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Abstract: DEK and miR-5100 play critical roles in many steps of cancer initiation and progression and
are directly or indirectly regulated by most promoters and repressors. LEF1-AS1 as a long non-coding
RNA can regulate tumor development through sponge miRNA. The effect and regulatory mechanism
of DEK on autophagy and apoptosis in gastric cancer (GC), and the role between miR-5100 and
DEK or miR-5100 and LEF1-AS1 are still unclear. Our study found that DEK was highly expressed
in gastric cancer tissues and cell lines, and knockdown of DEK inhibited the autophagy of cells,
promoted apoptosis, and suppressed the malignant phenotype of gastric cancer. DEK regulates
autophagy and apoptosis through the AMPK/mTOR signaling pathway. In addition, miR-5100
inhibits autophagy and promotes apoptosis in GC cells while LEF1-AS1 had the opposite effect.
Studies have shown that miR-5100 acts by targeting the 3′UTR of DEK, and LEF1-AS1 regulates the
expression of miR-5100 by sponging with mIR-5100. In conclusion, our results found that LEF1-AS1
and miR-5100 sponge function, and the miR-5100/DEK/AMPK/mTOR axis regulates autophagy
and apoptosis in gastric cancer cells.

Keywords: miR-5100; LEF1-AS1; DEK; autophagy; apoptosis

1. Introduction

The prevalence of gastric cancer (GC) has declined significantly over the past few
decades. However, it remains an important disease and is the third leading cause of
cancer death worldwide [1,2]. Most stomach tumors are stomach adenocarcinoma (STAD)
(90–95%) [3]. The current treatment of choice for patients with GC are surgical resection
and appropriate lymphadenectomy. Current evidence supports perioperative therapies to
improve patient survival. Unfortunately, patients with unresectable, locally advanced, or
metastatic disease are limited to life-prolonging palliative care options [4]. Therefore, it is
urgent to explore the molecular mechanism of GC occurrence and development and find
effective therapeutic targets.

DEK is a DNA-binding protein and a regulator of chromatin structure, which is
involved in the regulation of many cellular processes. The processes of proliferation [5–7],
differentiation [8], apoptosis [5,9], senescence [10,11], DNA repair [12–14], and maintenance
of the stem cell phenotype [8] are included. DEK plays a crucial role in many steps of
cancer initiation and progression and is directly or indirectly regulated by most promoting
and repressing factors. DEK may act as a structural regulatory protein that regulates
the expression and function of various human genes in tumor cells [15]. DEK is highly
expressed in GC and is associated with poor prognosis [6,16]. DEK has been reported to
promote the proliferation [17], migration and invasion [18,19] of GC cells, but the exact
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molecular mechanism of DEK as an inducer to promote the occurrence and development of
GC has not been clearly explored. Whether DEK is involved in the apoptosis and autophagy
of GC cells and the molecular mechanism involved have not been reported.

MicroRNAs (miRNAs) are a small family of noncoding RNAs that regulate the ex-
pression of target genes by binding to the 3-untranslation region (3-UTR) of mRNA, about
one-third of human genes may be regulated by miRNAs, suggesting that miRNAs may play
an important role in cellular regulation [20–22]. Many studies have shown that miRNAs
regulate a series of basic biological, such as cell proliferation, differentiation and apoptosis.
miRNAs play an important role in the occurrence and development of cancer [23–26].
mR-5100, a novel miRNA, holds promise as a potential new biomarker for the diagnosis of
oral squamous cell carcinoma and as a promising prognostic predictor for oral squamous
cell carcinoma [22,27]. Meanwhile, it has been reported that the proliferation and migration
of lung cancer cells are associated with miR-5100 [23,28], and in pancreatic cancer, overex-
pression of miR-5100 can reduce the aggressive phenotype of cells by targeting PODXL [29].
The exact molecular mechanism of miR-5100 involved in GC cell apoptosis and autophagy
still needs to be explored.

Long non-coding RNAs are a group of RNA molecules that lack protein-coding func-
tions [30,31]. They are involved in a series of processes regulating tumor biology and
play important roles in the regulation of oncogenes or tumor suppressor genes [32]. Ab-
normal expression of lncRNAs in a variety of cancers has been reported, suggesting that
they play an important role in regulating cancer cell proliferation, chemoresistance, and
metastasis [33]. LncRNAs are often used as competing endogenous RNAs (ceRNAs) to
regulate gene expression by specifically sponge the corresponding microRNAs to establish
a large regulatory system across the transcriptome [34,35]. The regulated target genes are
widely involved in various signaling pathways, most of which are closely related to tu-
mors [36]. LEF1 (lymphoid enhancer factor binding factor 1), a nuclear transcription factor,
is normally expressed in T cells and pre-B cells [37]. LEF1 antisense RNA 1 (LEF1-AS1), a
recently discovered lncRNA, is located on chromosome 4q25 and encodes the lymphoid
enhancer binding factor 1 (LEF1) locus. LEF1 is highly expressed in ovarian cancer [38],
lung cancer [39], liver cancer [40] and other cancers [41], and regulates the occurrence and
development of tumors [42]. Our study found that LEF1-AS1 was highly expressed in GC
tumor tissues and cell lines. Interestingly, we predicted in the database that LEF1-AS1 may
act as a sponge with miR-5100, suggesting that LEF1-AS1 may affect GC development by
regulating the expression level of miR-5100 in GC cells. In the manuscript, we focused on
the effect of LEF1-AS1 on apoptosis and autophagy of GC cells and the exploration of the
molecular mechanism.

The expression level of DEK in GC and its effect on GC cell autophagy and apoptosis
were our main concern, and the molecular mechanism of DEK’s effect on GC cell autophagy
and apoptosis was also discussed. We found that miR-5100, which may act as an upstream
regulator of DEK, is also negatively regulated by LEF1-AS1. This study will conduct an in-
depth discussion of this series of regulatory mechanisms, and provide theoretical support
for the prediction of effective therapeutic targets for GC in the future.

