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Abstract
Melatonin is a neurohormone secreted from the pineal gland and has a wide-ranging regulatory and

neuroprotective role. It has been reported that melatonin level is disturbed in some neurological

conditions such as stroke, Alzheimer’s disease, and Parkinson’s disease, which indicates its involve-

ment in the pathophysiology of these diseases. Its properties qualify it to be a promising potential

therapeutic neuroprotective agent, with no side effects, for some neurological disorders. This review

discusses and localizes the effect of melatonin in the pathophysiology of some diseases.
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1 | INTRODUCTION

Melatonin is a neurohormone secreted from the pineal gland, which is

situated at the center of the brain (Tan, Manchester, Sanchez-Barcelo,

Mediavilla, & Reiter, 2010). It has a wide range of regulatory and pro-

tective effects, such as synchronizing circadian rhythm, protecting

against oxidative stress, regulating energy metabolism, modulating the

immune system, and postponing the ageing process (Tan, Manchester,

Terron, Flores, & Reiter, 2007; De Pedro, Martinez-Alvarez, & Delgado,

2008; Caballero et al., 2009; Shieh, Wu, Cheng, & Cheng, J., 2009; Har-

deland, 2010; Tan et al., 2010). Melatonin is also secreted from extra-

pineal sources, the highest melatonin release coming from the gut and

the skin (Tan et al., 2007). Other extra-pineal sources are the retina,

the testes, the ovary, the placenta, glial cells, and lymphocytes (Tan

et al., 2007). However, melatonin secreted from extra-pineal sources

has a small effect on the plasma melatonin circadian oscillation, as pine-

alectomy is found to disturb melatonin rhythm (Pelham, 1975). Extra-

pineal areas secrete melatonin, which remains within these tissues and

acts mainly as an antioxidant agent (Tan et al., 2007).

Normally, melatonin is secreted during the first year of life, starting

from a very low level before the age of three months and then increas-

ing rhythmically to reach its peak at 1–3 years, followed by a gradual

decrease until adulthood (Waldhauser, Ehrhart, & Forster, 1993).

Diurnally, melatonin is found to be highly secreted between 03:00 and

04:00 (Claustrat & Leston, 2015). Melatonin circulating in the blood is

distributed widely throughout the body, including in saliva, urine, cere-

brospinal fluid, preovulatory follicles, semen, amniotic fluid and milk

(Reiter, 1991). The melatonin level in the bloodstream indicates active

pineal gland function (Reiter, 1991). Melatonin is lipophilic and hydro-

philic in nature, and this amphiphilic property bestows the advantage

of crossing the blood–brain barrier (Pardridge & Mietus, 1980).

2 | BIOSYNTHESIS

Melatonin synthesis occurs in pinealocytes from tryptophan, which is

converted to serotonin and finally into melatonin in a four-step process

(Tan et al., 2010). Tryptophan is naturally present in the bloodstream and

its acute depletion has been shown to be capable of reducing the
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nocturnal melatonin level in humans (Zimmermann et al., 1993). As folate

is essential in the methylation step of converting N-acetylserotonin to

melatonin, folate deficiency decreases melatonin release in rats (Four-

nier, Ploye, Cottet-Emard, Brun, & Claustrat, 2002). Moreover, vitamin

B6 (pyridoxine) plays an important role in tryptophan decarboxylation

and increases the release of melatonin by the pineal gland in children but

not in adults (Munoz-Hoyos et al., 1996; Luboshitzky et al., 2002).

Two enzymes are essential for the conversion of serotonin into

melatonin, namely serotonin-N-acetyltransferase (NAT; also known as

arylalkylamine N-acetyltransferase [AANAT] and hydroxyindole-O-

methyltransferase [HIOMT]; [Tan, Manchester et al., 2010]). It has

been found that the expression of mRNAs encoding these enzymes in

a chicken’s pineal gland is controlled by day/night circadian oscillators

that reach their maximum level at night (Bernard et al., 1999). Norepi-

nephrine (NE) has a key role in initiating melatonin synthesis, in which

the binding of NE to adrenergic 1 receptors in pinealocytes stimulates

cyclic AMP (cAMP) and therefore NAT formation (Tan et al., 2010).

3 | METABOLISM

In the brain, melatonin is oxidized by formamidase and produces N1-

acetyl-N2-formyl-5-methoxykynuramine (AFMK; Hirata, Hayaishi,

Tokuyama, & Seno, 1974; Cardinali, 1981). N1-acetyl-5-methoxy-

kynuramine (AMK) is another well-known melatonin metabolite. AFMK

and AMK can be produced by enzymatic, free radical or ultraviolet radi-

ation pathways (Hirata et al., 1974; Cardinali, 1981; Tan et al., 2001;

Hardeland, Tan, & Reiter, 2009). Both melatonin metabolites are con-

sidered potent antioxidants with the capacity to scavenge free radicals

and activate the free radical scavenging cascade (Tan et al., 2001; Har-

deland et al., 2009).

