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We recently described a negative correlation between T2 
relaxation time (T2 time) and magnetic resonance imaging 
(MRI)-derived apparent diffusion coefficient (ADC) when 
T2 time is in the range of those of liver and spleen (1,2). 
However, body fluid such as gallbladder fluid has both very 
long T2 time and very high ADC (Figure 1) (3,5). When 
myometrium tumors are very highly hypertensive such as 
the cases of leiomyoma cystic degeneration and myxoid 
degeneration, the relationship between T2 weighted 
signal intensity and diffusion is similar to that of a normal 
gallbladder, i.e., T2 weighted signal highly hypertensive 
without diffusion restriction (1,6). Therefore, when a tissue 
has a long T2 time, longer T2 may be associated with 
higher diffusion measures. That is, depending on the T2 
time value, a positive correlation may exist between long 
T2 time and ADC (2). This point is further supported 
by examples of parotid tumors, as illustrated in Figure 2 
(2,7-9). Figure 2 is based on our parotid tumor literature 
search results where we searched articles reporting 
both quantitative ADC measure and T2 time value or 
quantitative T2 signal intensity. Figure 2 shows almost linear 
relationships between parotid tumor mean T2 relaxation 
time (or T2 weighted mean image signal) and parotid tumor 
mean ADC.

We add the data of Baohong et al. (7) onto Figure 1, and 
the results are shown in Figure 3. Figure 3 tentatively shows 
a tri-phasic (or bi-phasic) correlation between T2 time and 
ADC.

To further clarify the possible tri-phasic correlation 
between T2 time and ADC, we added more data onto 

Figure 3, and thus we further have Figure 4 (10-15). We 

arbitrarily divide T2 time into short T2 time band [<60 

millisecond (ms)], intermediate T2 time band (60–80 ms), 

and long T2 time band (>80 ms). For the short T2 time 

band, we argue that ‘there is a negative correlation between T2 

time and ADC’. This is evidently shown with normal liver 

tissue and normal spleen tissue (1,2,16). In addition to the 
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Figure 1 Relationship between T2 time and ADC for liver, 
spleen, and gallbladder. Liver and spleen data are from the 
studies of Kim et al. (3) and de Bazelaire et al. (4), with 3T 
scanner and ADC based on b-values =0, 800 s/mm2. Gallbladder 
T2 time is based on the study of Mohajeri et al. (5). Gallbladder 
ADC of 3×10−3 mm2/s is based on our own measure with b-values  
=0, 800 s/mm2, and this value is also consistent with literature 
reports. ADC, apparent diffusion coefficient; ms, millisecond.
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data shown in Figure 4, it is well known that most of the 
liver and pancreas cancerous tissues have increased T2 time 
and decreased ADC (17-21) (Figures S1,S2). Liver fibrosis 
has been well shown to have increased T2 time (10,11,22-24) 
and lowered ADC (20).

For the long T2 time band, we can argue that ‘there is a 
positive correlation between T2 time and ADC’. In addition to 

parotid gland tumors, there are numerous examples to support 
this claim (25-30), and the correlations between T2 time and 
ADC are mostly strong (Figures 2,5-7). In fact, the strong 
correlation between T2 time and ADC value may suggest, for 
the long T2 time band, T2 time’s contribution to ADC may 
be dominant, while tissue diffusion differences may be much 
smaller than ADC measure demonstrates (Figure 2).

Figure 2 Almost linear relationship between parotid tumor T2 time (or T2 weighted image signal) and parotid tumor ADC (×10–3 mm2/s). 
(A) Data from Baohong et al. (7), 3T scanner, ADC were from two b-values (0 and 1,000 s/mm2). ADC from lower to higher ranking: 
Warthin’s tumor, malignant tumor, benign tumor, pleomorphic adenoma. (B) Data from Murayama et al. (8), 3T scanner, ADC were 
from three b-values (0, 500, 1,000 s/mm2). T2SI ratio: T2 weighted image signal ratio of tumor to the cerebrospinal fluid. ADC from 
lower to higher ranking: Warthin’s tumor, parotid cancer, basal cell adenoma, pleomorphic adenoma. (C) Data from Matsusue et al. (9), 
1.5 T Scanner, ADC were from two b-values (0 and 800 s/mm2). TSc-CR: tumor to spinal cord contrast ratio on T2 weighted image. 
ADC from lower to higher ranking: Warthin’s tumor; malignant tumor, pleomorphic adenoma. Data presented are the mean values.  
(D) Aggregation of A, B, and C data, with Y-axes of B and C re-scaled to that of A. ADC, apparent diffusion coefficient; ms, millisecond. 
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The range of intermediate T2 time band cannot be 
validated yet, but it is likely that the association between 
T2 time and ADC may be insensitive around the T2 
time of 70 ms (at 3T). Data of Figure 7 support this 
notion (13,28). For MRI hyperintense uterine fibroid 
(Figure 7A, mean T2 time =84.2 ms), there was a strong 
positive correlation between T2 time and ADC. For 

MRI intermediate-intensity uterine fibroid (Figure 7B, 
mean T2 time =69.6 ms), the correlation between T2 time 
and ADC was almost non-existent. For prostatitis (Figure 7C,  
mean T2 time =103.6 ms), there was a strong positive 
correlation between T2 time and ADC. For prostate cancer 
(Figure 7E, mean T2 time =80.62 ms), there was a weak 
correlation between T2 time and ADC. Note that mean 
T2 time =69.6 ms for intermediate-intensity uterine fibroid 
is right in the middle of the T2 time insensitive band [at 
the T2 time of around 70 ms, 1.5T value and 3.0 value are 
similar (4)], while T2 time =80.2 ms for prostate cancer is 
close to the long T2 time band. Whether the intermediate 
T2 time band spans from 60 to 80 ms at 3T requires further 
studies.

