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Abstract: Development and progression of many human diseases, such as systemic lupus
erythematosus (SLE), are hypothesized to result from interactions between genetic and environmental
factors. Current approaches to identify and evaluate interactions are limited, most often focusing on
main effects and two-way interactions. While higher order interactions associated with disease are
documented, they are difficult to detect since expanding the search space to all possible interactions of
p predictors means evaluating 2p − 1 terms. For example, data with 150 candidate predictors requires
considering over 1045 main effects and interactions. In this study, we present an analytical approach
involving selection of candidate single nucleotide polymorphisms (SNPs) and environmental and/or
clinical factors and use of Logic Forest to identify predictors of disease, including higher order
interactions, followed by confirmation of the association between those predictors and interactions
identified with disease outcome using logistic regression. We applied this approach to a study
investigating whether smoking and/or secondhand smoke exposure interacts with candidate SNPs
resulting in elevated risk of SLE. The approach identified both genetic and environmental risk factors,
with evidence suggesting potential interactions between exposure to secondhand smoke as a child
and genetic variation in the ITGAM gene associated with increased risk of SLE.

Keywords: candidate genes; gene–environment interactions; logic forest; systemic lupus erythematosus

1. Introduction

Many complex human diseases have been hypothesized to be the result of interactions between
genetic and environmental risk factors [1–9]. Research studies aimed at detecting potential gene
by environment (G×E) interactions as risk factors for human disease most often take one of two
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approaches. The first approach, often applied in genome-wide association studies, evaluates all
two-way interactions. However, higher order interactions would not be detected using the this
approach since expanding the search space to include higher order interactions is prohibitively
laborious and computationally intensive, as evaluating all possible main effects and interactions
in a data set with p predictors would mean evaluating 2p − 1 terms [9,10]. A second approach is
to identify a set of candidate factors and/or interactions between these factors. The selection of the
“best” subset of genetic and environmental factors may be based on the marginal effects of each factor
passing a specific statistical significance threshold. In this case, only those factors that have a strong
marginal effect are selected for interaction screening, which will fail to identify those factors with
minimal marginal effects but strong interaction effects [2,8,9]. Alternatively, a subset of candidate
genetic and environmental factors may be selected a priori [10]. Selecting candidate single nucleotide
polymorphisms (SNPs) from genome wide data coupled with the environmental exposures provides
a sufficiently concise and targeted sample space to be thorough while computationally manageable.

Identification of candidate variants and exposures can be prioritized based on a priori
knowledge (e.g., reported association, biomedical data from databases, involvement in relevant
biological mechanisms or pathways) and can be facilitated through existing literature and databases.
If a suitable subset of candidate genes and environmental exposures can be identified, the analytical
approach to evaluate the possible interactions among these factors must be considered. Statistical
approaches such as case-only studies have been proposed to improve the efficiency of interaction
identification in such studies [11–13]. However, results from such designs may be misleading as
there is an assumption of independence between factors, which if violated can lead to erroneous
conclusions [12,14,15]. Additionally, such studies typically focus on two-way interactions as each
interaction is evaluated individually, which can be a limitation if seeking to identify interactions with
more than two terms [9,10,14,16]. For example, data with only 25 predictors still requires evaluating
over 107 terms (predictors) while data with 150 predictors would require evaluating over 1045 terms.
Machine learning methods such as artificial neural networks, support vector machines, and forest
approaches offer flexibility in modeling outcomes and can incorporate complex relationships such as
higher order interactions in modeling disease outcomes based on a large number of predictors [17–22].
However, analytic approaches should provide guidance for determining the subset of predictors and
predictor interactions from among a larger set that are most relevant for determining outcome. Both
random forest and Logic Forest provide quantitative importance measures for individual predictors
allowing them to be ranked according to their relative importance in determining an outcome [17,22].
However, predictor importance for each variable represents the marginal effect of a predictor and if
a set of predictors is associated with the outcome only through interactions effects, these marginal
importance measures may mask such interaction effects [23]. Unlike random forest, Logic Forest
also provides a quantitative measure of importance for interactions identified by the forest, which
is advantageous in complex disease settings where interactions among genetic and environmental
factors rather than main effects lead to disease. Despite the availability and usefulness of such tools,
they have been under utilized. An ideal approach would combine identification of candidate factors
based on prior knowledge with an efficient method for evaluating the space of possible interactions,
including higher order interactions, among these candidate factors.