2. Results
2.1. DEK Is Highly Expressed in GC Tissues and Cells

In order to explore the expression pattern of DEK in GC, we analyzed the expression of
DEK in GC (Figure 1A) in the TCGA database, and the same conclusion was found on the
website (http://ualcan.path.uab.edu/cgi-bin/ualcan-res.pl, accessed on 19 October 2021)
(Figure 1B). In order to further confirm the high expression of DEK in GC, 15 pairs of
GC tissues and normal tissues were analyzed by IHC and Western Blot. IHC results
showed that DEK was highly expressed in cancer tissues of patients compared with normal
tissues (Figure 1C). Western Blot results and quantitative analysis showed that DEK was
highly expressed in cancer tissues (Figure 1D,E). Next, we analyzed the mRNA and protein
expression levels of DEK in normal human gastric mucosal epithelial cells (GES1) and
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GC cell lines (HGC27, MGC80-3, AGS, SGC7901). The experimental results showed that
DEK was highly expressed at the mRNA and protein levels in GC cells (Figure 1F,G). The
quantitative results of Western Blot also showed that DEK was highly expressed at the
protein level in GC cell lines (Figure 1H). In conclusion, we observed a high expression of
DEK in GC from bioinformatics analysis, patient, and cell lines.
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Figure 1. DEK is highly expressed in GC tissues and cells. (A) TCGA database analysis of DEK levels
in GC tissues and normal tissues. (B) DEK expression levels in STAD are predicted at the UALCAN.
(C) Representative images of DEK immunohistochemistry (IHC) in normal tissue of GC (left) and GC
tissue (right). (D) Western Blot assay detected DEK protein in normal tissues and GC tissues in 6 pairs
of samples. (E) The Western Blot signal for each patient was normalized with GAPDH and presented
as a histogram. (F) qPCR experiments to analyze DEK mRNA levels in GES1, HGC27, MGC80-3,
AGS, and SGC7901 cell lines and normalized to GAPDH. (G,H) Western blot assay to detect DEK
protein expression in GES1, HGC27, MGC80-3, AGS, and SGC7901 cell lines. Western Blot signals
were normalized with Actin. Among them, the differentiation degree of HGC27, MGC8-3, AGS and
SGC7901 cells increased in turn.
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2.2. DEK Accelerates the Phenotype of GC

Given that DEK is highly expressed in GC cells, the role of DEK in GC was explored.
Determination of the in vivo function of DEK in the BALB/c mouse animal model. First, we
injected DEK-knockdown (sh-DEK) or no-knockdown (sh-NC) luciferase-labeled SGC7901
cells into nude mice via the tail vein, and then detected tumor growth by measuring the
amount of bioluminescence (BLI). The knockdown efficiency of DEK was complemented
in S1A. We found that knockdown of DEK significantly inhibited the metastatic ability of
SGC7901 cells (Figure 2A,B). At the same time, we harvested the lung tissue of nude mice af-
ter 28 days, and found that knockdown of DEK could significantly reduce the metastatic foci
in the lungs of nude mice by HE staining (Figure 2C). These findings were complemented
by tumor xenografts in nude mice, where tumor size was measured after subcutaneous
injection of the SGC7901 cell line with or without DEK knockdown (Figure 2D). Subcu-
taneous tumor growth was reduced in nude mice injected with knockdown DEK cells
(Figure 2E,F). Taken together, these findings provide evidence that DEK accelerates GC
metastasis and growth. Western Blot results showed that the ratio of LC3BII/I decreased in
the xenografts of DEK knockout (Figure 2G,H), indicating that the level of autophagy in
the knockdown DEK group was reduced, and the detection of cleaved-caspase3 expression
indicated that the apoptosis of the DEK knockdown group increased (Figure 2G,I).
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Figure 2. DEK accelerates the phenotype of GC. (A) Lung metastases were observed after luciferase-
labeled DEK-knockdown (sh-DEK) or no-knockdown (sh-NC) SGC7901 cells were injected into nude
mice via tail vein. (B) The luciferase bioluminescence values of mouse lung metastases (n = 3).
(C) HE staining analysis of lung metastasis in nude mice. (D) Xenografts were obtained by
subcutaneous injection of DEK-knockdown (sh-DEK) or no-knockdown (sh-NC) SGC7901 cells.
(E,F) The weight and volume of subcutaneous xenografts were counted and presented in the form
of histograms (**: p < 0.01, ***: p < 0.001). (G,H) Western Blot analysis in subcutaneous xenograft
tissue LC3B expression, results were normalized with Actin, and LC3BII/I ratios were analyzed.
(H,I) Western Blot analysis of Cleaved-caspase-3 protein in subcutaneous xenograft tissue and nor-
malized with Actin (**: p < 0.01, ***: p < 0.001).
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2.3. DEK Promotes Autophagy and Inhibits Apoptosis in GC Cells

To explore whether DEK is involved in autophagy and apoptosis in GC cells, DEK
was silenced by siRNA in HGC27 and SGC7901 cells (Figure S1B,C). First, si-DEK or
si-NC were transfected into HGC27 or SGC7901 cell lines, which stably express mCherry-
EGFP-LC3B. Cells were then treated with 5 nM rapamycin (Rap), and autophagic flux
was observed 8 h later. Rapamycin is a common inducer of autophagy [43]. Interestingly,
autolysosomes were reduced in HGC27 and SGC7901 cells after DEK knockdown, suggest-
ing that autophagic flux in cells is inhibited (Figure 3A,B). Previous reports showed that
Cyto-ID stains autophagic cells through labeling autophagic compartments [44]. Next, the
CYTO-ID® Autophagy detection kit detects the level of autophagy, and the expression lev-
els of autophagy-related proteins LC3B and autophagy receptor protein SQSTM1/p62 (p62)
were detected by Western Blot. The data indicated that the level of autophagy decreased
in cells after DEK knockdown (Figure 3C), while the protein level of p62 was increased
(Figure 3D), and the ratio of LC3BII/I was decreased (Figure 3D,E). The above data suggest
that silencing DEK can inhibit autophagy in GC cells.

AnnexinV-PE/7-AAD apoptosis detection kit and Western Blot were used to explore
the apoptosis changes of HGC27 or SGC7901 cell lines after DEK was silenced. The results
of flow cytometry showed that the apoptosis level of cells was increased after silencing
DEK (Figure 3F,G), and the protein level of cleaved-caspase3 was increased at the same
time (Figure 3H,I). Therefore, we preliminarily concluded that silencing DEK in GC cells
can promote the level of apoptosis.

2.4. DEK Promotes Autophagy and Inhibits Apoptosis in GC through AMPK/mTOR Signaling Pathway

To explore the molecular mechanism of DEK regulating autophagy and apoptosis in
GC cells, si-DEK/si-NC/DEK overexpression plasmid (OE-DEK)/control plasmid (OE-NC)
was transfected into HGC27/SGC7901 cells. Next, we investigated the canonical signaling
pathways that regulate autophagy and apoptosis. Surprisingly we found that in HGC27 or
SGC7901 cells, overexpression or knockdown of DEK did not significantly affect the protein
content of AMPK and mTOR, whereas knockdown of DEK decreased phosphorylated
AMPK protein and increased phosphorylated mTOR protein (Figure 4A–C). When DEK
was overexpressed, phosphorylated AMPK protein decreased and phosphorylated mTOR
protein increased (Figure 4A,D,E). In conclusion, our study found that DEK can regulate
autophagy and apoptosis in GC cells through the AMPK/mTOR signaling pathway.

