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Autoimmune diseases are usually associated with environmental triggers and genetic
predisposition. However, a few number of autoimmune diseases has a monogenic cause,
mostly in children. These diseases may be the expression, isolated or associated with
other symptoms, of an underlying inborn error of immunity (IEI). Autoimmune cytopenias
(AICs), including immune thrombocytopenic purpura (ITP), autoimmune hemolytic anemia
(AIHA), autoimmune neutropenia (AN), and Evans’ syndrome (ES) are common
presentations of immunological diseases in the pediatric age, with at least 65% of
cases of ES genetically determined. Autoimmune cytopenias in IEI have often a more
severe, chronic, and relapsing course. Treatment refractoriness also characterizes
autoimmune cytopenia with a monogenic cause, such as IEI. The mechanisms
underlying autoimmune cytopenias in IEI include cellular or humoral autoimmunity,
immune dysregulation in cases of hemophagocytosis or lymphoproliferation with or
without splenic sequestration, bone marrow failure, myelodysplasia, or secondary
myelosuppression. Genetic characterization of autoimmune cytopenias is of
fundamental importance as an early diagnosis improves the outcome and allows the
setting up of a targeted therapy, such as CTLA-4 IgG fusion protein (Abatacept), small
molecule inhibitors (JAK-inhibitors), or gene therapy. Currently, gene therapy represents
one of the most attractive targeted therapeutic approaches to treat selected inborn errors
of immunity. Even in the absence of specific targeted therapies, however, whole exome
genetic testing (WES) for children with chronic multilineage cytopenias should be
considered as an early diagnostic tool for disease diagnosis and genetic counseling.
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INTRODUCTION

Inborn errors of immunity (IEIs), also known as primary
immunodeficiencies disorders (PIDD), are a group of more
than 450 diseases, most of them with a specific monogenic
cause (1, 2).

IEI are inherited disorders of the immune system with a broad
spectrum of manifestations, starting with an increased
susceptibility to infections, but also often including immune
dysregulation with autoimmune disease and hyperinflammation,
lymphoproliferation, and malignancy (3). In some patients
autoimmune and autoinflammatory manifestations, due to the
immune dysregulation, could be the only symptoms of IEI (4).
Such cases are categorized as “Disease of immune dysregulation”
in the most recent classification of IEI from the International
Union of Immunological Societies (IUIS) (1). Other types of IEI
include immune dysregulation as part of a broader clinical
phenotype (5).

Autoimmune diseases are usually multifactorial, but some
monogenic autoimmune diseases have been described in
children (6). These diseases can be isolated disorders or can be
associated with other manifestations of an underlying IEI. In
particular, AICs and inflammatory bowel diseases are frequent
manifestations of immunedysregulation (4).

Cytopenia, that is the reduction of one or more mature blood
cell types in the peripheral blood, can be the first symptom of
many IEI. AICs are caused by immune-mediated destruction of
hematopoietic cell lineage (7), include immune thrombocytopenic
purpura (ITP), autoimmune hemolytic anemia (AIHA),
autoimmune neutropenia (AIN), and Evans syndrome (ES) and
are common presentations of IEI in the pediatric age, with at least
65% of cases of ES which are genetically determined (6). ITP and
AHIA often present as first symptom in adults too. It has also been
described that the relative risk of developing autoimmune
cytopenia in a patient with IEI is about 120 fold that of the
general population (6) (8). However, cytopenias in patients with
IEI are not always caused by autoantibodies (8).

In the last decade, we have observed the identification of a new
set of genes and defined a unique class of congenital
“immunodeficiency” disorders which are more frequently
associated with susceptibility to autoimmunity than infection.
These findings have helped to clarify the mechanisms that
contribute to the development and maintenance of immune
tolerance (9). The possibility to exactly define the molecular
diagnosis underlying this immune dysregulation greatly affects
the prognosis of these diseases. Genetic characterization, especially
in cases of early onset, relapsing or refractory and multilineage
autoimmune cytopenias, is of fundamental importance as an early
diagnosis improves the outcome and allows the setting up of
targeted therapy, or gene therapy, which is currently one of the
most attractive targeted therapeutic approaches for IEIs.