In the liver, circulating melatonin is hydroxylated by cytochrome

CYP1A2 into 6-hydroxymelatonin, with wide variance in CYP1A2 activ-

ity between individuals (Gunes & Dahl, 2008). Different factors are

shown to affect this activity, which in turn alters the melatonin level.

For example, caffeine is shown to counteract CYP1A2 action, thus

inhibiting melatonin metabolism in the liver and raising the melatonin

level (Hartter et al., 2003; Hartter et al., 2006). Cigarette smoking is

shown to activate CYP1A2 and depress the exogenous melatonin level

(Ursing, von Bahr, Brismar, & Rojdmark, 2005). 6-hydroxymelatonin is

excreted in the urine in the form of sulphate and glucuronide (Isidorov

& Nazaruk, 2017). The urinary level of 6-hydroxymelatonin sulphate is

reportedly associated with the plasma melatonin level (Arendt, Bojkow-

ski, Franey, Wright, & Marks, 1985).

4 | REGULATION OF MELATONIN
SECRETION

Melatonin in mammals is released in a rhythmic oscillation pattern,

which is regulated by suprachiasmatic nuclei (SCN) of the

hypothalamus in animals and humans (Cohen & Albers, 1991; Moore,

1992; Edgar, Dement, & Fuller, 1993; Cardinali & Pevet, 1998). Melato-

nin release is controlled by the diurnal cycle, in which daylight

supresses melatonin release by signals transmitted by the retino-

hypothalamic tract to the SCN. It has been found that an adequate

intensity of artificial light in the room at night suppresses melatonin

release in humans (Lewy, Wehr, Goodwin, Newsome, & Markey, 1980).

The intensity of light is inversely proportional to the nocturnal plasma

level of melatonin (Bojkowski et al., 1987). Exposure to a light intensity

of about 2000 to 2500 lx between 02:00 and 04:00 significantly

supresses the melatonin plasma level (Bojkowsk et al., 1987).

A neuronal connection is found between the SCN and the sympa-

thetic system through the superior cervical ganglion, in which fibres

projected from the ganglion directly synapse with the pineal gland and

secrete norepinephrine to activate melatonin synthesis and release

(Moller, 1992; Moller & Baeres, 2002). Therefore, blocking 1-

adrenergic receptors by atenolol suppresses melatonin release, as

detected by urinary melatonin metabolites (Arendt et al., 1985).

5 | SOURCES

A wide variety of dietary elements contain melatonin, including nuts,

seeds, fruits, vegetables, and cereals (Manchester et al., 2000; Iriti,

2009; Iriti & Faoro, 2009; Paredes, Korkmaz, Manchester, Tan, &

Reiter, 2009). A radioimmunoassay showed an increased level of

plasma melatonin following an intake of food rich in melatonin (Hattori

et al., 1995). It is known that the plasma level of melatonin is reflected

in melatonin level in the body (Tan et al., 2010). The normal melatonin

level in the blood varies diurnally within a range of a few pg/ml during

the day to more than 50 pg/ml at night. However, the plasma melato-

nin level is much lower than in other areas such as the gut and bone

marrow, both of which are considered extra-pineal sources of melato-

nin. Thus, the level of melatonin in plasma does not reflect its concen-

tration in other areas of the body (Huether, 1993; Tan et al., 1999).

6 | MELATONIN IN THE CENTRAL
NERVOUS SYSTEM (CNS)

AANAT and HIOMT are two crucial enzymes in the melatonin synthe-

sis pathway. AANAT is important in converting serotonin into N-

acetylserotonin, while HIOMT converts N-acetylserotonin into melato-

nin (Hirata et al., 1974). The HIOMT enzyme plays a physiological role

in regulating melatonin peak release at night (Ribelayga, Pevet, &

Simonneaux, 2000).

Previously, it was believed that the pineal source of melatonin is

the origin of the level of melatonin in the blood and CNS. However,

recent data show that there are other CNS sources of melatonin.

Reverse transcription polymerase chain reaction (RT-PCR) identified
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mRNA encoding AANAT and HIOMT in a wide range of rat brain areas

(Stefulj et al., 2001). This reflects the possible endogenous melatonin

synthesis and release from different brain regions. AANAT and HIOMT

enzymes are found in astrocytes, which release melatonin in cell cul-

tures of the rat cortex and glioma C6 cell line (Liu et al., 2007).

Both melatonin metabolites, AFMK, and AMK are present in the

brain. AFMK was first discovered in a rat brain in 1974 by Hirata et al.

and since then it is believed to be the main melatonin metabolite in the

brain (Hirata et al., 1974; Tan et al., 2007).