2.5. miR-5100 Inhibits Autophagy and Promotes Apoptosis in GC Cells

miRNAs have been shown to be widely deregulated in human cancers, highlighting
their important roles in tumor initiation, growth, and metastasis [45]. When we explored
the mechanism of DEK overexpression in gastric cancer, we focused on the previously
studied miR-5100. And to explore whether miR-5100 can regulate the autophagy and
apoptosis of gastric cancer cells by affecting the expression of DEK. We found that the
therapeutic effect of exosomes containing miR-5100 on gastric subcutaneous tumors was
significantly better than that of miR-5100 liposomes (Figure S2). Briefly, we overexpressed
miR-5100 in mesenchymal stem cells (MSCs) and extracted exosomes, and then observed
the extracted exosomes under electron microscopy (Figure S2A). CD63, CD9, and CD81
are commonly used marker proteins of exosomes [46]. Next, the extracted exosomes
were detected by Western Blot for exosome markers (Figure S2B), and the expression of
miR-5100 in exosomes was detected by qPCR (Figure S2C). Animal experiments found
that the therapeutic effect of exosomes on subcutaneous tumors was better than that of
miR-5100-containing liposomes (Figure S2D), which was reflected in the mass and volume
of subcutaneous tumors (Figure S2E,F). This phenomenon will be discussed in detail in
the future. In this paper, we mainly focus on the effect of miR-5100 on the autophagy
and apoptosis of GC cells. First, MiR-5100 mimics or mimics-NC were transfected into
HGC27 or SGC7901 cell lines, which stably express mCherry-EGFP-LC3B. Interestingly, the
autolysosome was reduced in HGC27 and SGC7901 cells in the transfected miR-5100 mimic
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group (Figure 5A,B). In HGC27 or SGC7901 cell lines transfected with miR-5100 mimic,
the level of autophagy decreased (Figure 5C), and Western Blot detection showed that the
protein level of p62 was increased (Figure 5D), and the ratio of LC3BII/I was decreased
(Figure 5D,E). The above data indicate that miR-5100 can inhibit autophagy in GC cells. The
results of flow cytometry showed that the level of cell apoptosis increased after transfection
of miR-5100 mimic (Figure 5F,G), and the results of Western Blot showed that the level of
cleaved-caspase3 protein increased (Figure 5H,I). Therefore, we tentatively concluded that
miR-5100 could promote the level of apoptosis in GC cells.

2.6. Long Non-Coding LEF1-AS1 Promotes Autophagy and Inhibits Apoptosis in GC cells

In addition, we also explored the effect of LEF1-AS1 on autophagy and apoptosis in GC
cells. Similarly, overexpressing LEF1-AS1 plasmids or control plasmids were transfected
into HGC27 or SGC7901 cell lines, which stably expressed mCherry-EGFP-LC3B. The
results showed that overexpression of LEF1-AS1 increased the autolysosome in HGC27
and SGC7901 cells (Figure 6A,B). In addition, the experimental results of the CYTO-ID®

Autophagy detection kit showed that the level of autophagy increased significantly after
the HGC27 or SGC7901 cell lines overexpressed LEF1-AS1 (Figure 6C). At the same time,
Western Blot detection showed that the protein level of p62 was decreased (Figure 6D), and
the ratio of LC3BII/I was increased (Figure 6D,E). After the overexpression of LEF1-AS1
plasmid or control plasmid was transfected into HGC27 or SGC7901 cell lines, the apoptosis
level of cells was analyzed by flow cytometry, and the expression of cleaved-caspase3
protein was detected by Western Blot. The results showed that overexpression of LEF1-AS1
could reduce cell apoptosis (Figure 6F–I). Therefore, we preliminarily concluded that
LEF1-AS1 promoted autophagy in GC cells and inhibited apoptosis in GC cells.

2.7. miR-5100 Can Directly Bound to the 3′UTR of DEK and Regulate DEK Expression

To investigate whether the regulation of autophagy and apoptosis of GC cells by
miR-5100 is related to DEK, miR-5100 mimics or miR-5100 inhibitor were transfected into
HGC27 and SGC7901 cells, respectively. We were find that DEK expression was decreased
when miR-5100 was overexpressed, but the miR-5100 inhibitor could upregulate DEK
expression (Figures 7A,B and S1D). The rescue experiment results also indicated that
miR-5100 was involved in the regulation of DEK expression (Figure 7C,D). It has been
reported in the literature that miRNAs induce transcript degradation or inhibit protein
translation by specifically binding to the 3′UTR sequences of target mRNAs [47]. It was
predicted from the website that miR-5100 could bind to the 3′UTR of DEK. Next, we
constructed a luciferase reporter plasmid containing DEK 3′UTR, and constructed a mutant
plasmid that mutated the binding sequence of miR-5100 (Figure 7E). DEK 3′UTR-WT/Mut
and mimics-NC/miR-5100 mimics/miR-5100 mimics + LEF1-AS1 were co-transfected.
The results of the dual luciferase reporter assay showed that miR-5100 could reduce
the luciferase activity of DEK, and this inhibition was relieved when the 3′UTR binding
site of DEK was mutated. Interestingly, this repression also occurred when miR-5100
was co-transfected with LEF1-AS1, which we will explore below (Figure 7F). The above
experimental results suggest that miR-5100 can directly bound to the 3′UTR of DEK and
regulate DEK expression.

2.8. miR-5100 Reverses the Metastasis Phenotype of GC Induced by Abnormal Expression of DEK