Despite targeted therapies are not available for any
immunodysregulatory disorder, a genetic diagnosis by Next
Generation Sequencing (NGS) or Whole Exome Sequencing
(WES) may help to establish an unequivocal diagnosis,
allowing genetic counseling, and better define genotype/
phenotype correlations. An early and unequivocal diagnosis is
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also essential to ensure the initiation of life-saving therapies,
reducing organ complications, and improving the quality of
life (10).
AUTOIMMUNE CYTOPENIAS

AICs are acquired conditions characterized by immune-
mediated mature peripheral blood cell destruction (11). The
term autoimmune cytopenia includes AIHA, ITP, AIN, and
multilineage conditions in ES. AIC are heterogeneous disorders
that may be the consequence of many conditions such as
infections, malignancy, IEI, or rheumatologic disorders (12).

Autoimmune Hemolytic Anemia
AIHA is anuncommon disorder caused by autoantibodies
directed against self-erythrocyte antigens, leading to premature
red cell destruction (13). In particular, AIHA is very rare in
infancy and childhood (0.2 per 10/year).In these cases it is
associated with immune disorders in about 50% of patients
(13). AIHA is classified as warm, wAHIA, (IgG autoantibodies)
in 90% of pediatric cases (14), cold (IgM autoantibodies)
including cold hemagglutinin disease (CAD) and paroxysmal
cold hemoglobinuria) or mixed, depending on the thermal range
of the autoantibody.

Immune Thrombocytopenic Purpura
ITP is an autoimmune disorder that induces a premature platelet
destruction. ITP is characterized by autoantibodies against
platelet glycoproteins, tipically GPIIb/IIIa and GPIb/IX, but
ITP pathogenesis is often more complex (12). T cell
abnormalities, for example an excessive polarization toward T-
helper cell 1 (Th1), Th0, and Th17 cell types, a direct cytotoxic T
cell–mediated destruction, and deficiency of T regulatory cells
(Tregs) are described (15). A defect in B regulatory cells,
megakaryocyte maturation and survival, and myeloid-derived
suppressor cells have all also been demonstrated in ITP (12).

ITP is typically self-limited, but, in some cases,
thrombocytopenia may be persistent (lasting between 3 and 12
months) or chronic (lasting more than 12 months) (16).

Autoimmune Neutropenia
AIN is a benign disease typically with its onset in infants or
toddlers. It is caused by autoantibodies directed against a patient's
own neutrophils, with subsequent peripheral destruction (17).
Spontaneous resolution is frequently observed in most cases
within months. Children with AIN rarely suffer from severe or
invasive or life-threatening infections despite severe neutropenia
(14), because circulating neutrophils, although low in number, can
display normal anti-microbial activity and they often increase in
number during the acute event (18).

Evans Syndrome
ES is a rare severe autoimmune disorder that affects two or more
cell lineages. Initially described as the combination of ITP and
AIHA, the recent definition of ES is an autoimmune disorder
that affects two or more blood cell lines, occurring together or
April 2022 | Volume 13 | Article 846660
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developing over time. These cytopenias may include ITP, AIHA,
or AIN.
MANAGEMENT OF PATIENTS WITH
AUTOIMMUNE CYTOPENIAS

Most children with AHIA, ITP, and AIN have a relatively mild to
moderate clinical course of the disease, often requiring only
observation and treatment with a varying combination
of medications.