The AFMK concentration in cases of meningitis is found to be sev-

eral times higher than in normal healthy cerebrospinal fluid (CSF; Silva,

Ximenes, Livramento, Catalani, & Campa, 2005). Given that every unit

of melatonin produces a single AFMK, a high concentration of CSF

AFMK in meningitis cases exceeds the pineal gland’s capacity to pro-

duce melatonin, which in turn suggests another source of melatonin

secretion to the CSF. The synthesis and release of melatonin are con-

sidered to be a stress-mediated mechanism in which melatonin is a

potent neuroprotector and antioxidant (Carloni et al., 2008; Carretero

et al., 2009; Manda, Ueno, & Anzai, 2009). Stress-mediated melatonin

release has been demonstrated in the case of acute pancreatitis in rats

and severe traumatic brain in humans (Jaworek et al., 2003; Seifman

et al., 2008).

7 | THE PINEAL GLAND AND MELATONIN
IN THE CSF

The direct connection of the pineal recess to the third ventricle was

first recognized in 1969 (Sheridan, Reiter, & Jacobs, 1969; Sheridan &

Reiter, 1970). Melatonin concentration in sheep was found to reach its

highest level in the third ventricle near the pineal recess, the concentra-

tion gradually decreasing in the CSF with increased distance from the

third ventricle (Tricoire, Locatelli, Chemineau, & Malpaux, 2002). The

high-performance liquid chromatography (HPLC) technique used in

humans showed a high level of melatonin in the third ventricles and

lower levels in the lateral and fourth ventricles (Longatti et al., 2007).

However, HPLC can measure the level of free melatonin only, thus

missing a high percentage of melatonin in bound form (Rizzo et al.,

2002). Surgical sealing of the pineal recess leads to a drop in the mela-

tonin concentration in the third ventricle (Tricoire et al., 2002). This

result is consistent with the direct release of pineal melatonin to third

ventricle through the pineal recess. All of these data have opened the

field for more research to investigate whether the CNS level of melato-

nin is of pineal origin only. What is the role of melatonin secreted from

the glial cells? Is it activated during stress only or is there a regulatory

system controlling its synthesis and release?

8 | DISTRIBUTION OF MELATONIN
RECEPTORS IN THE NERVOUS SYSTEM

Melatonin binds to two types of G-protein-coupled receptors, namely

MT1 and MT2 (Dubocovich & Markowska, 2005; Benitez-King, 2006;

Ng, Leong, Liang, & Paxinos, 2017). MT1 is distributed in a wide area

of the nervous system, including the hippocampus, the caudate

putamen, the suprachiasmatic nucleus (SCN), the paraventricular

nucleus, the periventricular nucleus, the supraoptic nucleus, the Mey-

nert nucleus, the nucleus accumbens, the substantia nigra tuberomam-

millary nucleus, the mammillary bodies, and the retina (Dubocovich &

Markowska, 2005; Wu et al., 2006; Ng et al., 2017). On the other

hand, MT2 is mainly expressed in the hippocampus, the SCN and the

retina (Dubocovich & Markowska 2005; Ng et al., 2017). Both recep-

tors are expressed by neurons and glial cells of the cerebral and cere-

bellar cortex, thalamus, and pineal gland (Brunner et al., 2006; Wu

et al., 2006; Ng et al., 2017). Interestingly, it has been found that

expression of the mRNA encoding MT1 receptor is affected by the

day/night cycle, and that there is a relation between plasma melatonin

level and MR1 mRNA expression (Masana, Benloucif, & Dubocovich,

2000).

9 | THE BRAIN IS AN ORGAN THAT IS
SENSITIVE TO ENERGY DISTURBANCE

Although the brain makes up only 2% of the human body weight, it

consumes around 20% of the body’s oxygen. This high level of oxygen

consumption can initiate a harmful process known as oxidative stress.

Oxidative stress is the appearance of reactive oxygen species (ROS) in

a way that exceeds the capacity of the antioxidant effect (Gupta Y.,

Gupta, & Kohli, 2003). ROS are unstable molecules with one or more

unpaired electrons in their outer layer (Guetens, De Boeck, Highley,

van Oosterom, & De Bruijn, 2002); for example, superoxide (O2
2),

hydroxyl (OH2), peroxyl (RO2
2), alkoxyl (RO2) radicals or covalent mol-

ecules as H2O2 (Caimi et al., 2004). These molecules are harmful and

destroy DNA, proteins, and the cell membrane (Gupta et al., 2003).

A high level of fat in the brain distributed in the cell membranes and

myelin sheath makes it more prone to targeted damage by ROS. A lower

level of antioxidant enzymes compared to other body areas generates an

imbalance between ROS production and the opposing effect of antioxi-

dants (Skaper et al., 1999). ROS damage extensively affecting the brain

function leaves the blood–brain barrier leaky, disturbing mitochondrial

respiration and changing the tubulin arrangement (Gupta et al., 2003).