To verify that miR-5100 can reverse the metastasis phenotype of GC cells caused by
the abnormal expression of DEK, we introduced pre-miR-5100 into SGC7901-DEK cell lines
by the lentiviral method. First, we found that up-regulation of miR-5100 expression in
SGC7901-DEK cells reversed the strong degree of metastasis of SGC7901-DEK cells in nude
mice (Figure 8A,B). The introduction of pre-miR-5100 also abrogated the phenomenon that
SGC7901-DEK promoted the growth of subcutaneous xenograft tumor mass and volume
in nude mice (Figure 8C–E). In vitro experiments found that the introduction of miR-5100
into HGC27-DEK and SGC7901-DEK cells could abolish the promotion of autophagic flux
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and autophagy by overexpression of DEK (Figure 8F–H). At the same time, the inhibition
of apoptosis by DEK was also relieved (Figure 8I,J). These data further confirmed the
regulatory effect of miR-5100 on DEK.
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Figure 3. DEK promotes autophagy and inhibits apoptosis in GC cells. (A) si-DEK or si-NC were
transfected into HGC27 or SGC7901 cell lines stably expressing mCherry-EGFP-LC3B. Cells were
treated with 5 nM rapamycin (Rap) 24 h after transfection, and autophagic flux was observed 8 h
later (scar bar = 40 µm) (**: p < 0.01). (B) Autophagosome (red dots) and Autolysosome (yellow dots)
were counted and analyzed. (C) si-DEK or si-NC were transfected into HGC27 or SGC7901 cell lines.
Cells were treated with 5 nM rapamycin (Rap) 24 h after transfection, and the level of autophagy
was observed 8 h later. (D,E) si-DEK or si-NC were transfected into HGC27 or SGC7901 cell lines,
and cells were harvested 36 h later. Western Blot detection of DEK, p62, LC3B proteins. The ratio of
LC3BII/I was analyzed by normalization with Actin (n = 3, **: p < 0.01, ***: p < 0.001). (F,G) si-DEK
or si-NC were transfected into HGC27 or SGC7901 cell lines, and the apoptosis rate was analyzed
by flow cytometry after 36 h, and statistical analysis was performed. (H,I) si-DEK or si-NC was
transfected into HGC27 or SGC7901 cell lines, and 36 h later, the expression of Cleaved-caspase-3 was
detected by Western Blot, and quantitative analysis was performed (n = 3, **: p < 0.01, ***: p < 0.001).
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Figure 4. DEK promotes autophagy and inhibits apoptosis in GC through AMPK/mTOR signaling
pathway. si-DEK/si-NC was transfected into HGC27/SGC7901 cell line, similarly OE-DEK/OE-NC
was transfected into HGC27/SGC7901 cell line. The cells were harvested 36 h after transfection.
(A) The protein expression levels of DEK, AMPK, p-AMPK, mTOR and p-mTOR were detected by
Weather Blot. (B) Quantitative analysis of Weather Blot results for DEK, AMPK, p-AMPK, mTOR,
and p-mTOR proteins after si-NC/si-DEK in HGC27 cells, normalized with Actin protein signal.
(C) Quantitative analysis of Weather Blot results for DEK, AMPK, p-AMPK, mTOR, and p-mTOR
proteins after si-NC/si-DEK in SGC7901 cells, normalized with Actin protein signal. (D) Quantitative
analysis of Weather Blot results for DEK, AMPK, p-AMPK, mTOR and p-mTOR proteins after HGC27
cells were subjected to OE-NC/OE-DEK, normalized with Actin protein signal. (E) Quantitative
analysis of Weather Blot results for DEK, AMPK, p-AMPK, mTOR and p-mTOR proteins after OE-
NC/OE-DEK in SGC7901 cells, normalized with Actin protein signal (n = 3, *: p < 0.05, **: p < 0.01,
***: p < 0.001).
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Figure 5. miR-5100 inhibits autophagy and promotes apoptosis in GC cells. (A) miR-5100
mimics/mimics-NC were transfected into HGC27 or SGC7901 cell lines stably expressing mCherry-
EGFP-LC3B. Cells were treated with 5 nM rapamycin (Rap) 24 h after transfection, and autophagic
flux was observed 8 h later (scar bar = 40 µm). (B) Autophagosome (red dots) and Autolysosome
(yellow dots) were counted and analyzed, **: p < 0.01. (C) miR-5100 mimics/mimics-NCs were trans-
fected into HGC27 or SGC7901 cell lines. Cells were treated with 5 nM rapamycin (Rap) 24 h after
transfection, and the level of autophagy was observed 8 h later. (D,E) miR-5100 mimics/mimics-NCs
were transfected into HGC27 or SGC7901 cell lines, and cells were harvested 36 h later. Western
Blot detection of DEK, p62, LC3B proteins. The ratio of LC3BII/I was analyzed by normalization
with Actin (n = 3, **: p < 0.01). (F,G) miR-5100 mimics/mimics-NC were transfected into HGC27 or
SGC7901 cell lines, and the apoptosis rate was analyzed by flow cytometry after 36 h, and statistical
analysis was performed (n = 3, **: p < 0.01, ***: p <0.001). (H,I) miR-5100 mimics/mimics-NC was
transfected into HGC27 or SGC7901 cell lines, and 36 h later, the expression of Cleaved-caspase-3 was
detected by Western Blot, and quantitative analysis was performed (n = 3, **: p < 0.01, ***: p <0.001).
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Figure 6. Long non-coding LEF1-AS1 promotes autophagy and inhibits apoptosis in GC cells.
(A) OE-LEF1-AS1/OE-NC were transfected into HGC27 or SGC7901 cell lines stably expressing
mCherry-EGFP-LC3B. Cells were treated with 5 nM rapamycin (Rap) 24 h after transfection, and
autophagic flux was observed 8 h later (scar bar = 40 µm). (B) Autophagosome (red dots) and
Autolysosome (yellow dots) were counted and analyzed (**: p < 0.01). (C) OE-LEF1-AS1/OE-NC
were transfected into HGC27 or SGC7901 cell lines. Cells were treated with 5 nM rapamycin (Rap)
24 h after transfection, and the level of autophagy was observed 8 h later. (D,E) OE-LEF1-AS1/
OE-NC were transfected into HGC27 or SGC7901 cell lines, and cells were harvested 36 h later. West-
ern Blot detection of DEK, p62, LC3B proteins. The ratio of LC3BII/I was analyzed by normalization
with Actin (n = 3, **: p < 0.01). (F,G) OE-LEF1-AS1/OE-NC was transfected into HGC27 or SGC7901
cell lines, and the apoptosis rate was analyzed by flow cytometry after 36 h, and statistical analysis
was performed (n = 3, **: p < 0.01). (H,I) OE-LEF1-AS1/OE-NC was transfected into HGC27 or
SGC7901 cell lines, and the expression of Cleaved-caspase-3 was detected by Western Blot 36 h later,
and quantitative analysis was performed (n = 3, *: p < 0.05).
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Western Blot detection of DEK expression when miR-5100 mimics/mimics-NC/miR-5100 
Figure 7. miR-5100 can directly bound to the 3′UTR of DEK and regulate DEK expression.
(A,B) Western Blot detection of DEK expression when miR-5100 mimics/mimics-NC/miR-5100
inhibitor/inhibitor-NC was transfected into HGC27 and SGC7901 cells for 36 h, and the experimental
results were quantified with Actin Normalized (n = 3, *: p < 0.05, **: p < 0.01). (C,D) Western
blot detection of DEK protein when miR-5100 mimics + OE-NC/OE-DEK + mimics-NC/5100 mim-
ics + OE-DEK were transfected into HGC27 and SGC7901 cells, co-transfected with mimics-NC
and OE-NC as controls. Quantitative analysis of experimental results was normalized with Actin
(n = 3, **: p < 0.01). (E) Construction of WTDEK- Schematic representation of the 3′UTR-WT and
DEK-3′UTR-Mut luciferase reporter plasmids. (F) DEK 3′UTR-WT/Mut and mimics-NC/miR-5100
mimics/miR-5100 mimics + LEF1-AS1 were co-transfected, and the luciferase reporter assay verified
the targeting between miR-5100 and DEK effect (n = 3, **: p < 0.01).

