). Whole-genome 
characterization of chemoresistant ovarian cancer. Nature 521, 489–494. [PubMed: 26017449] 

Pavelka N, Rancati G, Zhu J, Bradford WD, Saraf A, Florens L, Sanderson BW, Hattem GL, and Li R 
(2010). Aneuploidy confers quantitative proteome changes and phenotypic variation in budding 
yeast. Nature 468, 321–325. [PubMed: 20962780] 

Periyasamy M, Singh AK, Gemma C, Kranjec C, Farzan R, Leach DA, Navaratnam N, Pálinkás HL, 
Vértessy BG, Fenton TR, et al. (2017). p53 controls expression of the DNA deaminase 
APOBEC3B to limit its potential mutagenic activity in cancer cells. Nucleic Acids Res. 45, 
11056–11069. [PubMed: 28977491] 

Rancati G, Pavelka N, Fleharty B, Noll A, Trimble R, Walton K, Perera A, Staehling-Hampton K, 
Seidel CW, and Li R (2008). Aneuploidy underlies rapid adaptive evolution of yeast cells deprived 
of a conserved cytokinesis motor. Cell 135, 879–893. [PubMed: 19041751] 

Reiter JG, Makohon-Moore AP, Gerold JM, Bozic I, Chatterjee K, Iacobuzio-Donahue CA, Vogelstein 
B, and Nowak MA (2017). Reconstructing metastatic seeding patterns of human cancers. Nat. 
Commun 8, 14114. [PubMed: 28139641] 

Reuben A, Spencer CN, Prieto PA, Gopalakrishnan V, Reddy SM, Miller JP, Mao X, De Macedo MP, 
Chen J, Song X, et al. (2017). Genomic and immune heterogeneity are associated with differential 
responses to therapy in melanoma. NPJ Genom. Med 2, 10. [PubMed: 28819565] 

Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D, Stojanov P, Kiezun A, Kryukov GV, 
Carter SL, Saksena G, et al. (2013). An APOBEC cytidine deaminase mutagenesis pattern is 
widespread in human cancers. Nat. Genet 45, 970–976. [PubMed: 23852170] 

Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, and Mesirov JP (2011). 
Integrative genomics viewer. Nat. Biotechnol 29, 24–26. [PubMed: 21221095] 

Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, Montgomery B, Taplin 
ME, Pritchard CC, Attard G, et al. (2015). Integrative clinical genomics of advanced prostate 
cancer. Cell 161, 1215–1228. [PubMed: 26000489] 

Rosenthal R, McGranahan N, Herrero J, Taylor BS, and Swanton C (2016). DeconstructSigs: 
delineating mutational processes in single tumors distinguishes DNA repair deficiencies and 
patterns of carcinoma evolution. Genome Biol. 17, 31. [PubMed: 26899170] 

Roper et al. Page 23

Cell Rep. Author manuscript; available in PMC 2019 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Roth A, Khattra J, Yap D, Wan A, Laks E, Biele J, Ha G, Aparicio S, Bouchard-Côté A, and Shah SP 
(2014). PyClone: statistical inference of colonal population structure in cancer. Nat. Methods 11, 
396–398. [PubMed: 24633410] 

Saunders CT, Wong WS, Swamy S, Becq J, Murray LJ, and Cheetham RK (2012). Strelka: accurate 
somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics 28, 
1811–1817. [PubMed: 22581179] 

Schliep KP (2011). phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593. [PubMed: 
21169378] 

Shah SP, Morin RD, Khattra J, Prentice L, Pugh T, Burleigh A, Delaney A, Gelmon K, Guliany R, 
Senz J, et al. (2009). Mutational evolution in a lobular breast tumour profiled at single nucleotide 
resolution. Nature 461, 809–813. [PubMed: 19812674] 

Shen R, and Seshan VE (2016). FACETS: allele-specific copy number and clonal heterogeneity 
analysis tool for high-throughput DNA sequencing. Nucleic Acids Res. 44, e131. [PubMed: 
27270079] 

Shinohara M, Io K, Shindo K, Matsui M, Sakamoto T, Tada K, Kobayashi M, Kadowaki N, and 
Takaori-Kondo A (2012). APOBEC3B can impair genomic stability by inducing base substitutions 
in genomic DNA in human cells. Sci. Rep 2, 806. [PubMed: 23150777] 