Studies showed that ROS enhances a release of excitatory neurotrans-

mitter as glutamate to the extracellular space, which acts on different

types of receptors, mainly NMDA receptors, and triggers an anoxic depo-

larization (Gilman, Bonner, & Pellmar, 1993). Moreover, ROS alters gene

expression, mediates apoptotic cascade, and eventually decreases neuro-

nal viability (Gilgun-Sherki, Rosenbaum, Melamed, & Offen, 2002).

10 | NEUROLOGICAL CONDITIONS AND
MELATONIN

10.1 | Melatonin and ischaemia

Ischaemic stroke is the second main cause of death and the leading

cause of disability worldwide (Flynn, MacWalter, & Doney, 2008;

Mathers, Boerma, & Ma Fat, 2009). There are two types of stroke,

ischaemic stroke, which represents 85% of all strokes, and high-

mortality haemorrhagic stroke, which accounts for 15% of all strokes
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(Flynn et al., 2008). A complex cascade of cellular injury events is set in

motion during ischaemia, consisting of excitotoxicity, ROS production,

and inflammation.

Neurons are very active excitable cells that need a high metabolic

rate to maintain their energy-dependent activities (Hossmann, 1994).

Thus, any restriction in the cerebral blood flow, as in the case of ischae-

mic stroke, is considered a serious situation for neurons, as they need a

steady and consistent supply of oxygen and glucose. In the case of oxy-

gen glucose deprivation, cell viability is affected by different mecha-

nisms, starting from energy deprivation, which affects one of the main

ATP-dependent pumps, Na1/K1-ATPase, causing its failure and revers-

ing its function (efflux of K1 and influx of Na1; Stys, 1998). A high level

of intracellular Na1 [Na1]I initiates anoxic depolarization, activates volt-

age gated calcium channels (VGCC) and reverses Na1-Ca21 exchange

(Stys, 1998). Consequently, Ca21 ions move inside the cells and acti-

vate a Ca21 mediated injury process (Stys, 1998). This is consistent

with the findings of Muller and Ballanyi, in which ischaemia initiated

anoxic depolarization coincident with a huge increase in intracellular

Ca21 [Ca21]I (Muller & Ballanyi, 2003). The level of glutamate, a major

excitatory neurotransmitter, during ischaemia is increased extracellu-

larly through inverse of its uptake and the release from presynaptic

neurons (Obrenovitch, 1996; Rossi, Oshima, & Attwell, 2000). A pro-

longed high level of glutamate binds to NMDA and non-NMDA recep-

tors and initiates an excitotoxicity cell injury (Rothman & Olney, 1986;

Arundine & Tymianski, 2003). NMDA receptors mediate Ca21 influx

and amplify Ca21 overload, while AMPA receptors allow Na1 entry,

leading to cell swelling and brain oedema (Dirnagl, Iadecola, & Mosko-

witz, 1999; Lipton, 1999).

Excitotoxicity is followed by an oxidative stress neurotoxic

effect. High [Ca21]I overload activates multiple oxidative enzymes

(e.g., phospholipases, cyclooxygenases, NO synthase, and proteolytic

enzymes). These enzymes accelerate the formation of free radicals,

which in turn mediates a series of cellular injury events such as lipid

peroxidation, DNA damage, mitochondrial injury, and blood–brain

barrier (BBB) breakdown, which mediates brain oedema (Dirnagl

et al., 1999; Lipton, 1999, Rodrigo, Fernandez, Serrano, Peinado, &

Martinez, 2005).

Excitotoxicity, a high [Ca21]I level and oxidative stress are followed

by inflammation. The inflammation stage is started by the activation of

different factors such as NFjB, hypoxia-mediated factor 1, and STAT3,

which are responsible for the production of inflammatory cytokines

(TNF-a, IL-1b), enzymes (iNOS, COX-2), and adhesion molecules

(ICAM-1, selectins) and for increasing the number of activated phago-

cytes (Dirnagl et al., 1999; Iadecola & Alexander, 2001).

These stages of ischaemic injury start from the first minutes of

ischaemic insult and persist for several days, in which the ischaemic

damage started at the core of the injury spreads out to the penumbra,

a hypoperfused and functionally disturbed, but viable tissue (Dirnagl

et al., 1999).

Clinically, in acute ischaemic stroke, thrombolysis or thrombectomy

are established to remove the obstruction in the blood vessels and

thereby regain cerebral circulation in the affected area. However,

reperfusion will play a role in increasing the production of oxygen free

radicals and therefore exacerbate oxidative stress and inflammatory

injuries (Chen et al., 2011). Therefore, combining neuroprotective strat-

egies with thrombosis or thrombolysis provides an effective way of

treating stroke patients with better outcomes. The main objective is to

save the penumbra from cell death.