2.9. LEF1-AS1 Sponge Adsorbs miR-5100 and Regulates the Expression of miR-5100

We mentioned above that when LEF1-AS1 was co-transfected with miR-5100, the
inhibitory effect of miR-5100 on DEK 3′UTR luciferase activity was also relieved (Figure 7F),
which aroused our interest. Interestingly, we found that the overexpression of LEF1-AS1
reversed the inhibition of DEK expression by miR-5100 (Figure 9A,B). We examined the
expression level of miR-5100 in HGC27-sh-LEF1-AS1 and SGC7901-sh-LEF1-AS1 cells and
found that the expression level of miR-5100 increased when the expression of LEF1-AS1
was inhibited (Figure 9C). Recently, lncRNA was found to epigenetically silence miRNA
expression at the transcriptional level [48], thereby promoting tumor progression, and the
website predicted the binding possibility of miR-5100 to LEF1-AS1. To further explore the
relationship between miR-5100 and LEF1-AS1, we constructed a luciferase reporter plasmid
containing the LEF1-AS1 sequence, and constructed a mutant plasmid that mutated the
sequence bound by miR-5100 (Figure 9D). LEF1-AS1-WT/Mut and mimics-NC/miR-5100
mimics were co-transfected. The results of the dual-luciferase reporter assay showed that
miR-5100 could inhibit the luciferase activity of LEF1-AS1, and this inhibition was relieved
when the site on LEF1-AS1 that bound to miR-5100 was mutated (Figure 9E). These data
illustrate the sponge effect between LEF1-AS1 and miR-5100.
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Figure 8. miR-5100 reverses the malignant phenotype of GC induced by abnormal expression of
DEK. (A,B) pre-miR-5100 was introduced into SGC7901-DEK cell lines by lentiviral method, the
resulting cell lines were labeled with luciferase, and then injected into nude mice by tail vein to detect
the lungs of nude mice Department transfer situation. Statistical analysis of the fluorescence signal
intensity was performed (n = 3, **: p < 0.01). (C–E) Pre-miR-5100 was introduced in SGC7901-DEK
cell line, SGC7901-DEK/SGC7901-DEK + miR-5100 or control cell line was injected subcutaneously
into nude mice, and subcutaneous xenografts were harvested and treated. Allograft mass and
volume were statistically analyzed (**: p < 0.01). (F) HGC27-DEK/SGC7901-DEK cells stably express-
ing mCherry-EGFP-LC3B were introduced with pre-miR-5100, respectively, and cells were treated
with 5 nM Rap for 8 h, and the level of autophagic flux was observed under confocal microscopy.
(G,H) Autophagosome (red dots) and Autolysosome (yellow dots) were analyzed (**: p < 0.01).
(I) Pre-miR-5100 was introduced into HGC27-DEK/SGC7901-DEK cells, and the level of autophagy
were observed under confocal microscopy after 5 nM Rap treatment for 8 h. (J–L) Pre-miR-5100 was
introduced into HGC27-DEK/SGC7901-DEK cells, and the apoptosis level of the cells was detected
by flow cytometry, and the results were statistically analyzed (n = 3, **: p < 0.01).
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Figure 9. LEF1-AS1 sponge adsorbs miR-5100 and regulates the expression of miR-5100.
(A,B) Western Blot detection of DEK protein when OE-LEF1-AS1 + mimics-NC/miR-5100 mim-
ics + OE-NC/5100 mimics + OE-LEF1-AS1 was transfected into HGC27 and SGC7901 cells, and
co-transfected with mimics -NC and OE-NC were used as controls. Quantitative analysis of exper-
imental results was normalized with Actin (n = 3, **: p < 0.01). (C) qPCR was used to detect the
expression level of mIR-5100 in HGC27- sh-LEF1-AS1 and SGC7901-sh-LEF1-AS1 cell lines, U6 was
used as normalization (n = 3, **: p < 0.01). (D) Schematic diagram of construction of LEF1-AS1-WT
and LEF1-AS1-Mut luciferase reporter plasmids. (E) LEF1-AS1-WT/Mut and mimics-NC/miR-5100
mimics were co-transfected, and the luciferase reporter assay verified the sponge effect between
miR-5100 and LEFAS1 (n = 3, **: p < 0.01).

2.10. LEF1-AS1 Reverses the Metastasis Phenotype of GC Induced by Abnormal Expression of miR-5100

Similarly, in order to verify that LEF1-AS1 can reverse the metastasis phenotype of
GC cells caused by abnormal expression of miR-5100, LEF1-AS1 was introduced into
SGC7901-miR-5100 cell lines by lentiviral method. In vivo experiments, we found that
up-regulation of LEF1-AS1 could reverse the slow migration of SGC7901-miR-5100 cells
in nude mice (Figure 10A,B). It also reversed the phenomenon that SGC7901-miR-5100
reduced the mass and volume of subcutaneous xenografts in nude mice (Figure 10C–E).
HGC27-sh-LEF1-AS1 and SGC7901-sh-LEF1-AS1 cells were transfected with miR-5100
inhibitor for in vitro experiments. The results showed that the introduction of miR-5100
inhibitor reversed the inhibitory effect of sh-LEF1-AS1 on autophagic flux and autophagy
(Figure 10F–H), and at the same time slowed down the promoting effect of sh-LEF1-AS1
on cell apoptosis (Figure 10I,J). miR-5100 inhibitor was transfected in HGC27 or SGC7901
cells, and the expression of miR-5100 was determined to be inhibited (Figure 10M). When
miR-5100 inhibitor was introduced into HGC27-sh-LEF1-AS1 or SGC7901-sh-LEF1-AS1
cells, qPCR detection showed that the promoting effect of sh-LEF1-AS1 on miR-5100 was
abolished (Figure 10N). The above data further confirm that the sponge effect between
LEF1-AS1 and miR-5100 affects the autophagy and apoptosis of GC cells.
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Figure 10. LEF1-AS1 reverses the malignant phenotype of GC induced by abnormal expression of
miR-5100. (A,B) LEF1-AS1 was introduced into SGC7901-miR-5100 cell line by lentiviral method,
then the cell line was labeled with luciferase, and then injected into nude mice by tail vein to detect the
lung metastasis of nude mice. Statistical analysis of the fluorescence signal intensity was performed
(n = 3, **: p < 0.01). (C–E) LEF1-AS1 was introduced in SGC7901-miR-5100 cell line, SGC7901-miR-
5100/SGC7901-miR-5100 + LEF1-AS1 or control cell line was injected subcutaneously into nude
mice, and subcutaneous heterozygous cells were harvested. Tumors were implanted and the mass
and volume of the xenografted tumors were statistically analyzed (**: p < 0.01). (F) HGC27-sh-
LEF1-AS1/SGC7901-sh-LEF1-AS1 cells stably expressing mCherry-EGFP-LC3B were transfected
with miR-5100 inhibitor, respectively, and cells were treated with 5 nM Rap for 8 h under confocal
microscopy The levels of autophagic flux were observed. (G,H) Autophagosome (red dots) and
Autolysosome (yellow dots) were analyzed (*: p < 0.05). (I) HGC27-sh-LEF1-AS1/SGC7901-sh-LEF1-
AS1 cells were transfected with miR-5100 inhibitor and treated with 5 nM Rap for 8 h to observe the
level of autophagy under a confocal microscope. (J–L) HGC27-sh-LEF1-AS1/SGC7901-sh-LEF1-AS1
cells were transfected with miR-5100 inhibitor, the apoptosis level of cells was detected by flow
cytometry, and the results were statistically analyzed (n = 3, **: p < 0.01).
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3. Discussion