Perfusion of course does contribute to ADC measure. 
One typical example is the richly perfused kidneys. Both 
kidney cortex and medulla have a similar ADC of around 
1.8×10-3 mm2/s (31,32). While kidney cortex has much 
higher blood perfusion than kidney medulla (for example, 
Vallée et al.: 2.54 vs. 1.08 mL/min/g; Winter et al.: 2.98 vs. 
1.53 mL/min/g) (33,34). Kidney medulla has a longer T2 
time than the cortex (138 vs. 121 ms at 3T) (4,35,36). It is 
possible that longer medulla T2 time also contributes to the 
medulla’s not-lower ADC than that of the cortex. Kidney 
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Figure 3 A sum of Figure 1 and Figure 2. Data sources are 
explained in Figure 1 and Figure 2. ADC, apparent diffusion 
coefficient; ms, millisecond. 

Figure 4 Potential tri-phasic associations between T2 time and ADC value. All data are measured at 3T, with the mean values 
presented. A, B, and C are from Figure 3. D is from the study of Liu et al. (10) on partial bile duct ligation cholestatic liver fibrosis rat 
model, and ADC was based on b-values =0, 800 s/mm2. E and F are from the study of Zhang et al. (11) on carbon tetrachloride liver fibrosis 
rat model. ADC of E was based on b-values =0, 200 s/mm2, and ADC of F was based on b-values =400, 500, 600, 800, 1,000 s/mm2. G is from the 
study of Ma et al. (12), with six normal brain areas measured: frontal, parietal, and occipital regions of the grey matter; frontal, parietal, and 
occipital regions of the white matter. The measurements were conducted with a 3T scanner and with b-values =0, 400, 800 s/mm2. H is from 
the study of Hepp et al. (13) and ADC was based on b-values =50, 500, 1,000, 2,000 s/mm2. I is from Han et al. (14) for T2 time and from 
Hambrock et al. (15) for ADC (b-values =0, 50, 500, 800 s/mm2). L: normal liver; S: normal spleen; P: normal prostate; f: fibrotic liver. Single 
arrow: prostatitis; double arrows: prostate cancer. ADC, apparent diffusion coefficient; ms, millisecond. 
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cortex ADC of around 1.8×10-3 mm2/s is much higher than 
those of liver and spleen. Kidney ADC is distinctly high 
compared with other issues of similar T2 time. It is likely 
that the high kidney cortex perfusion (more than double 

that of liver perfusion) (33,34,37) contributes to the kidney 
cortex high ADC. 

Another example of T2 time contribution to ADC 
measurement is mucinous fluid/semi-fluid containing tissues. 
Myxoid degenerated leiomyoma has long T2 time and high 
ADC value (1,6). Another example is prostate peripheral 
zone, which has an ADC of around 1.7×10-3 mm2/s (15,38) 
and this value is much higher than those of liver and spleen. 
The prostate peripheral zone contains the majority of 
prostatic glandular tissue and has a much longer T2 value 
than those of liver and spleen (Figure 4) (13,14). It is highly 
likely that the long T2 value of prostate peripheral zone 
contributes to its high ADC value. On the other hand, 
despite the long T2 time of the prostate peripheral zone, 
tissue structures still hinder diffusion, thus the prostate 
peripheral zone still has a lower ADC than those of free 
body water (such as gallbladder fluid).

Human brain tumors commonly have mixed components 
including active tumor tissue, necrosis and cystic change, 
hemorrhage and hemosiderin deposition, calcification, 
edema, etc. Knowing that brain tumors have increased ADC 
(as compared to normal brain tissues) (26,27,30,39) has 
clinical implications. Some authors choose the lowest value 
region of ADC map to quantify ADC value for the tumor (40). 
Our analysis suggests this may not be the most appropriate 
approach, as active tumor may have high ADC value.

In conclusion, while ADC measure is influenced by 
numerous factors including perfusion, tissue structure and 
cellularity, T2* effect (41,42), viscosity of internal fluid 
or semi-fluid, etc., empirical observations support a tri-
phasic (or bi-phasic) relationship between T2 time and 
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Figure 6 Positive correlation between T2 time and ADC value in rat brain and brain tumors. The data in (A) and (B) are from the same 
study of Eis et al. (26). Three experimental rat brain tumors (F98 glioma, RN6 Schwannoma, and E376 neuroblastoma) were studied using 
a 4.7T scanner. The maximum b-values were 1, 600 s/mm2. The data in (C) are from the study of Wang et al. (27). Rhabdomyosarcoma 
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Data presented are the mean values. ADC, apparent diffusion coefficient; ms, millisecond. 
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in lumbar intervertebral disc. Data are from Niu et al. (25), with 
the mean values presented. Lumbar disc degenerations were 
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a 1.5T magnet. The higher b-value for ADC measurement was 
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ADC. When T2 time is longer than 80 ms (at 3T), a strong 
positive correlation between T2 time and ADC is observed, 
and it is possible that T2 time contributes dominantly to 
ADC measure in many scenarios. For interpretation of ADC 
value of any tissue, this tissue’s T2 time should be always 
referred. Low ADC measure is not necessarily associated 
with true diffusion restriction. A tissue likely measures a low 
ADC if its T2 time is close to 70 ms (or its equivalent values 
at other magnetic fields). On the other hand, a tissue likely 
measures a high ADC if its T2 time is far away from 70 ms (or 
its equivalent values at other magnetic fields).  A cancerous 
tissue may not be necessarily associated with diffusion 
restriction even when its ADC measure is low. 
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Figure 7 The relationship between T2 time and ADC for hyperintense uterine fibroid, intermediate intensity uterine fibroid, prostatitis, 
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