According to International Guidelines, Prednisolone, or
Prednisone, is recommended as first-line therapy for primary
warm AHIA. Rituximab (an anti-CD20 monoclonal antibody,
specifically direct at the pathogenic B-cell clone) is not
specifically authorized for warm AHIA, but the First
International Consensus Group has recommended his use in
addition to Prednisone as initial therapy in patients with severe
disease (i.e., Hb < 8g/l, Evans syndrome) (19–21). Rituximab, if
not added to first line therapy, is generally consider the second
line therapy (21). AICs are generally self-limiting diseases, but
relapses are not uncommon. Splenectomy is recommended in
cases of non-response or relapse after Rituximab (22), with the
risk of severe infections, and increased risk of thrombosis.

Third line therapies include Azathioprine, Cyclophosphamide,
Cyclosporine, Mycophenolate Mofetil, and Bortezomib, an
inhibitor of 26S proteasome (20) (21). In totally refractory forms
of AHIA, the combination of Bortezomib and Dexamethasone has
shown a possible efficacy (23).

For cold agglutinin disease, monotherapy with Rituximab is
considered the first-line approach (19), while glucoroticoid
should not be used, given the poor therapeutic response (21, 24).

Intravenous immunoglobulins in a single dose (1g/kg) or a
short course of corticosteroids represent the first-line treatment
for ITP. If patients do not respond to the first-line therapy, or if
continuous therapy is needed, the disorder is called refractory
ITP, and second-line therapy is indicated: Rituximab,
high-dose dexamethasone, thrombopoietin receptor agonists,
splenectomy, or cytotoxic drugs represent second line therapies
for refractory ITP (14). Many patients do not responded to any
treatments (25).

Patients with AIN rarely need a specific treatment, because
they can often responded to bacterial and fungal infection. G-
CSF (granulocyte colony-stimulating factor, filgrastim) is
recommended only for the minority of patients with serious or
recurrent infections (19).

Patients with ES should be promptly investigated for
underlying causes of AICs, and in all newly diagnosed children
an accurate immunological work-up is required to identify a
possible genetic cause that may require specific treatment (26). In
fact, ES is often associated with mutations in potentially
damaging variants in immune genes (6). The management of
ES is based on the use of steroids as first-line therapy, successful
in about 80% of cases. Rituximab is consider an effective second-
line treatment for children who are resistant, relapse or become
steroid-dependent. Children with ES and an underlying
Frontiers in Immunology | www.frontiersin.org 3
diagnosis of autoimmune lymphoproliferative syndrome may
be treated with immune suppressants, such as mycophenolate
mofetil and sirolimus (26). Splenectomy is generally ineffective in
ES (14, 27).

New Drugs for Treatment of Patients
With AICs
Novel treatment approaches are actively being developed for the
treatment of AICs.

Among the new drugs, B cell directed therapies for example
Ofatumumab (anti-CD20), Alemtuzumab (anti-CD52), and
Daratumumab (anti-CD38) have been used with good results
in case reports for the treatment of secondary AIHAs (28).

Fostamatinib is an inhibitor of spleen tyrosine kinase (SYK)
that reduces macrophage-mediated clearance of RBCs and
platelets. Syk plays a central role in FcgR-mediated signal
transduction, and for this reason it has been considered a
target for inhibition in different autoimmune and malignant
conditions (29). The blockage of FcgR signaling through the
inhibition of Syk ameliorate platelet destruction, and
Fostamatinib is now FDA-approved for the treatment of
thrombocytopenia in adult with chronic ITP an insufficient
response to a previous treatment and is now in Phase 3 studies
in wAIHA (20, 30). Orilanolimab, Rozanolixizumab, and
Nipocalimab are monoclonal antibodies that bind and inhibit
the neonatal Fc receptor (FcRn). The blockage of FcRn induces
an increased clearance of IgG including that of pathogenic IgG
autoantibodies (31). Rozanolixizumab has already shown efficacy
at increasing platelet counts in patients with persistent/chronic
primary ITP (32), while the safety and efficacy of
Rozanolixizumab and of the other inhibitors of the FcRn for
AHIA are under investigation (30).