In the present study, we found that DEK is highly expressed in GC tissues and cell
lines. Silencing DEK inhibits autophagy and promotes apoptosis. In addition, silencing
DEK inhibited the metastasis of GC cells and the growth of subcutaneously transplanted
tumors in nude mice. We found that DEK regulates autophagy and apoptosis through the
AMPK/mTOR signaling pathway. As an upstream regulator of DEK, miR-5100 inhibits
autophagy in GC cells, promotes apoptosis, and regulates DEK expression by targeting
the 3′UTR of DEK. In addition, LEF1-AS1 can promote autophagy and inhibit apoptosis
of GC cells by sponge-absorbing miR-5100. In conclusion, we discovered a novel regula-
tory mechanism of LEF1-AS1/miR-5100/DEK, which has important implications for the
occurrence and development of GC.

Autophagy is a tightly regulated process of removing cytoplasmic components or
damaged organelles that begins with the formation of double-membrane vesicles called au-
tophagosomes [49]. Autophagy plays an important role in the chemoresistance mechanism
of GC cells. Aberrantly activated autophagy induced by chemotherapeutics can provide
energy to support cancer cells, thereby promoting chemoresistance [50]. Autophagy and
apoptosis are two distinct cellular processes with often opposite outcomes, and their signal-
ing pathways are extensively interconnected through various crosstalk mechanisms. Many
related proteins regulate autophagy and apoptosis [51].

The oncogene DEK is located on human chromosome 6p22.3 and was originally iden-
tified as a fusion to the 3′ portion of the chromosome 9 NUP214 (CAN) gene in a specific
subtype of acute myeloid leukemia (AML) patients [52,53]. It has gained high attention in
recent years because it is highly expressed and plays a crucial role in tumorigenic events for
a variety of such as retinoblastoma [54], glioblastoma [55], bladder cancer [56], colorectal
cancer [57], hepatocellular carcinoma (HCC) [58,59], head and neck squamous cell carci-
noma (HNSCC) [60], ovarian tumors [61], and other tumor types [5,62–64]. It has been
shown that patients with early GC with high DEK expression have shorter disease-free
survival and overall survival than patients with low expression [6], and it is a potential
biomarker related to malignant phenotype in GC tissue and plasma [65]. This paper con-
cluded that the high expression of DEK was associated with the malignant phenotype of GC
in the nude mouse lung metastasis model and subcutaneous xenograft model, which was
consistent with the literature reports. Hui et al. reported that microRNA-1292-5p inhibited
GC cell growth, migration, and invasion by targeting DEK [19]. Wang et al. showed that
CD36 upregulates DEK transcription and promotes cell migration and invasion through
GSK-3beta/β-catenin-mediated epithelial-mesenchymal transition [18]. In addition, Zhang
et al. suggested that MiR-138-5p inhibited GC cell proliferation by targeting DEK [17]. In
promoting tumorigenesis and tumor progression, DEK has been shown to promote cell
growth and self-renewal, while inhibiting cell differentiation, premature and apoptosis
of malignant cells [5,9,66]. In the present study, we found that knockdown of DEK in
GC cells inhibited autophagy and promoted cell apoptosis. A recent study reported that
DEK-NUP214 fusion protein increased myeloid cell proliferation in AML cells through the
mTOR pathway [67]. This suggests that DEK is involved in the mTOR signaling pathway.
Excitingly, our experimental results confirm that DEK participates in the autophagy and
apoptosis of GC cells through the AMPK/mTOR signaling pathway.

Based on the above promising experimental results, we next explored the molecular
mechanism of DEK overexpression in GC. In recent years, the study of miRNAs has played
an important role in controlling the development and progression of GC. Such as cell
proliferation [68], invasion [69], metastasis [70], tumor growth [71] and apoptosis and drug
resistance [72]. Our previous research results show that miR-5100 is lowly expressed in GC
cells and can target CAAP1 to regulate autophagy and apoptosis of GC cells [73]. What
interested us was that miR-5100 also had the potential to target DEK. We demonstrated that
miR-5100 could inhibit the luciferase activity of DEK using a luciferase reporter assay, while
overexpression of miR-5100 could down-regulate the expression of DEK. Current research
on miR-5100 mainly focuses on lung cancer [23,74,75], pancreatic cancer [29], oral squamous
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cell carcinoma [76] and prostate cancer [77]. miR-5100 is upregulated during osteoblast
differentiation and fine-tunes osteoblast differentiation through the miR-5100/Tob2/osterix
network [78]. Increased expression of miR-5100 in non-small cell lung cancer and is
associated with poor prognosis [75], promoting lung cancer tumor growth by promoting
G1/S transition and targeting Rab6 [79], exosomes-mediated miR-193a-3p, miR-210-3p,
and miR-5100 can promote lung cancer cell invasion by activating STAT3 signaling-induced
EMT [28]. In the study of miR-5100 regulating the phenotype of pancreatic cancer cells,
Chijiiwa et al. found that miR-5100 has inhibitory effects on the occurrence and metastasis
of pancreatic cancer [29]. The above conclusions seem to indicate that mIR-5100 may play
diametrically opposite roles in different tumors, and the specific role of miR-5100 remains
to be further explored.