Melatonin is considered one of the most potent antioxidant, playing

an important protective role in ischaemic injury (see Figure 1; Watson,

Diamandis, Gonzales-Portillo, Reyes, & Borlongan, 2016; Wu et al.,

2017). In middle cerebral artery occlusion (MCAO), a model of acute

ischaemia in rats, receiving pineal gland transplantation improves the

motor outcome and decreases the infarct size through the secretion of

melatonin (Borlongan et al., 2003). Exogenous melatonin administration

(4 mg/kg) significantly improves motor outcome and decreases infarct

size by 40% in pinealectomized rats subjected to MCAO (Kilic, Ozdemir,

Bolay, Kelestimur, & Dalkara, 1999). Moreover, it has been found that

melatonin injections protect against oxidative brain injury in cases of

subarachnoid haemorrhage (SAH) in rat models (Martinez-Cruz, Espinar,

Pozo, Osuna, & Guerrero, 2002; Ersahin et al., 2009; Wu et al., 2017).

Melatonin has a role in maintaining Ca21 homeostasis and pre-

venting any impairment. Moreover, it has been shown to decrease the

extracellular level of glutamate in hippocampal sections by reversing its

release in an oxygen glucose deprivation (OGD) model of rat ischaemia

(Patino et al., 2016). Melatonin prevents an acid-induced increase in

[Ca21]I levels (Bhattacharya, Pandey, Paul, & Patnaik, 2014). In addition,

it diminishes a glutamate-dependent increase in [Ca21]I level by

decreasing parvalbumin and hippocalcin, calcium-buffering proteins in

the rat’s cerebral cortex (Koh, 2012).

A fluorescence live-animal imaging system has shown that melato-

nin reduces free radical generation by acting on the MT2 receptor after

a transient middle cerebral artery ischaemia in mice (Chern et al.,

2012). Moreover, melatonin reportedly reduces Nox2 and Nox4

expression, thus decreasing the oxidative stress damage that is seen in

ischaemic/reperfusion injury in rats (Li et al., 2014). Melatonin adminis-

tration 60 minutes after MCAO has been shown to play a role as an

antioxidant in reducing nitrite and malondialdehyde (MDA) levels and

improving motor behavioural outcomes and brain oedema (Bhatta-

charya et al., 2014).

A study conducted on 45 human newborns diagnosed by

hypoxic-ischaemic encephalopathy showed that melatonin com-

bined with hypothermia decreases plasma-free radicals (nitric oxide

[NO]), seizure attacks, and white matter insults and finally improves

neurological outcomes (Aly et al., 2015). Another 10 asphyxiated

human newborns treated with 8 doses of 10 mg melatonin demon-

strated a better antioxidant effect, reducing serum malondialdehyde

and nitrite/nitrate levels, therefore improving their survival out-

comes (Fulia et al., 2001).

Melatonin administration decreases macrophage brain infiltration

in transient focal cerebral ischaemia and MCAO of rats, which in turn

prevents excess secretion of inflammatory cytokines and subsequent

inflammatory injury (Chen et al., 2006; Lee et al., 2007). RT-PCR dem-

onstrated that melatonin administration significantly reduced the

expression of interleukin-1 beta (IL-1b) and tumour necrosis factor

alpha (TNF-a) in ageing MCAO rats (Paredes et al., 2015). Messenger
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RNA expression of Bcl-2-associated death promoter (BAD), Bcl-2-

associated X protein (BAX), glial fibrillary acidic protein (GFAP), B-cell

lymphoma 2 (Bcl-2), and sirtuin 1 has been measured by reverse-

polymerase chain reaction. This also preserves the integrity of BBB and

significantly diminishes its dysfunction through different mechanisms

such as NO, ROS, and conserves tight junctions (Chen et al., 2006;

Grossetete, Phelps, Arko, Yonas, & Rosenberg, 2009; Song et al., 2014;

Moretti et al., 2015; Alluri et al., 2016). All these results suggest that

melatonin can be of important therapeutic value in preventing BBB

leakage and brain oedema.

10.2 | Melatonin and Alzheimer’s disease (AD)

Alzheimer’s disease is an age-related neurodegenerative disease

marked by toxic protein aggregation inside and outside the neurons.

Extracellular b-amyloid (Ab) and intracellular neurofibrillary tangles

(NFTs) are the hallmark of Alzheimer’s disease (Ittner & Gotz, 2011).

These abnormal proteins are found to be accumulated in memory-

related areas in the brain, such as the neocortex and hippocampus,

leading to progressive decline in cognitive function (He, Dong, &

Huang, 2010). The accumulation of toxic proteins mediates oxidative

FIGURE 1 Ischaemia pathophysiology at four stages: energy failure, excitotoxicity, oxidative stress and inflammation. ( ) Represents the
site of melatonin action
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stress, synaptic dysfunction and neuronal loss (Sultana & Butterfield,

2010; Jeong, 2017). The aetiology of the disease is still not clear; how-

ever, several factors are found to contribute to the disease, such as

genetic factors, sex, lipid metabolism, ageing, diet, and metal ion toxic-

ity (Sultana & Butterfield, 2010; Leszek, Sochocka, & Gasiorowski,

2012; Mustapic et al., 2012). The most common genes attributed to

Alzheimer’s disease are the amyloid precursor protein (APP), apolipo-

protein E (ApoE), and presenilins 1 (PS1) and 2 (PS2; Price & Sisodia,

1998; Shimohama, 2000; Thomas, Thomas C, Radcliffe, & Itsiopoulos,

2015; Dominguez & Barbagallo, 2016; Loffler, Flunkert, Temmel, &

Hutter-Paier, 2016; Canerina-Amaro et al., 2017; Dong, Gim, Yeo, &

Kim, 2017; Li et al., 2017).