Ibrutinib is a Bruton tyrosin kinase (BTK) inhibitor currently
used or under investigation in several lymphoproliferative
disorders (30). BTK inhibition has a significant effect on both
lymphocytes and macrophages. His efficacy is reported in
secondary AIHA, while a trial with another BTK inhibitor is
currently underway for the treatment of ITP (20).

Belimumab is a human monoclonal antibody that inhibits the
binding of soluble B lymphocyte stimulator (BLyS, also known as
B-cell activating factor, BAFF) to B cells. Belimumab inhibits the
survival of B cells (including autoreactive B cells) and reduces the
differentiation of B cells into Ig-producing plasma cells. It is
currently approved for the treatment of non-renal systemic lupus
erythematosus (33), but it might also be a further solution for
refractory AIHA patients (34).

Follow Up of Patients With AICs
In general, if a patient does not responded to first-line therapy, a
diagnostic reevaluation should be considered, focusing on any
previously overlooked cause of secondary AICs. In these subjects,
the disease can be characterized by recurrent, chronic or
refractory cytopenias affecting more than one blood lineage
(concurrently or sequentially) or be associated with
adenopathy and/or hepatomegaly and/or splenomegaly or
concurrent severe infections (16). In these cases, a further
April 2022 | Volume 13 | Article 846660
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diagnostic evaluation is needed for the identification of the
underlying disorder and, potentially, of novel treatment options.

Evaluation of anti-vaccine antibody response, immunoglobulin
levels (IgG, IgA, IgM), extended immunophenotype and
proliferation test in response to mitogens, in conjunction with
molecular tools for IEI diagnosis are essential for identifying a
previously undiagnosed IEI (7, 35). Immunological investigations
are always recommended, especially in the case of positive family
history for IEI or immunedisregulation, very early onset and
relapsing or refractory (11) (Figure 1).

Patients with an underlying IEI may often required more
second-and third-line immunomodulating therapies and may
benefit from a specific target therapy (36) (35).
PATHOGENESIS OF AUTOIMMUNE
COMPLICATIONS IN IEI

Autoimmunity, defined as the breakdown of immune tolerance
to self-antigens, has different pathophysiologic pathways (37). In
particular, autoimmune cytopenias may be caused by cellular or
humoral immune responses, and often the underlying
pathogenetic mechanism involves an immune system defect in
which T lymphocytes do not adequately control the proliferation
of autoreactive B lymphocites clones (38). Indeed, central and
peripheral tolerance usually allows the elimination of
lymphocytes reactive to self-antigens, for example through the
Frontiers in Immunology | www.frontiersin.org 4
daily destruction of self-reactive B lymphocytes produced in the
bone marrow, avoiding autoimmune diseases (39).

Other possible causes of cytopenia in IEI patients are immune
dysregulation (in form of hemophagocytosis or lymphoproliferation
with or without splenic sequestration), bone marrow failure and
myelodysplasia, and secondary myelosuppression (8).
Autoimmune Cytopenias Associated With
Defect of T Cell Immunity
Central tolerance is one of the function of the thymus, consisting
in the elimination of self-reactive T lymphocytes through negative
selection, also known as clonal deletion (40). A breakdown of this
central tolerance leads to autoimmunity. Aire is a gene expressed
in thymic medullary epithelial cells, and it mediates the ectopic
induction and presentation of many tissue-specific antigens to
maturing T cells (41). This antigen presentation promotes the
negative selection of autoreactive thymocytes, as well as self-
tolerance. If aire is nonfunctional or absent, autoreactive T cells
can escape clonal deletion and may later cause autoimmune
disease (42). In addition, aire controls immune tolerance by the
stimulation of a population of FOXP3-positive T regulatory cells
(Tregs) in the thymus that can suppress autoreactive cells, thus
influencing peripheral tolerance (43).