In this paper, we present an analytic approach to evaluate main effects and interactions between
genetic and environmental factors associated with a disease outcome by coupling selection of relevant
genetic and environmental factors based on available literature and public databases with a machine
learning approach, Logic Forest. To illustrate this approach, we examine varying degrees of tobacco
smoke exposure as environmental factors, disease-associated SNPs as genetic factors, and their
individual and combined associations with the diagnosis of systemic lupus erythematosus (SLE)
in a cohort from the Sea Island Gullah population of South Carolina. The Gullah population is
a distinctive group of African Americans from the coastal Sea Islands of South Carolina and Georgia
who are descendants of enslaved Africans from the African Rice Coast [24]. On many plantations,
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Africans vastly outnumbered Europeans, and the Gullah remained in the geographically isolated Sea
Islands until recent times [24–26]. This population is unique in that they have low non-African genetic
admixture [25,26] and high ancestral homogeneity from their ancestral home, Sierra Leone [27–29],
offering a unique opportunity to study genetic and environmental disease risk factors. SLE is
a “prototype” autoimmune rheumatic disease with a well substantiated genetic etiology and many of
the SNPs identified as increasing the risk for SLE are in genes that enhance immune reactivity [30–38].
Additionally, given that the concordance rate between monozygotic twins only ranges between
24% and 35% [31], epigenetic or environmental factors are likely to have an important role in SLE
susceptibility. Known environmental triggers in SLE include ultraviolet (UV) light, silica dust, certain
infections, and smoking [39]. We apply our proposed approach to evaluate associations between risk
of SLE with genetic factors thought to amplify the inflammatory/immune response to tobacco smoke
exposure, which has been implicated in earlier research [40]. Results of the analysis found evidence of
both a main effect for smoke exposure and several interactions between genetic factors and smoke
exposure, demonstrating the applicability of our approach.

2. Materials and Methods

We present an analytical approach for identifying main effects and interactions between genetic
and environmental factors associated with a disease outcome. The approach involves selection of
candidate genetic and/or environmental factors, use of a machine learning algorithm to identify
important main effects and interactions in disease, followed by confirmation of the association between
interactions identified by the algorithm using logistic regression. To give this theoretical approach
context, it is applied to a study examining the association between SNPs and cigarette smoke exposure
with risk of developing SLE as shown in Figure 1.

134 GullahAA  
SLE cases

129 Gullah AA  
healthy controls

Genotype ~200,000 SNPs using  
Immunochip array [30]

Literature search for Gene x Smoking  
in rheumatic diseases

Prioritize genes using CTD:
1. Relevance to tobacco smoke
2. SLE-tobacco inference network

Quality control of  
selected SNPs

Identification of main effects and  
interactions using Logic Forest

Odds ratio for all  
interactions

129 125

Figure 1. Flowchart of the proposed analytic approach. AA: African American; SLE: Systemic lupus
erythematosus; CTD: Comparative Toxicogenomics Database, and SNP: Single nucleotide polymorphism.
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2.1. Study Subjects and Design

The Gullah population is a distinctive group of African Americans from the coastal Sea Islands of
South Carolina and Georgia they are descendants of enslaved Africans from the African Rice Coast [24]
and thus represent a unique population of African Americans, which, while not a genetic isolate,
is a more genetically homogeneous group relative to other African Americans [25–29,41]. Systemic
lupus erythematosus is also known to have a high disease load in African Americans relative to
Americans of European descent with an estimated prevalence in South Carolina of 1

200 in African
American women; the prevalence in the Gullah is unknown, but it is believed to be similar [41].