High Ab production is considered the primary cause of neuropa-

thology in AD (Hardy & Selkoe, 2002). Senile plaques consist of Ab

peptides that are made up of around 40–43 amino acids (Soto, Branes,

Alvarez, & Inestrosa, 1994; Soto, Castano, Frangione, & Inestrosa,

1995; Selkoe, 1998). Amyloid protein precursor (APP) undergoes pro-

teolytic cleavage by b-secretase at the C-terminal and g-secretase at

the N-terminal to produce Ab peptide (Nunan & Small, 2000). On the

other hand, a-secretase splits APP at the middle region of the Ab

sequence and does not produce Ab (Vardy, Catto, & Hooper, 2005).

Different gene mutations are suggested to play a role in Ab formation,

such as PS1 and PS2 (Bruni, 1998; Liu, Zhou, van Heerikhuize, Hofman,

& Swaab, 1999; Seiffert et al., 2000; Lleo, Berezovska, Growdon, &

Hyman, 2004). These gene mutations mediate soluble Ab production.

However, aggregation and deposition of soluble Ab peptides produces

a toxic fibrillary Ab (Yankner, 1996; Alvarez et al., 1998; Soto et al.,

1998). Two common types of Ab are found in brain, Ab40 and Ab42,

which differ in the number of amino acids (40 and 42, respectively) and

are similar in their hydrophobic property (He et al., 2010). This property

mediates Ab fibrils to aggregate in a b-sheet structure known as amy-

loid plaques (He et al., 2010). A cascade of Ab plaque formation was

presented by Louise C. Serpell, in which the cascade started to form

APP, soluble Ab, Ab oligomers, Ab protofilament, Ab fibrils, and Ab

plaques (Serpell, 2000). Ab fibrils are found to be condensed in the AD

brain, and several studies reported its neurotoxic effects, including syn-

aptic dysfunction, neuronal death, and hence, dementia (Lorenzo &

Yankner, 1994; Younkin, 1995; Forloni, 1996; Selkoe, 1999; Iwata

et al., 2000; Puglielli, Tanzi, & Kovacs, 2003).

Oxidative stress is involved in the aetiology and the subsequent

neurodegenerative pathology of AD (Baldeiras et al., 2008; Greilberger

et al., 2008; Padurariu et al., 2010; Ferreiro et al., 2012). A high level of

free radicals in AD is mediated by several causes, such as Ab deposi-

tion, mitochondrial dysfunction, inflammation, and activated microglia

(Padurariu, et al., 2013). Ab plaques are considered one of the main

causes of oxidative stress in AD, with a two-way effect, in which oxida-

tive stress mediates lysosomal production of Ab and Ab itself induces

lysosomal membrane dysfunction and finally cell death (Zheng, Roberg,

Jerhammar, Marcusson & Terman, 2006).

The antiamyloidogenic effect of melatonin in AD has been

reported in various studies (Figure 2; Shukla, Govitrapong, Boontem,

Reiter, & Satayavivad 2017). It has been shown that melatonin inhibits

the formation of soluble APP in vitro, which in turn could prevent Ab

production (Lahiri, 1999), consistent with the decrease in APP mRNA

level after melatonin administration in P12 cells, but not in human neu-

roblastoma cells (Song & Lahiri, 1997). Moreover, it has been reported

that melatonin can interfere with Ab fibril production in vitro through

interacting with A 40 and A 42 (Pappolla et al., 1998; Pappolla et al.,

2000; Poeggeler et al., 2001).

It has been found that long-term application of melatonin (for

around two months) reduced immunoreactive Ab deposition in the hip-

pocampus and cortex by 43% and 37%, respectively in a transgenic rat

model of Alzheimer’s (Olcese et al., 2009). Melatonin administration

during the active stage of disease progression reduced amyloid deposi-

tion in the hippocampus (b1–42 and b1–40) and frontal cortex (b1–

42), decreased degenerative changes in the hippocampus, prevented

mitochondrial dysfunction, and delayed anxiety and cognitive impair-

ment in a sporadic rat model of Alzheimer’s (Rudnitskaya, Muraleva

et al., 2015). Chronic melatonin application after intracerebroventricular

Ab1–42-injection demonstrated diminished tau hyperphosphorylation

and Ab mediated memory deficits, thus avoiding neurodegeneration in

mice hippocampus (Ali & Kim, 2015).