Mutations affecting this gene cause autoimmune
polyendocrinopathy, candidiasis, and ectodermal dysplasia
(APECED), also called autoimmune polyendocrinopathy
syndrome type 1 (APS-1).
FIGURE 1 | Flow chart Immune cytopenia management. Blood and immunological test at onset. Genetic studies for bilinear cytopenia and relapses.
April 2022 | Volume 13 | Article 846660
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Levels of aire are also decreased in patients with RAG
deficiency and Omenn syndrome thus contributing to the
escape and peripheral expansion of autoreactive T cells (44,
45). A defect in peripheral tolerance is also implicated in the
development of autoimmunity (46) that coexists with a marked
immune impairment.

The thymic aplasia/hypoplasia characterizes DiGeorge
syndrome (DGS) resulting in a decreased expression of aire,
which may contribute to the autoimmunity often presents in
DGS patients (46).

Impaired negative selection of autoreactive T cells as in
APECED, RAG deficiency and DGS causes different
autoimmune features, including AIC (44).

Thymocyte escape of central deletion can also occur because
of abnormalities of TCR signaling, with subsequent defective
activation-induced cell death (AICD) as in ORA1 and STIM1
deficiency, which are both characterized by immunodeficiency
and autoimmunity manifestations associated with AIC (47).

Many self-reactive cells escape from the central tolerance
mechanisms, but other mechanisms operating in the periphery
can delete autoreactive lymphocytes.

Apoptosis, the process of programmed cell death, plays a central
role in the destruction of autoreactive T and B cells at central and
peripheral tolerance checkpoints. Pathogenic variants in genes
involved in the apoptotic pathway (fas, fasl, casp10) result in the
uncontrolled proliferation and accumulation of autoreactive
(TCRalphabeta-/CD4+/CD8+ double-negative) T cells. The death
receptor FAS, his ligand FASL, and the other genes of the FAS/FASL
pathway (fadd, casp8, casp10) play a central role in apoptosis both
in central and peripheral tolerance. Pathogenic variants in these
genes cause autoimmune lymphoproliferative syndrome (ALPS), a
primary immunodeficiency characterized by autoimmune disorders
with AIC, splenomegaly, lymphadenopathy, and risk of
lymphoma (39).

Peripheral tolerance is controlled by a subset of CD4+ CD25+
T cells (Regulatory T cells, Tregs). The development and
function of T reg are regulated by Forkhead box protein P3
(foxp3), which affects T regs functional activity. Variants in
foxp3 and related components cause a reduction in the
number and diversity of Tregs, with severe consequences in
the maintenance of peripheral tolerance leading to immune
dysregulation, polyendocrinopathy, enteropathy, X-linked
(IPEX) with a very early onset (47, 48).

Development and functioning of T reg cells depend on IL-2
mediated signaling, and defects in IL-2 signaling, involving
STAT5b and CD25, lead to IPEX- like syndromes, with similar
autoimmune and autoinflammatory symptoms.

The adaptative immune response is strictly controlled by
positive and negative regulators.

The positive signal is induced by the T cell receptor (TCR) on
naïve T cells through the recognition of the antigen presented by
the MHC complex expressed on the antigen-presenting cells
(APCs). The second signal is the formation of an immunological
synapse (IS), through the binding of the costimulatory T- cell
receptor CD28 on the T-cell surface to B7 molecules (CD80 and
CD86) on the APCs (i.e dendritic cells, macrophages and B cells).
Frontiers in Immunology | www.frontiersin.org 5
The CD28/B7 interaction is essential for IS creation, as it is
required to ensure a complete T-cell activation (49). Cytoskeletal
proteins are essential for many cellular functions, including the
IS between T cells and APCs, and the regulation of lymphocyte
proliferation. Variants in was are responsible of Wiskott-Aldrich
syndrome. Was gene econdes WAS protein, an actin-nucleation
promoting factor expressed in hematopoietic stem cells. WAS is
characterized by the triad of thrombocytopenia with small-size
platelets, eczema, and lymphopenia, mainly affecting T cells. The
absent function of was is reflected by ineffective T cell
proliferation and function, reduced Treg activity (with normal
number of Treg), and hyperproliferation of B cells, which
subsequent production of autoantibodies (50). Autoimmune
manifestation are common, with AIHA, autoimmune
neutropenia, peripheral vasculitis, and arthritis considered the
most common.