The SLE study used a case control design, and subjects were selected from people participating
in the SLE in Gullah Health (SLEIGH) Study, which began recruitment in 2003 [42]. Systemic lupus
erythematosus cases fulfilled the 1997 American College of Rheumatology classification criteria for
“definite” SLE [43]. Race was self-reported and Gullah ancestry was self-identified as African American
(AA) Gullah from the Sea Island region of South Carolina, with all known grandparents being of
Gullah descent [42,44,45]. Unrelated non-SLE Gullah controls were also recruited by asking the cases
to “bring a friend” of the same gender and community to the screening visit. As described in our recent
manuscript [45], first-degree relatives were not considered for the analysis. These subjects received
a clinical examination by a rheumatologist to ensure they did not meet criteria for any inflammatory
rheumatologic disease before inclusion in the genetic studies as unaffected Gullah controls. This study
was approved by the Medical University of South Carolina Institutional Review Board (Pro#00021985,
approved 1/15/2013). All study participants provided written consent prior to study enrollment.

Genotypic data was available on 129 Gullah AA SLE cases and 125 AA unrelated controls
genotyped on the Immunochip genotyping array [45]. Tobacco smoke exposure, including both
secondhand smoke exposure as a child and current smoking status, was collected as a part of the
SLEIGH study protocol. At baseline, each subject was asked the following questions as part of an
in-person interview related to smoking: “Have you ever smoked cigarettes?” (If yes) “What was
the maximum daily amount (packs per day) smoked?” “What is the total number of years you
smoked?” “Are you currently smoking?” “If not, how many years since quitting?”. Participants were
also asked the following questions about secondhand smoke exposure: “Were you ever routinely
exposed to passive smoke as an adult (at work or in the home)?” “Were you ever exposed to passive
smoke as a child (before age 18)?”. From responses to these questions, four binary variables were
created for each case and control to indicate whether or not they (1) had ever been a smoker prior
to SLE diagnosis (for cases) or prior to their study visit (for controls), (2) were current smokers at
the time of SLE diagnosis (for cases) or at their baseline visit (for controls), (3) were ever regularly
exposed to secondhand smoke, and (4) were ever regularly exposed to secondhand smoke as a child
(<18 years old). Twenty participants were missing information on smoking and smoke exposure data
and were excluded for analysis.

2.2. Prioritization of SNPs

2.2.1. Gene Selection

We searched the literature for reports of interactions between genetic variation and tobacco
smoke in SLE and related rheumatic diseases. We identified genes with reported interactions
with tobacco smoke in SLE (NAT2) [40] and rheumatoid arthritis (HLA-DRB1 shared epitope [46],
PTPN22 [47], and HMOX1 [48]). In addition to these candidate genes from the literature, we also
used information compiled in the Comparative Toxicogenomics Database (CTD) [49], a database that
contains curated scientific data describing relationships between chemicals/drugs, genes/proteins,
diseases, phenotypes, pathways, and interaction modules. We used the CTD to prioritize genes relevant
to tobacco smoke (APOE, NFE2L2, IL6 and CXCL8) and genes in an inference network between tobacco
smoke and SLE (IRF5, ITGAM and ITGAX; IL6 is also part of this network).
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2.2.2. Genotypic Dataset and Quality Control