Sieuwerts AM, Schrijver WA, Dalm SU, de Weerd V, Moelans CB, Ter Hoeve N, van Diest PJ, 
Martens JW, and van Deurzen CH (2017). Progressive APOBEC3B mRNA expression in distant 
breast cancer metastases. PLoS ONE 12, e0171343. [PubMed: 28141868] 

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy 
SL, Golub TR, Lander ES, and Mesirov JP (2005). Gene set enrichment analysis: a knowledge-
based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 
15545–15550. [PubMed: 16199517] 

Taylor BJ, Nik-Zainal S, Wu YL, Stebbings LA, Raine K, Campbell PJ, Rada C, Stratton MR, and 
Neuberger MS (2013). DNA deaminases induce break-associated mutation showers with 
implication of APOBEC3B and 3A in breast cancer kataegis. eLife 2, e00534. [PubMed: 
23599896] 

Thorvaldsdóttir H, Robinson JT, and Mesirov JP (2013). Integrative Genomics Viewer (IGV): high-
performance genomics data visualization and exploration. Brief. Bioinform 14, 178–192. 
[PubMed: 22517427] 

Torres EM, Sokolsky T, Tucker CM, Chan LY, Boselli M, Dunham MJ, and Amon A (2007). Effects of 
aneuploidy on cellular physiology and cell division in haploid yeast. Science 317, 916–924. 
[PubMed: 17702937] 

Trapnell C, Pachter L, and Salzberg SL (2009). TopHat: discovering splice junctions with RNA-Seq. 
Bioinformatics 25, 1105–1111. [PubMed: 19289445] 

Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, and 
Pachter L (2012). Differential gene and transcript expression analysis of RNA-seq experiments 
with TopHat and Cufflinks. Nat. Protoc 7, 562–578. [PubMed: 22383036] 

Tyanova S, Temu T, and Cox J (2016). The MaxQuant computational platform for mass spectrometry-
based shotgun proteomics. Nat. Protoc 11, 2301–2319. [PubMed: 27809316] 

Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr., and Kinzler KW (2013). Cancer 
genome landscapes. Science 339, 1546–1558. [PubMed: 23539594] 

Walther A, Houlston R, and Tomlinson I (2008). Association between chromosomal instability and 
prognosis in colorectal cancer: a meta-analysis. Gut 57, 941–950. [PubMed: 18364437] 

Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R, Lin WM, Province MA, Kraja A, 
Johnson LA, et al. (2007). Characterizing the cancer genome in lung adenocarcinoma. Nature 450, 
893–898. [PubMed: 17982442] 

Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, Kamiyama M, Hruban RH, Eshleman JR, Nowak 
MA, et al. (2010). Distant metastasis occurs late during the genetic evolution of pancreatic cancer. 
Nature 467, 1114–1117. [PubMed: 20981102] 

Yates LR, Gerstung M, Knappskog S, Desmedt C, Gundem G, Van Loo P, Aas T, Alexandrov LB, 
Larsimont D, Davies H, et al. (2015). Subclonal diversification of primary breast cancer revealed 
by multiregion sequencing. Nat. Med 21, 751–759. [PubMed: 26099045] 

Roper et al. Page 24

Cell Rep. Author manuscript; available in PMC 2019 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, Chambers MC, Zimmerman LJ, Shaddox KF, Kim S, 
et al.; NCI CPTAC (2014a). Proteogenomic characterization of human colon and rectal cancer. 
Nature 513, 382–387. [PubMed: 25043054] 

Zhang J, Fujimoto J, Zhang J, Wedge DC, Song X, Zhang J, Seth S, Chow CW, Cao Y, Gumbs C, et al. 
(2014b). Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion 
sequencing. Science 346, 256–259. [PubMed: 25301631] 

Zhang H, Liu T, Zhang Z, Payne SH, Zhang B, McDermott JE, Zhou JY, Petyuk VA, Chen L, Ray D, 
et al.; CPTAC Investigators (2016). Integrated proteogenomic characterization of human high-
grade serous ovarian cancer. Cell 166, 755–765. [PubMed: 27372738] 