Tregs act as negative regulators of adapative immune
response. Defective Tregs development and function associated
with autoimmune and lymphoproliferative disease are described
in pathogenic variants of cytotoxic T-lymphocyte-associated
protein 4 (ctla-4), lipopolysaccharide responsive beige-like
anchor protein (lrba), and differentially expressed in FDCP6
homolog (def6) (47).

Ctla-4 is an essential negative immune checkpoint
constitutively expressed in Treg cells and it is an inhibitor of T
cell activity. Ctla-4 impairment is also observed in biallelic
mutations of lrba and def6. Therefore, patients with CTLA-4
insufficiency, LRBA, and DEF6 deficiency have a similar clinical
phenotype due to a defective suppressive activity of Tregs, as all
three diseases present with reduced expression or defective
function of CTLA-4 (49).

CTLA-4 is the CD28 homologue protein that “switches off”
the T-cell-dependent response after pathogen elimination.
CTLA-4 is mostly intracellularly stored in naïve T cells or
constitutively expressed, and up-regulated under stimulus on
the surface of Tregs. Upon TCR-dependent activation, when
naïve T cells activation through the TCR, CTLA-4-is mobilized
to the cell surface, forming homodimers that outcompete CD28
and bind to B7 molecules with higher affinity and avidity,
activating cell-intrinsic and cell-extrinsic inhibitory mechanisms.

Lrba and def6 essentially control CTLA-4 recycle. Thereby,
pathogenic variants in these genes lead to increased CTLA-4
lysosomal degradation and decreased CTLA-4 recycling.

The reduction of CTLA-4 on the T-cell surface is the common
hallmarkof ctla-4 insufficiency, lrba, anddef6deficiency, and induces
immune homeostasis disruption due to the prolonged T-cell
activation and migration, with subsequent multiorgan lymphocytic
infiltration and a breakdown of the peripheral immune tolerance. A
higher circulation of autoreactive lymphocytes may explain the
development of autoimmunity, including AIC (51). Autoimmunity
(AIC, enteropathy) is often associated with recurrent and/or severe
infections, hypogammaglobulinemia, and lymphoproliferation.

Signal Transducers and Activator of Transcription (STAT)
molecules play a central role in different signaling pathways
activated by several cytokines and are responsible for the
transcription of genes essential in the immune and inflammatory
April 2022 | Volume 13 | Article 846660
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response (52). STAT1 signaling is activated by multiple cytokines
including IFN-a and IFN-gamma, while STAT3 mediates
responses to IL-6. The presence of Janus kinase (JAK) molecules
is required for STAT1 and STAT3 phosphorylation. Impaired or
enhanced function of the JAK/STAT-dependent molecular
pathways results in immune dysregulation and susceptibility
to infections.

In stat1 gain of function (GOF), due to reduced TH17 cells
proliferation, patients present with an increased susceptibility to
different bacterial and fungal infections, resulting in chronic
mucocutaneous candidiasis and pulmonary infections (53).
Autoimmunity and immune dysregulation are reported in 30%
of patients with stat1 GOF mutations, mainly represented by
endocrinopathies, blood cytopenias, and enteropathy (54, 55).

Stat3 GOF mutations result in a combined immune defect
(56), featured by an increased risk of severe infections, and
with a high incidence of autoimmunity (cytopenia,
enteropathy, endocrinopathy, arthritis), lymphoproliferation,
hypogammaglobulinemia and hepato-splenomegaly.