Genotypic data on 129 Gullah AA SLE cases and 125 AA controls genotyped on the Immunochip
array was subject to the following quality control (QC) filters: exclusion of individuals with missing
genotypes, markers that did not statistically conform to Hardy–Weinberg Equilibrium (HWE)
(at p < 0.001) in controls, markers with missing data, and markers with minor allele frequency
(MAF) < 0.05. We used all the SNPs that met these QC thresholds in a region including ±5 kb
around each gene. Most promoters are located within 1 kb of the transcription start site , a 5 kb
flanking region around a gene is a common and reasonable choice. For the four genes with previously
reported interactions with tobacco smoke (NAT2, HLA-DRB1, PTPN22 and HMOX), we searched
the 1000 Genomes and HapMap Projects for SNPs that tag the reported alleles (as defined by an
r-squared > 0.4 in the YRI (Yoruba in Ibadan, Nigeria) population) that might have been genotyped
and met QC in our dataset. Populations of African ancestry have decreased linkage disequilibrium
(LD) and a rapid decay of LD with distance genome-wide relative to populations of European ancestry
[45]. A threshold of r-squared > 0.4 is thus reasonable to identify proxy SNPs in our population. Finally,
the genotypic cluster plots for each SNP were visually inspected, and SNPs with poor or questionable
plots (without clear cluster separation) were excluded. After applying these QC filters, the following
were available for further analyses: NAT2 (4 SNPs), HLA-DRB1 (6 SNPs), APOE (2 SNPs), IL6 (17 SNPs),
CXCL8 (1 SNP), IRF5 (20 SNPs), ITGAM (67 SNPs), and ITGAX (31 SNPs). Genotype frequencies for
each of the SNPs discussed in the manuscript are listed in Supplemental Table S1. Thirty participants
failed to meet quality control parameters and were excluded from the analysis.

2.3. Identification of Important Main Effects and Interactions

The primary goal of the SLE study was to identify potential gene×gene and gene×environment
interactions associated with risk of SLE among the Gullah population. We used a binary classification
algorithm to identify main effects and interactions among the candidate SNPs and smoke exposure for
classifying individuals according to SLE status.

2.3.1. Logic Forest

Logic Forest (LF) is a machine learning algorithm designed to identify interactions among binary
variables (for example, SNPs or smoking status) and quantify the importance of potential predictors
and predictor interactions identified in the forest in terms of correctly classifying disease status [22].
Logic Forest does not require a priori specification of interactions as it iteratively evaluates the space
of all possible interactions to identify the subset of interactions best able to classify disease status.
The LF algorithm and methods for calculating LF model misclassification rate and predictor interaction
importance have been previously described by [22] and detailed description of the algorithm can be
found there. For completeness, we provide details of the algorithm here. Given data W = {X, y}
where X =

(
x1, x2, . . . , xp

)′ is an n × p matrix of binary predictors and y = (y1, y2, . . . , yn)
′ is a

binary vector indicating disease status for i = 1, 2, . . . , n subjects, an LF model consists of a collection
of B logic regression trees constructed from B bootstrap samples from data W and is denoted as
LF (W, B) = {T1, T2, . . . , TB} = {Tb}. A single logic regression tree, Tb, represents the predictors and
predictor interactions, referred to as “prime implicants”, identified for the b-th bootstrap sample as
being associated with having SLE. Trees in an LF model are allowed to grow up to maximum size
of eight leaves. Thus, trees in the forest can explore interactions of up to eight variables. Figure 2
shows an example logic regression tree with three prime implicants identified as associated with SLE:
(1) exposure to passive smoking as a child and having at least one copy of the major allele of rs2359661
(A) in ITGAM; (2) having two copies of the minor allele of rs4632147 (T) in ITGAX; and (3) having
two copies of the minor allele of rs11761199 (G) in IRF5. When all predictor variables are categorical
(e.g., SNPs), an interaction between two variables occurs when specific conditions for both variables
must be met to confer additional risk of disease. For example, the first prime implicant for Figure 2
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suggests that additional risk for SLE from having at least one copy of the major allele of rs4632147
occurs only if the subject also had passive smoke exposure as a child. For tree Tb in the forest, subjects
are predicted to have disease if they meet any of the conditions defined by the tree.