Zhao ZM, Zhao B, Bai Y, Iamarino A, Gaffney SG, Schlessinger J, Lifton RP, Rimm DL, and 
Townsend JP (2016). Early and multiple origins of metastatic lineages within primary tumors. 
Proc. Natl. Acad. Sci. USA 113, 2140–2145. [PubMed: 26858460] 

Roper et al. Page 25

Cell Rep. Author manuscript; available in PMC 2019 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• APOBEC mutagenesis correlates with metastatic mutational heterogeneity

• Mutant TP53 is associated with APOBEC hypermutator status

• IFN-γ signaling and high-risk APOBEC3 germline variants modulate 

APOBEC3 expression

• Late CNAs correlate with downstream transcriptomic and proteomic 

heterogeneity
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Figure 1. Flowchart of Study
Five patients underwent rapid autopsy (defined here as within 3 h of patient death). Thirty-

three metastatic lung adenocarcinoma (LUAD) and 7 metastatic thymic carcinoma tumors 

from lung, liver, and kidney were subjected to whole-exome sequencing (WES), RNA 

sequencing, copy-number analysis, and mass-spectrometry-based proteomics, followed by 

assessment of intra- and inter-metastatic tumor heterogeneity. Three samples were removed 

from the study after sequencing because of low tumor content.
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Figure 2. Intra- and Inter-metastatic Heterogeneity of Somatic Mutations of Tumors from All 
Autopsy Patients
(A) Heatmaps depict the distribution of non-silent somatic mutations among metastatic and, 

where available, primary tumors for each patient. Driver mutations are listed to the left of 

each heatmap. The total number of non-silent mutations and the percentage of non-truncal 

mutations are shown below each heatmap. The bars to the right of each heatmap summarizes 

intra- and inter-metastatic heterogeneity; mutations present in all regions (purple), in more 

than one, but not all (green), or only in one region (brown).
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(B and C) Jaccard similarity coefficients of metastases within each patient based on 

mutations identified by exome sequencing (B) and expressed variants by RNA-seq (C). Each 

circle represents the Jaccard similarity coefficient between two metastases. Coefficients 

range from zero to one representing highest and lowest heterogeneity, respectively. The p 

value for the difference in mean Jaccard similarity coefficients between two groups of 

patients is shown. P, tumor sample obtained at diagnosis; L, lung tumor at autopsy; Li, liver 

tumor at autopsy; K, kidney tumor at autopsy.
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Figure 3. Inferred Phylogeny, Mutational Signatures, and APOBEC-Associated Heterogeneity
(A–E) Phylogenetic trees were generated by the Phangorn method from all validated 

mutations identified by whole-exome sequencing from tumors within patient RA003 (A), 

RA006 (B), RA005 (C), RA000 (D), and RA004 (E) using the maximum parsimony 

method. Trees are rooted in mutations common to all tumors within each patient. Trunk and 

branch lengths are proportional to the numbers of mutations acquired on the corresponding 

trunk or branch. Each private branch represents mutations unique to each individual tumor. 

Colors represent COSMIC mutational signatures. Select driver mutations and focal copy-
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number amplifications/deletions are mapped to the trunks and branches as indicated. 

Asterisks denote nonsense mutations.

(F–H) APOBEC fold enrichment correlates with Jaccard similarity coefficients across NCI 

autopsy patient tumors based on exome variants (F), expressed variants (G), and TRACERx 

lung adenocarcinoma patient tumors (patients with five or more tumors shown) (H). Each 

circle represents mean APOBEC fold enrichment and the Jaccard similarity coefficient 

between two tumors from a given patient. P, tumor sample obtained at diagnosis; L, lung 

tumor at autopsy; Li, liver tumor at autopsy; K, kidney tumor at autopsy.