Melatonin is also reported to be a potent antioxidant in AD (Figure

2; Shukla et al., 2017). Several studies have found that melatonin

reduces Ab mediated oxidative stress and lipid peroxidase (Daniels, van

Rensburg, van Zyl, & Taljaard, 1998; Srinivasan et al., 2005; Shukla

et al., 2017). Melatonin has been shown to regulate the level of mRNA

FIGURE 2 Alzheimer’s pathophysiology with melatonin site of
action ( )
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encoding in some antioxidant enzymes (SOD-1, glutathione peroxidase,

and catalase) to its normal level in the cortex of transgenic AD mice

(Olcese et al., 2009). It reduced the production of ROS by inhibiting the

formation of NADPH oxidase, the main source of oxidative stress in

AD, in b-stimulated microglial culture (Zhou, Zhang, Zhao, & Wei,

2008). The oxidative stress end products are abundantly found in AD

brains. Lipid peroxidation, DNA damage and oxidative altered protein

metabolites are routinely identified in postmortem AD brains (Sub-

barao, Richardson, & Ang, 1990; Mecocci, MacGarvey, & Beal, 1994;

Smith, Sayre, Monnier, & Perry, 1995; Markesbery, 1997). Moreover,

neuroinflammation and the activated microglia worsen oxidative stress

by enhancing NO generation, which mediates neuronal degeneration,

especially in proximal death (Weldon et al., 1998).

It has been found that long administration of oral melatonin enhan-

ces hippocampal synaptic growth and preserves the neuronal and glial

structure in a sporadic rat model with Alzheimer’s (Stefanova et al.,

2015). In addition, melatonin reportedly improves spatial memory,

reduces synaptic dysfunction, and decreases astrogliosis in the rat hip-

pocampus after intracerebroventricular injections of soluble Ab1–42

(Zhang, Wang, Ren, Hu, & Bi, 2016). Further research demonstrated

that melatonin diminishes apoptotic mediators in a senescence-

accelerated mice (SAMP8) model of Alzheimer’s (Gutierrez-Cuesta

et al., 2008).

Clinically, multiple studies reported a decrease in melatonin level in

AD patients compared to healthy people (Skene et al., 1990; Uchida,

Okamoto, Ohara, & Morita, 1996; Liu et al., 1999; Mishima et al.,

1999; Ohashi et al., 1999). The melatonin level in postmortem ventricu-

lar CSF is adversely related to Braak and modified Braak staging in the

human cortex (Zhou, Liu, Kamphorst, Hofman, & Swaab, 2003). Thus,

the melatonin level is considered as a marker for the progression of AD

neuropathology. In Braak staging I and II “pre-clinical” stages of Alzhei-

mer’s disease, melatonin circadian oscillation is lost owing to noradren-

ergic dysfunction and monoamine oxidase generation (Wu et al., 2003).

A retrospective study showed that melatonin significantly improved

Beck depression inventory scores (BDI), mini-mental state examination

results (MMSE), the cognitive subscale of the Alzheimer’s disease

assessment scale (ADAS-Cog) and sleep quality in mildly cognitively

impaired patients (Cardinali, Vigo, Olivar, Vidal, Furio, & Brusco, 2012).

However, more studies are needed to investigate the mechanism and

the therapeutic potentials of melatonin in AD patients.

Melatonin is known as anti-b amyloid aggregation, antioxidant and

anti-inflammatory and therefore prevents synaptic dysfunction, neuro-

nal loss and cognitive impairment.

10.3 | Melatonin and Parkinson’s disease (PD)

Several million people suffer from PD worldwide (Elbaz & Moisan,

2008; Wirdefeldt, Adami, Cole, Trichopoulos, & Mandel, 2011). Several

risk factors are positively associated with PD incidence, including

genetic factors, age, exposure to lead and manganese, and consump-

tion of dairy products; while coffee and tea are inversely associated

with PD (Elbaz & Moisan, 2008; Wirdefeldt et al., 2011; Hughes et al.,

2017). A lot of controversies have been raised in the way of association

of cigarette smoking with PD (Ma, Liu, Neumann, & Gao, 2017).

PD is characterized by dopaminergic neuronal loss in the substan-

tia nigra pars compacta (SNc), leading to depletion in striatal dopamine,

which in turn affects smooth, coordinated motor movements, media-

ting the appearance of rigidity, tremor, bradykinesia, and postural insta-

bility (Zhang et al., 1999; Tansey, McCoy, & Frank-Cannon, 2007;

Maguire-Zeiss & Federoff, 2010). Non-motor symptoms have also

been reported in PD patients, including impulse control disorders

(ICDs) and neuropsychiatric, autonomic, sleep, and sensory dysfunc-

tion (Weintraub, Comella, & Horn, 2008; Garcia-Ruiz, Chaudhuri, &

Martinez-Martin, 2014). The pathological hallmark of PD is dopami-

nergic neuronal death, which may affect 60% of total dopaminergic

neurons, thus affecting the connections with other neurons (Zig-

mond MJ). The histological hallmark of PD is the distribution of

Lewy bodies and a-synuclein protein aggregation on neurons (Spill-

antini, Crowther, Jakes, Hasegawa, & Goedert, 1998; Shults, 2006).