OR

OR

AND

PassiveSmkChild rs2359661  

rs462147   

rs11761199 

Figure 2. Example of a logic regression tree. White boxes represent the predictor, in the case of SNPs,
the recessive effect of the minor allele, and black boxes represent the complement of that predictor
(e.g., for a SNP, this means the dominant effect of the major allele). There are three independent
predictors/predictor interactions identified within the tree: (1) exposure to passive smoking as a child
and having at least one copy of the major allele of rs2359661 (A) in ITGAM; (2) having two copies of
the minor allele of rs4632147 (T) in ITGAX; and (3) having two copies of the minor allele of rs11761199
(G) in IRF5.

Predictions for the LF model of B trees is determined by the proportion of trees that predict the
subject to have SLE. Each tree Tb in the LF has an associated out-of-bag (OOB) dataset, OOB

(
Tb
)

,
comprised of those observations left out of the b-th bootstrap sample that can be used for an unbiased
estimate of the model’s prediction error (similar to internal bootstrap validation). The LF OOB
prediction for observation yi is determined by Equation (1) where I

(
Wi ∈ OOB

(
Tb
))

is the indicator

of the i-th observations membership in OOB
(

Tb
)

.

ŷOOB
i

(
{Tb}, xi

)
=

 1, if
∑B

b=1 ŷi

(
Tb, xi

)
I
(

Wi ∈ OOB
(

Tb
))

∑B
b=1 I

(
Wi ∈ OOB

(
Tb
)) ≥ 0.5,

0, otherwise.

(1)

Accordingly, the LF OOB misclassification rate is

MCOOB
(
{Tb}, y, X

)
=

1
n

n

∑
i=1

(
yi − ŷOOB

i

(
{Tb}, xi

))2
. (2)

Logic Forest also provides two quantitative measures of importance for all prime implicants
identified in the forest. The first measure evaluates the change in classification error for each tree in
the forest before and after permutation of the data. The misclassification rate for tree Tb is

MCOOB
(

Tb, y, X
)
=

∑n
i=1

(
yi − ŷOOB

i

(
Tb, xi

))2
I
(

Wi ∈ OOB
(

Tb
))

∑n
i=1 I

(
Wi ∈ OOB

(
Tb
)) . (3)

Let X(j) be the matrix of predictors with Xj randomly permuted, where Xj can be an individual
predictor or more generally a prime implicant. The importance of prime implicant Xj is

VI1
(
Xj
)
=

1
B

B

∑
b=1

[
MCOOB

(
Tb, y, X(j)

)
−MCOOB

(
Tb, y, X

)]
. (4)
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Values for Equation (4) range from –1 to 1 with positive values indicating a positive association
between response y and prime implicant Xj. The second measure of prime implicant importance is
the frequency with which the prime implicant occurs across trees in the forest and can be calculated
according to Equation (5)

VI2
(
Xj
)
=

1
B

B

∑
b=1

I
(

Xj ∈ Tb
)

, (5)

where I
(

Xj ∈ Tb
)

is an indicator of prime implicant Xj’s inclusion in tree Tb. Permutation p-values
for importance measures for each prime implicant Xj can be calculated by randomly permuting the
outcome many times and fitting LF models to the data with the permuted outcome. The permutation
p-value is the proportion of times LF models fitted to data with the outcome permuted yield an
importance score for prime implicant Xj as large as or larger than the importance score from the
original model.

For analysis of the SLE study, three LF models including 200 logic regression trees each were fit
using (1) the recessive effect of the minor allele for each SNP (i.e., subjects have two copies of the minor
allele); (2) the dominant effect of the minor allele for each SNP (i.e., subjects having at least one copy
of the minor allele); and (3) the genotypic model with two indicators for of the number of copies of
the minor allele (with 0 being a reference group). Demographic and environmental variables, namely
gender, passive smoke exposure as a child, passive smoke exposure as an adult, and smoking status as
an adult were also considered in each model. Permutation p-values for prime implicants identified
by LF models were calculated based on 500 LF models fitted to the data with SLE case-control status
randomly permuted. All analyses were conducted in R v. 3.2.5 using the LogicForest package [50,51].