P-values for correlation coefficients are shown.
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Figure 4. Relationship between APOBEC Fold Enrichment, Mutational Signatures, APOBEC3 
Region Transcript Expression, APOBEC3AB Germline Variant, and Mutant TP53
(A) APOBEC fold enrichment of each tumor. Asterisks denote significant enrichment. The 

dashed line denotes zero enrichment of APOBEC mutations. The proportion of COSMIC 

signatures for each tumor appears below APOBEC fold enrichment. The number of risk 

alleles for APOBEC3 germline variant rs12628403 is shown below the proportion of 

COSMIC signatures. The expression of APOBEC3B, APOBEC3A, and APOBEC3AB is 

shown below the proportion of COSMIC signatures.
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(B and C) The relative expression of isoforms APOBEC3B1, APOBEC3A1, and 

APOBEC3AB in tumor relative to normal lung or liver by custom TaqMan assays in patient 

RA003 (B) and patient RA006 (C). Six of the 37 tumors are not included here because of 

insufficient RNA for sequencing. (D–F) APOBEC signature mutations per megabase in the 

TCGA (D) and in the Broad dataset (E) and the total APOBEC mutations in TRACERx 

dataset (F) in TP53 mutant compared with TP53 wild-type tumors.

(G and H) APOBEC3B expression (G) and APOBEC3A expression (H) in TP53 wild-type 

and mutant tumors in the TCGA dataset. p values shown are adjusted for patient age and the 

number of pack years smoked.

‡visual inspection of RNA-seq data shows expression of APOBEC3AB.

See Figure S4E for details.
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Figure 5. Intra-Patient Multi-Omic Tumor Relationships
(A–E) Pearson correlation coefficients (PCCs) are shown on each axis across all common 

genes identified in copy number, gene expression, and protein abundance datasets between 

all tumors within patient RA003 (A), RA006 (B), RA005 (C), RA004 (D), and RA000 (E). 

Each circle represents the relationship between two tumors. Previously designated tumor 

clusters are assigned the same color. Colors are independently assigned for each patient.

(F) PCCs between tumors from each patient grouped by data type: copy number, gene 

expression, and protein abundance. p values for the difference in mean PCCs between data 

types are shown for each patient.
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Figure 6. Copy-Number Heterogeneity Corresponds with Transcriptomic and Proteomic 
Heterogeneity
(A) Hierarchical clustering by copy number across the genome across all tumors from all 

patients (at cytoband resolution). Losses (purple) and gains (red) in log2 scale are depicted 

relative to mean ploidy. Mean ploidy is shown in the top row (rounded to nearest integer)..

(B and C) Copy-number differences in chromosomal arms 4p and 7q between tumors of 

patient RA006 (B) and patient RA003 (C) and corresponding changes in FPKM and protein 

abundance. Probability density plots show the log ratios of mean FPKM by chromosomal 

arm for sets of tumors as displayed. The dashed line on the x axis represents the ratio of 1 
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(or log ratio 0). For visualization purposes, the x axis was cut at log −1 and 1 for RNA and 

log −0.1 and 0.1 for protein. The y axis was cut at a probability density of 2..

(D) The phylogenetic tree depicts tumors of patient RA004 with corresponding copy number 

and RNA-seq FPKM of CCND1 for each tumor..

(E) Protein expression of CCND1 for tumors of patient RA004 as assessed by 

immunohistochemistry from tissue microarrays.
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Figure 7. Site-Specific Enrichment of Interferon Signaling Pathways, Immune Signature 
Heterogeneity, and the Effect of Interferon on Expression of APOBEC3 Genes among Lung 
Cancer and Epithelial Cell Lines
(A–D) Single-sample gene set enrichment (ssGSEA) analysis of transcriptome and proteome 

using the REACTOME databases are shown for tumors from patients RA003 (A and B) and 

RA006 (C and D). Significantly enriched interferon pathways (q < 0.05 for transcriptome, p 

< 0.10 for proteome) are colored red..

(E) APOBEC3A and APOBEC3B expression among lung cancer cell lines A549, 

HCC4006, and H1975 and immortalized normal lung epithelial cell lines HBEC and HPL1D 

treated with interferon-gamma. p values were calculated between time points as indicated 

for the significant changes using two-sided t tests. Data are shown as values for individual 

biological replicates (n = 3) and mean (red bars), normalized to endogenous controls and 

presented on the log2 scale.

(F and G) Immune signature scores within the transcriptome. (F) and proteome (G) are 

shown between all tumors of patients RA000, RA003, RA004, RA005, and RA006. Scores 

were normalized across all tumors separately for transcriptome and proteome. ES, 

enrichment score; IFN, interferon; A3A, APOBEC3A; A3B, APOBEC3B. Symbols denote 

comparisons between groups of tumors as indicated.
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