Autoimmune Cytopenias Associated With
Defects of Humoral Immunity
Among humoral defects, autoimmunity is a common feature in
patients with Common Variable Immunodeficiency (CVID,
including those with taci defect, baff-r defect, icos, NF-kB1 and
NF-kB2 deficiency), selective IgA Deficiency (sIgAD), and hyper-
IgM syndrome (HIGM). Autoimmune manifestations, such as
arthritis, type 1 diabetes, intestinal bowel diseases, and AIHA are
reported in 15% of patients with X-linked agammaglobulinemia
(XLA) (48).

CVID is characterized by hypogammaglobulinemia (low IgG
and IgA, with or without low IgM levels) with poor antibody
response to vaccines or low switched-memory B cells, according
to ESID criteria (57). Non-infectious manifestations, including
autoimmune, lymphoproliferative disorders, and malignant
diseases are present in about 30-50% of CVID patients (58).
Autoimmune diseases are described in 20–30% of CVID patients;
ITP,AIHA, andESare themost frequent and can constitute thefirst
manifestationof the immunedefect, even in the absenceof infection
history. Development of autoimmunity can be related to several
mechanisms including an altered reaction of the germinal center
resulting in abnormal class switch, or uncontrolled B cell
proliferation (59). Other mechanisms may include the defective
suppressive function of B-regs on activated T cells (60); or
hyperactivated T cell phenotypes (61).

CVID is mainly a polygenic disease, but a monogenic cause
can be identified in about 15-30% of cases (62). Defects in the
common receptor of taci, of the B cell-activating factor (baff) and
april (a proliferation-inducing ligand) encoded by the tnfrsf13b
gene, have been linked to CVID. CVID patients with CVID-
associated variants of tnfrsf13b especially if heterozygous, have a
higher risk for autoimmune complications and lymphoid
hyperplasia potentially due to lack of normal mechanisms
required to establish tolerance. Pathogenic variants in baff-r,
impairing B-cell maturation, and in NF-kB1 and NF-kB2,
transcription factors essential for B-cell maturation, survival,
Frontiers in Immunology | www.frontiersin.org 6
differentiation, class switching, and self-tolerance, are also
associated with autoimmunity.

The HyperIgM (HIGM) syndromes include a group of IEIs
caused by defective class-switch recombination, resulting in low
levels of IgG, IgA, and IgE with normal or increased levels of IgM
(63). HIGM syndromes are heterogeneous diseases, with X-linked,
autosomal recessive, and autosomal dominant inheritance.
Variants in the gene encoding CD40 ligand (CD40L), a protein
expressed on activated T cells, are the most common cause of X-
linked HIGM. Autosomal recessive forms of HIGM are associated
to biallelic mutations in aid and ung.

Often, but not always, HIGM syndromes are characterized by
the association of immunodeficiency and autoimmune diseases,
depending on the genetic background. In the X-linked form, for
example, self-reactive B-cells cannot be eliminated due to the
defective CD40-CD40L mediated interaction, that is also
responsible for the reduction of Tregs, while in the recessive
form, AID deficiency could hesitate in impaired regulation of
self-reactive B cells (59).

Activated phosphoinositide 3-kinase delta syndrome (APDS) is
causedbyheterozygousgainoffunctionmutations inpi3kd catalytic
p110d (pik3cd) or regulatory p85a (pik3r1) subunits leading to
APDS1 and APDS2, respectively (64). One of the major
downstream effectors of PI3K is mTOR, which plays a central
role for cell growth and survival and in TH1 and TFH cell
differentiation (65). APDS is characterized by the proliferation of
effector cells,while naïve, and centralmemoryT-cell subsets remain
quiescent, with CD8 senescence, and imbalance between immature
and mature cells in the T compartment, likely contributing to
autoimmunity, lymphoproliferation, and immunodeficiency seen
in this syndrome (55). AICs are the most frequently reported
(76.2%) autoimmune manifestations (64).
TARGETED THERAPY IN IMMUNE
DYSREGULATION DISORDERS OF AICs

Themainfocusof IEImanagement is treating theirclinicalmanifestations,
and avoiding complications using antibiotics, immunoglobulin
replacement, corticosteroids, and immunosuppressive agents, and it
mainly depends on the underlying IEI.