2.3.2. Validation of Main Effects and Interactions

To further validate the association between prime implicants identified by the LF and response
y, logistic regression models were also constructed to estimate odds ratios associated with each risk
factor (i.e., main effects and interactions) identified using the LF approach.

3. Results

Twenty subjects were missing information on childhood and/or adult smoke exposure and
30 additional subjects had missing genotype information, thus the final study population included
204 participants with both genetic and environmental exposure data available, 100 of whom were
diagnosed with SLE. There was no notable difference in sex or case/control status between subjects
included in the final population compared to those who were excluded (data not shown). Participants
included in the study were on average four years older than participants that were excluded (p = 0.042).
A majority of the study participants were female (85.8%), consistent with the historical gender
distribution for the disease. Participant demographic characteristics for cases and unrelated controls
are shown in Table 1.

Table 1. Participant characteristics by SLE status.

Characteristic Control SLE p-Value *(n = 104) (n = 100)

Age (Mean ± Std Dev) 42.6 ± 11.7 38.6 ± 13.4 0.022
Female (n, %) 87 (83.6) 88 (88.0) 0.491
Passive Smoke Exposure as a Child (n, %) 28 (26.9) 41 (41.0) 0.048
Passive Smoke Exposure as an Adult (n, %) 18 (17.3) 20 (20.0) 0.754
Ever Smoker (n, %) 24 (23.1) 24 (24.0) 1.000
Current Smoker (n, %) 13 (12.5) 17 (17.0) 0.478

* p-values reported in the table for the association with SLE status are based on a two-sample t-test for age
and chi-square test for all categorical variables.
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The results from the LF model that included the recessive effect of the minor allele and the
environmental and demographic variables are presented, since the gene–environment interactions
identified in this model showed the strongest relationship with SLE status. Logic Forest identified
426 unique prime implicants across the 200 trees in the model. Figure 3 is a plot of the number of trees
in the model that include each predictor by the normalized importance scores for each predictor. Points
shown in red represent those predictors that have the largest combination of predictor frequency and
importance score. As seen in Figure 3, the LF model identified passive smoke exposure as a child
as the most important predictor of SLE status (permutation p < 0.01). The SNPs rs11770589 (IRF5),
rs58408589 (ITGAX), rs67898294 (ITGAX), rs11761199 (IRF5), and rs7190807 (ITGAM) had both a high
predictor importance score and occurred frequently in the LF model (permutation p < 0.01 for all).
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Figure 3. Predictor frequency by normalized predictor importance score for all predictors in the Logic
Forest (LF) model. Points highlighted in red represent the predictors that have the largest combination
of frequency and importance score.

Figure 4 shows the number of trees in the model that include each prime implicant by the
normalized importance scores for all prime implicants that were identified in the forest. The most
important and most frequent prime implicants identified in the forest were the main effects for
passive smoke exposure as a child (permutation p = 0.008) and the following SNPs: rs4632147
(ITGAX), rs11761199 (IRF5), rs11770589 (IRF5), and rs58408589 (ITGAX) (permutation p = 0.006,
0.01, 0.01, and 0.028, respectively).
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Figure 4. Interaction frequency by normalized interaction importance score for all interactions
identified in the LF model. Points highlighted in red represent the interactions that have the largest
combination of frequency and importance score. Points in green represent additional interaction terms
identified in the forest that include passive smoke exposure as a child with at least one SNP.

There are three additional interaction terms that were ranked as highly important and occurred
with some regularity that included SNPs in the ITGAM gene and passive smoke exposure as a child
(permutation p < 0.002 for all three interactions). The points in Figure 4 highlighted in red represent
the interactions that have the largest combination of frequency and importance score. Points in green
represent interaction terms identified in the forest that include passive smoke exposure as a child
with at least one SNP. Passive smoke exposure as a child occurred in 88 of the 200 trees, and in 27 of
those instances it occurred as a main effect. In the remaining 61 instances, it occurred as an interaction
with different SNPs. Although the main goal of this analysis is to identify potential gene–gene and
gene–environment interactions; for completeness, we also examined the ability of the LF model to
discriminate SLE cases from controls. The estimated prediction error rate for the final LF model is 43%,
with an area under the receiver operating characteristic (ROC) curve of 0.54 (ROC curve for the final
model is shown in Supplemental Figure S1).