It has been reported that LEF1-AS1 is oncogene that promotes tumor progression
upregulated [80] and is causes retinoblastoma [81]. A study on ovarian cancer showed
that the expression of LEF1-AS1 was up-regulated in ovarian cancer tissues, and down-
regulation of the LEF1-AS1 gene could inhibit the proliferation, migration, and invasion
of ovarian cancer cells. Mechanistically, LEF1-AS1 exerts its oncogenic function by acting
as a sponge with miR-1285-3p to inhibit miRNA activity [38]. LEF1-AS1 promotes the
malignant behavior of glioblastoma cells, and LEF1-AS1 acts as a ceRNA of miR-543 and
positively regulates the expression of EN2. Downregulation of miR-543 led to increased
malignant behavior of glioblastoma cells, and downregulation of LEF1-AS1 reversed
this phenomenon [82]. Furthermore, Liu et al. found that silencing LEF1-as1 inhibited
prostate cancer initiation and progression by blocking LEF1 as a molecular sponge for
miR-330-5p [83]. Based on previous studies, Li et al. further demonstrated that LEF1-AS1
promotes prostate cancer angiogenesis [41]. Although LEF1-AS1 plays an oncogenic role
in most tumors, it has been found to be a cancer suppressor in myeloid malignancies. It
is significantly overexpressed in normal hematopoietic stem cells but is rarely detected
in myeloid malignant cells. Cell experiments showed that LEF1-AS1 could inhibit the
proliferation of myeloid malignant tumors and play a protective role in the occurrence and
development of tumors [84]. Similar to literature reports, our study found that LEF1-AS1
acts as a sponge with miR-5100 in GC, and regulates autophagy and apoptosis in GC cells
by inhibiting the action of miR-5100.

4. Materials and Methods
4.1. Tissue Samples

A total of 15 pairs of cancer tissues and adjacent tissues from patients undergoing
gastric cancer surgery were collected from April 2021 to March 2021, and all patients gave
informed consent. It was approved by the Ethics Committee of Tongji Hospital, Huazhong
University of Science and Technology. The lesion tissue was divided into the cancer tissue
group, and the adjacent tissue (≥3 cm away from the lesion) was used as the control during
the operation. The patients were aged between 40–65 years. Participants did not receive
chemotherapy or radiation therapy prior to surgery. Tissue specimens were frozen in liquid
nitrogen immediately after surgical resection. All procedures performed in this study
involving human participants were in accordance with the Declaration of Helsinki (as
revised in 2013).

4.2. Cell Lines

All cells were cultured at 37 ◦C with 5% CO2. Human gastric mucosal epithelial cells
(GES1), human GC cells HGC-27, MGC80-3, and human embryonic kidney cells 293T used
in the manuscript were all derived from BNCC (BNCC, Beijing, China). Human GC cell
SGC7901 and AGS was bought from Wuhan Procell (Procell, Wuhan, China). Among
them, GES1 and 293T cells were cultured in 90% DMEM (Gibco, New York, NY, USA)
+ 10% FBS (Gibco, New York, NY, USA), AGS cultured in 90% DMEM/F12 (meilunbio,
Wuhan, China) + 10% FBS (Gibco, New York, NY, USA), and HGC-27, MGC80-3 and



Int. J. Mol. Sci. 2022, 23, 4787 17 of 23

SGC7901 cells were cultured in 90% RPMI-1640 (Gibco, New York, NY, USA) + 10% FBS
(Gibco, New York, NY, USA).

4.3. Quantitative Real-Time PCR (qRT-PCR)

Total RNAs were extracted with RNA extraction kit (CWBIO, Beijing, China) and
cDNA was synthesized by reverse transcription kit (Vazyme, Nanjing, China). SYBR Green
Master Mix (YEASEN, Shanghai, China) was used in qPCR experiments. The qRT-PCR
program was set as follows: 95 ◦C for 5 min, followed by 40 cycles of 95 ◦C for 10 s, 60 ◦C
for 20 s, and 72 ◦C for 20 s. The data obtained were normalized with GAPDH or U6 and
relative expressions were calculated using the 2−∆∆CT method. The primer information
required for the qPCR process is presented in Table S1 of Supplementary Materials.

4.4. Plasmids

The LEF1-AS1 or DEK overexpression plasmid (OE-DEK/OE-LEF1-AS1) was con-
structed by inserting the LEF1-AS1 sequence and the DEK coding sequence amplified
from the human genome or human cDNA library into the pLVX-EF1α-IRES-Puro vector
(Addgene, New York, NY, USA), respectively. The DEK 3′ noncoding sequence/LEF1-AS1
sequence was inserted into pmirGLO (Addgene, New York, NY, USA) to obtain DEK
3′UTR/LEF1-AS1 wild-type luciferase reporter plasmid (DEK 3′UTR-WT/LEF1-AS1-WT).
The mutant plasmids were amplified with DEK 3′UTR-WT/LEF1-AS1-WT as templates.
miR-5100 overexpression plasmid (OE-miR-5100), DEK, LEF1-AS1 knockdown plasmids
(sh-DEK, sh-LEF1-AS1) were purchased from Wuhan TSINGKE Biological Company
(TSINGKE, Beijing, China). The packaging plasmids pCMV-VSV-G and pCAG-dR8.9 re-
quired for packaging lentivirus were purchased from Beyotime (Beyotime, Shanghai, China).

4.5. Transfection

miR-5100 mimic, mimic control, miR-5100 inhibitor, inhibitor control, si-DEK, and
si-RNA control were purchased from RiboBio (RiboBio, Guangzhou, China), and cells
were transfected according to the instructions of riboFECT CP Transfection Kit (RiboBio,
Guangzhou, China). Lipofectamine 2000 (Invitrogen, CA, USA) was used for the transfec-
tion of lentiviral packaging plasmids, and was transfected into 293T cells according to the
ratio of target plasmid: pCMV-VSV-G: pCAG-dR8.9 = 4:3:1.

4.6. Flow Cytometry for Apoptosis

An AnnexinV-PE/7-AAD apoptosis detection kit (BD, NJ, USA) was used for flow
cytometry analysis. The treated cells were collected and washed with pre-cooled PBS, and
resuspended in binding buffer to reach a cell concentration of 1 × 106/mL. Take 200 µL cell
suspension, add 5 µL Annexin V PE and 10 µL 7-AAD, mix and incubate in the dark for
20 min, and add 400 µL binding buffer before flow cytometry analysis. The experimental
results were analyzed using FlowJo V10 (Flow Jo LLC, NJ, USA).