Aggregation of Lewy bodies compromises mitochondrial dynamics,

which mediates ROS release and cell death (Pozo Devoto, & Falzone,

2017).

Several types of PD animal models have been established to medi-

ate dopamine neuronal death and augment the generation of sensory

and motor deficit, which in turn expose PD symptoms, such as tremor,

rigidity and akinesia (Schober, 2004; Terzioglu & Galter, 2008). Two

mechanisms of PD animal model induction are commonly used, namely

nigrostriatal injection of 6-hydroxydopamine (6-OHDA) and cerebral

injections of neurotoxins such as MPTP (Schober, 2004; Terzioglu, &

Galter, 2008). Transgenic models of PD have also been established, but

some studies reflect some concerns about transgenic models and neu-

rotoxic induced models, which should be taken into consideration (Ter-

zioglu & Galter, 2008).

Evidence has been accumulating that age-associated PD is com-

bined with oxidative stress (Olanow 1992, Padurariu, Ciobica et al.,

2013). It has been reported that melatonin injections interfere with

lipid peroxidation in the hippocampus and striatum and that they

inhibit neuronal death in the nigrostriatal area in an MPTP-induced

PD model (Acuna-Castroviejo, Coto-Montes et al., 1997, Antolin,

FIGURE 3 Parkinson’s disease pathophysiology with melatonin
site of action ( )
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Mayo et al., 2002). Moreover, melatonin elevates the level of antiox-

idant enzymes, such as catalase and superoxide dismutase, in the

nigrostriatal pathway in a 6-OHDA-induced PD animal model (Sara-

vanan, Sindhu, & Mohanakumar, 2007). Another study has elicited

similar results of the neuroprotective effect of melatonin in the

mouse nigrostriatum of a 6-OHDA induced PD animal model

through inhibiting OH generation and preventing glutathione (GSH)

reduction (Thomas & Mohanakumar, 2004). Moreover, melatonin

clearly counteracts the reduction in mitochondrial oxidative phos-

phorylation enzyme (complex I) in the substantia nigra of a 6-OHDA-

induced PD animal model (Dabbeni-Sala, Di Santo, Franceschini,

Skaper, & Giusti, 2001). In a maneb- and paraquat-induced PD mice

model, melatonin improves locomotor activity by reducing the rise in

nigrostriatal dopaminergic degeneration and lipid peroxidation (Sin-

ghal, Srivastava, Patel, Jain, & Singh, 2011). By downregulating the

oxidative stress effects, melatonin is shown to be a potent antioxi-

dant, which can improve the prognosis in PD (Figure 3).

Toxic a-synuclein is formed by a-synuclein oligomerization, fibrilla-

tion, and finally by producing Lewy bodies, which mediates neurode-

generation cell death (Outeiro, Putcha et al., 2008). Melatonin has been

shown to work as an anti-assembly and to play a role in interfering with

a-synuclein toxic oligomer and a-synuclein fibril, therefore reduceing

a-synuclein induced cytotoxicity (Ono, Mochizuki et al., 2012). This is

consistent with the Western blot finding, which reported that melatonin

inhibits arsenite-induced apoptosis by reducing the accumulation of

a-synuclein in the rat brain (Lin, Fang, Chao, & Yang, 2007; Figure 3).

In humans, RT-PCR of postmortem PD brains found reduced

expression of MT1 and MT2 receptors in the amygdala and substantia

nigra (Adi et al., 2010). Moreover, it has been reported that melatonin

rhythm amplitude and 24-hour plasma level are significantly reduced in

PD patients compared to controls (Videnovic, Noble et al., 2014). These

results reflect the involvement of the melatoninergic system in the

pathophysiology of PD in humans. However, clinically, evidence has

been accumulating that antagonizing the effect of a melatonin receptor

by light therapy improves the motor outcome in PD patients (Paus,

Schmitz-Hubsch et al., 2007; Willis & Turner, 2007; Rutten, Vriend, van

den Heuvel, Smit, Berendse, & van der Werf, 2012), consistent with

some animal model studies (Willis, 2008; Cardinali et al., 2012). Further

studies using external melatonin instead of light therapy are needed to

better understand the role of melatonin in motor functions.

11 | CONCLUSION

This review highlights the potential neuroprotective effect of melatonin

in ischaemia, Alzheimer’s disease, and Parkinson’s disease. It is not only

a widely known antioxidant, but also an anti-excitotoxicity, anti- inflam-

matory, and anti-misfolding molecule. Moreover, its ability to cross the

blood–brain barrier and its short life with no significant side effects

make melatonin a promising neuroprotector.
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