The Logic Forest model identified four main effects and three interactions as the most important
predictors in for determining SLE status based on the importance score. Separate logistic regression
models for these seven predictors that had the largest importance scores from the LF model were fit by
including an indicator variable for whether or not the subject had the combination of exposures in the
interaction. Table 2 shows the odds ratios and associated p-values for these logistic regression models.
The LF model included indicators for the recessive effect of the minor allele; however, if the model
found an interaction with the complement of a recessive effect, this is equivalent to the interaction
term including at least one copy of the major allele (i.e., dominant effect of the major allele as noted in
the last three interactions shown in Table 2). These results generally agree with the results from the LF
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model in that a majority of the prime implicants reported in the table have a statistically significant
association with being SLE positive. The only exception is rs11770589 in the IRF5 gene, which has a
p-value from the logistic regression model of 0.18.

Table 2. Odds ratios with 95% confidence intervals (CI) from a series of logistic regression models.
The implied reference category for each odds ratio is the complement of the effect defined in the
first column.

Effect Gene Odds Ratio (95% CI) Unadjusted p-Value

Passive Smoke Exposure as Child (PSC) 1.88 (1.01, 3.55) 0.039
2 copies of the minor allele of rs4632147 (T) ITGAX 3.09 (1.09, 10.1) 0.023
2 copies of the minor allele of rs58408589 (C) ITGAX 2.96 (1.23, 7.75) 0.011
2 copies of the minor allele of rs11761199 (G) IRF5 7.69 (1.01, 352) 0.033
2 copies of the minor allele of rs11770589 (A) IRF5 1.65 (0.81, 3.42) 0.179
PSC & > 1 copy of the major allele of rs2359661 (A) ITGAM 2.28 (1.18, 4.48) 0.009
PSC & > 1 copy of the major allele of rs7190807 (G) ITGAM 2.46 (1.25, 4.92) 0.005
PSC & > 1 copy of the major allele of rs6565227 (T) ITGAM 2.37 (1.23, 4.66) 0.006

4. Discussion

In this study, we demonstrate the utility of the proposed analytical approach to examine main
effects and interactions between 148 SNPs, gender, and four different types of smoke exposure in a
well-characterized cohort of Gullah African Americans participating in the SLEIGH study. There are
several key take-home points from the analysis of the SLE study. The LF model found strong
evidence for an association between SLE status and passive smoke exposure as a child. Logic forest
also consistently identified SNPs associated with SLE, including rs58408589, rs67898294, rs7190807,
rs4632147, rs11770589, and rs11761199 (in the IRF5, ITGAM, and ITGAX genes). Finally, although
passive smoke exposure as a child was clearly identified as a main effect (i.e., an independent risk
factor), there was also evidence to suggest that it may also be involved in weak to moderate interactions
with SNPs on the ITGAM gene (Table 2).

There are alternative statistical methods that one might consider for evaluating potential
gene×gene or gene×environment interactions for SLE. For example, logistic regression is a traditional
approach that could be used for such analyses. However, in order to evaluate the association between
SLE and all potential two-way interactions involving the 153 predictors in our data set, one would
need to examine (153

2 ) = 11, 628 logistic regression models; potential three-way interactions would
be even more cumbersome, as there would be almost 600,000 of them. Nonparametric decision tree
methods are easily interpretable and have flexibility to identify interactions among predictors [52,53].
However, decision tree models may be unstable, in that small changes in the data can result in
very different models [17,52,54,55]. Ensemble models, a collection of decision trees developed using
bootstrap samples or weighted samples of a dataset improve model stability and prediction accuracy
compared to single tree approaches [17,22,55–58]. Random forest (RF) and Logic Forest (LF) are
ensemble extensions of two decision tree methods [17,22]. Both methods also provide a quantitative
measure of the relative importance of predictors used in the model. However, LF has an additional
advantage over RF in that it also has a quantitative importance measure for interactions found in the
forest, rather than just individual predictors, making it ideal for identifying potential gene×gene and
gene×environment interactions in SLE development.