4.7. Autophagy Assay

The CYTO-ID® Autophagy detection kit (Enzo, New York, NY, USA) was used for the
detection of autophagy levels. According to the instructions, the treated cells were stained,
fixed, mounted, and then observed under a confocal fluorescence microscope. The stable
cell lines obtained by Lenti-mCherry-EGFP-LC3B (Beyotime, Shanghai, China) infection
were used for the subsequent detection of autophagic flux. For Spot counting, 40 cells
were analyzed by manual blind evaluation. For each cell, randomly select 20–80 clearly
distinguishable discrete points from the red channel as regions of interest, and evaluate
individual regions of interest for the presence of green fluorescence to determine whether
the region of interest is “red + green” or only for “red”.
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4.8. Western Blot

Total protein samples were run on 12% or 7.5% SDS-PAGE and then transferred
to PVDF membranes. After blocking the membrane with 5% skim milk, anti-GAPDH
(ABclonal, AC002, 1:5000, Wuhan, China), Actin (ABclonal, AC026, 1:5000, Wuhan, China),
cleaved-caspase-3 (CST, 9664S, 1:1000, Boston, MA, USA)), LC3B (CST, 43566S, 1:1000,
Boston, MA, USA), p62 (ABclonal, A19700, 1:1000, Wuhan, China), AMPK (CST, 2532S,
1:1000, Boston, MA, USA), p-AMPK (CST, 2535S, 1:1000, Boston, MA, USA), mTOR
(CST, 2983S), 1:1000, Boston, USA), p-mTOR (CST, 50081S, 1:1000, Boston, MA, USA),
DEK (CST, 29812S, 1:1000, Boston, MA, USA),CD9 (ABclonal, A19027, 1:1000, Wuhan,
China), CD81 (ABclonal, A4863, 1:1000, Wuhan, China), CD63 (ABclonal, A19023, 1:1000,
Wuhan, China), and the corresponding secondary antibody incubation (all, ABclonal,
Wuhan, China). Protein signals were visualized in the imaging system using the ECL
chemiluminescence kit (Beyotime, Shanghai, China).

4.9. Dual-Luciferase Reporter Analyses

To verify the binding of LEF1-AS1 and miR-5100 sponges, LEF1-AS1-WT/Mut and
miR-5100 mimics/mimics-NC were co-transfected for 48 h, and the luciferase activity was
detected by a dual-luciferase assay system (Promega, WI, USA). DEK 3′UTR-WT/Mut and
mimics-NC/miR-5100 mimics/miR-5100 mimics + LEF1-AS1 were co-transfected to verify
that miR-5100 regulates DEK.

4.10. BALB/c Nude Mice Animal Models

Animal xenograft tumor model analysis was described previously [73]. Briefly,
four-week-old female BALB/c were obtained from Liaoning Changsheng Organisms
(Liaoning, China). All nude mice were fed under the SPF environment of the Labora-
tory Animal Center of Wuhan University of Science and Technology, and were approved
by the Laboratory Animal Ethics Committee of Wuhan University of Science and Technol-
ogy. 5 × 106 SGC7901 cell lines were injected subcutaneously (n = 3 per group), and the
subcutaneous tumors were harvested 21 days after inoculation. the subsequent statistical
analysis was performed. The injected SGC7901 cell line was infected with sh-DEK express-
ing lentivirus or miR-5100 expressing lentivirus or DEK expressing lentivirus or co-infected
with miR-5100 and DEK expressing lentivirus or co-infected with miR-5100 and LEF1-AS1
expressing lentivirus.

To evaluate the effects of DEK, miR-5100, and LEF1-AS1 on GC lung metastasis
in vivo, 4-week-old BALB/c was injected into the tail vein of 200 µL PBS containing 2 × 106

SGC7901 cells (n = 3 per group). The injected cells were identical to those used in the
Animal xenograft tumor model except that they were luciferase-labeled. To confirm the
injection was successful, we measured photon flux throughout the whole body of the
mice weekly using an IVIS Lumina Series III (Caliper Life Sciences, Boston, MA, USA).
After 28 days, BLI analysis was performed on each mouse to monitor lung metastases.

4.11. Immunohistochemistry (IHC) and Hematoxylin-Eosin Staining (HE)

For the histological evaluation of patients and mice, all tissues were soaked in 10%
buffered formalin for 24 h and then sent to Wuhan Servicebio Technology Co., Ltd.
(Wuhan, China) for paraffin embedding and sectioning to 4 µm. For immunohistochemical
analysis, the sections were successively deparaffinized, followed by antigen retrieval with
citric acid antigen retrieval buffer, 3% hydrogen peroxide solution to block endogenous per-
oxidase, BSA blocking tissue, antibody incubation, DAB color development, hematoxylin
staining, Dehydrated coverslips. Finally, observe and evaluate under the microscope. The
reagents required in the immunohistochemical experiment were purchased from Wuhan
Servicebio Technology. For HE staining, standard experimental procedures were followed
by Wuhan Servicebio Technology Co., Ltd.
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4.12. Extraction and Identification of Exosomes

miR-5100 was overexpressed in mesenchymal hepatocytes, and the supernatant of
the medium was collected after 72 h of culture, and exosomes were extracted and isolated
according to the experimental procedure of the exosome extraction kit (YEASEN, 41201ES25,
Shanghai, China). Exosomes were quantified with BCA protein quantification kit (YEASEN,
20201ES76, Shanghai, China), and exosome markers were detected by Western blot. Electron
microscopy detection was sent to Wuhan servicebio technology Co., Ltd. For operation
according to standard protocols.

4.13. Bionformatic Analysis

TCGA (https://www.cancer.gov/aboutnci/organization/ccg/research/structural-
genomics/tcga, accessed on 19 October 2021) and UALCAN (http://ualcan.path.uab.edu/
cgi-bin/ualcan-res.pl, accessed on 19 October 2021) were used to analyze the expression
level of DEK in gastric cancer, Targetscan (https://www.targetscan.org/vert_72/, accessed
on 21 October 2021) predicts the targeting effect of miR-5100 on DEK, and LncBase Pre-
dicted v2 predicts the sponge effect of LEF1-AS1 and miR-5100 (https://diana.e-ce.uth.gr/
lncbasev3, accessed on 21 October 2021).

4.14. Statistical Analysis

All experiments were validated in three independent replicates. Statistical analysis
was performed using GraphPad Prism 9 and SPSS 19.0 software. All data are presented
as mean ± SD (standard deviation) from triplicates. p values < 0.05 were statistically
significant. Statistical analysis was done using paired Student’s t-test; * represents p < 0.05,
** represents p < 0.01, and *** represents p < 0.001.

5. Conclusions

In our study, we discovered a novel regulatory mechanism of LEF1-AS1/miR-5100/DEK,
which has important implications for the occurrence and development of GC. High expres-
sion of DEK can aggravate the malignancy of GC, promote autophagy, and inhibit apoptosis
through the AMPK/mTOR signaling pathway. miR-5100 regulates the expression of DEK
by targeting the 3′UTR of DEK, and has been shown to inhibit autophagy and promote
apoptosis in GC cells in vitro. In addition, LEF1-AS1 can promote autophagy and inhibit
apoptosis of GC cells by sponge-absorbing miR-5100. The discovery of LEF1-AS1/miR-
5100/DEK signaling axis may become a potential target for GC therapy, providing the
latest theoretical support for GC therapy.
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