Our findings from the SLE study are not the first to demonstrate that certain SNPs may
interact with environmental exposures, such as smoking, in a way that increases the risk of
developing SLE. In a Japanese cohort, investigators found significant evidence of increased risk of SLE
associated with smoking, highest among those with polymorphisms in the NAT2 gene influencing
metabolic enzymes involved in reactive oxygen species production [40]. They identified a possible
gene×environment interaction, where smokers with the slow acetylator genotype of NAT2 were found
to have a higher risk of SLE (Odds Ratio = 6.44, 95% CI = 3.07–13.52) when compared to non-smokers
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with the rapid acetylator genotype of NAT2. Our study was the first to find passive smoke exposure as
a child (childhood exposure to secondhand smoke) to be a significant risk factor for SLE. The main
effect of childhood smoke exposure and the interactions between several SNPs on the ITGAM gene
were also significant in univariate logistic regression models of SLE status. Additionally, two SNPs on
the ITGAX gene and two SNPs on the IRF5 gene were also identified by the LF model, though only
three of the four SNPs were also significant in subsequent logistic regression models. Logic Forest
does not assume linearity in the logit link between predictors and outcome as logistic regression does,
which may explain the discrepancies in significance of rs11770589 on the ITGAX gene.

Given the exploratory nature of these analyses and the limited sample size of our study
population, replication would greatly improve the credibility of the associations identified in this
study. Unfortunately, there are no large scale genetic studies of SLE (or of any related autoimmune
disorder) in African Americans. Furthermore, the population selected for this study (Gullah African
Americans) was chosen for their documented high genetic homogeneity [42,45] and a replication
cohort of genetically similar individuals does not exist. Thus, the associations reported would need
to be validated in a future study. Additional potential limitations of this study include recall bias
and reliance on self-report to ascertain the individuals’ smoking and exposure status. These findings
should be considered as part of the “discovery” or “hypothesis generating” process of understanding
whether and how smoke exposure may interact with certain genes and should not be construed as
definitive proof. A detailed understanding of the mechanisms underlying SLE pathogenesis will
continue to require large databases of study subjects, with well-characterized environmental exposures
and genetic information. Machine learning algorithms, such as Logic Forest, will inevitably be required
to help sort through the ever expanding combination of potential risk factors for disease.

5. Conclusions

This study illustrates the utility of a novel approach to identify interactions between genetic
and environmental risk factors for disease. The complexity of many human diseases, which likely
result from interactions between genetic and environmental factors, emphasizes the importance of
evaluating such interactions when examining disease etiology. The challenge for such studies is
the number of possible interactions in data with even a modest number of individual predictors.
For example, in the SLE study presented here, there are 2153 − 1 = 5.7× 1045 possible interactions.
The approach presented here combines candidate gene selection and a machine learning method for
identification and quantification of the relative importance of interactions from among all possible
interactions in determining disease state, followed by confirmation of the association between those
predictors/interactions with disease outcome. Applying this approach to a study examining genetic
and environmental factors in SLE identified childhood exposure to secondhand smoke (PSC) as an
independent effect and interactions between PSC and SNPs on ITGAM, providing additional evidence
that SLE is a disease with a complex etiology and is the first study to find childhood exposure to
secondhand smoke to be a significant risk factor for SLE.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/9/10/496/s1,
Figure S1: Receiver operating characteristic (ROC) curve for LF model of SLE status including the recessive effect
of the minor allele for all SNPS, gender, passive smoke exposure as a child and as an adult, and smoking status,
Table S1: Genotype frequencies for each of the SNPs discussed in the Results, Discussion, and Conclusions.
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