The broad availability of whole exome and whole genome
sequencing analysis has made possible the discovery of an
increasing number of genes, responsible for new genetic
disorders. The capability to exactly identify the molecular basis
of IEI has made possible to target the genetic defect with
therapeutic agents. These new drugs can replace or can be
combined with traditional immunosuppressant agents, both in
the treatment of AIC and treat the other clinical manifestation of
IEIs. Target agents act modulating the activity of intracellular
pathways, whose function is either decreased or increased due to
a certain gene defect (66) (Figure 2).

Autoimmune Lymphoproliferative Syndrome
ALPS is characterized by hyperactivation of PI3K/Akt/mTOR
signaling pathway. Sirolimus, an mTOR inhibitor, is used with
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great success in children with ALPS, reducing lymphoproliferation.
The treatment is described as particularly effective in ALPS patients
who have autoimmune cytopenias (67).

CTLA4 Haploinsufficiency
Along with symptomatic therapies (anti-infective and anti-
inflammatory treatment, first-line immunosuppressive
treatment against autoimmune cytopenias and inflammatory
parenchymal lung disease), many patients benefit from
rapamycin (mTOR) inhibitors, and soluble CTLA-4-Ig
(Abatacept, Belatacept), functioning in vivo as inhibitors of T-
cell activation, mimicking CTLA4 function (68). In particular,
the efficacy of Abatacept in auto-immune cytopenias caused by
CTLA-4 haploinsufficiency has been well characterized (69). It is
important to underline that the possibility of viral infection/
reactivation during the treatment with Abatacept or Belatacept
may be a limitation for the use of these drugs. For this reason,
hematopoietic stem cells transplantation may be considered a
possible definitive therapy (39).

LRBA Deficiency
The phenotypic overlap between CTLA4 and LRBA deficient
subjects and their common cellular pathway establish a rational
basis for the treatment with Abatacept. Abatacept mimics
Frontiers in Immunology | www.frontiersin.org 7
cellular CTLA4 function, rendered missing by LRBA
deficiency, and negative regulate the immune responses by
blockading or capturing CD80/86 molecules (70).

However, as in CTLA4 haploinsufficiency, the only curative
therapy is HSCT: earlier studies showed that most patients with
LRBA deficiency who have undergone HSCT achieve complete
immune reconstitution (71).

IEI Associated With STAT1 or STAT3 Gain
of Function Mutations
Autoimmune manifestations (blood cytopenias, juvenile diabetes,
hypothyroidism) are common in STAT1 GOF patients and they
are often refractory to conventional treatment and also to the
treatment with multiple immunosuppressants (72).

Although HSCT is the only curative treatment, the molecular
understanding of JAK-STAT pathway has allowed the use of
target pharmacologic inhibitors in patients with STAT1 GOF.
Currently 5 different JAK inhibitors are available: Tofacitinib
(JAK1 and JAK3 inhibitor), Ruxolitinib and Baricitinib (JAK1
and JAK2 inhibitors), Filgotinib (selective JAK1 inhibitor), and
Decernotinib (selective JAK3 inhibitor) (66).

Jakinibs are also used for the treatment of STAT3GOF patients,
as an alternative to the anti-IL6 receptor (IL6R) mAb Tocilizumab.
Indeed, IL6 and other cytokines, such as type I, II, and III
FIGURE 2 | Therapeutic strategies for AICs in patients with IEIs.
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interferons, IL-10, and IL-21, activate STAT3-mediated
intracellular signaling. The combination of IL6 blockade and
Jakinib therapy has proved to be an effective strategy for the
treatment of immune dysregulation in STAT3 GOF patients (72).

Activated Phospoinositide 3-Kinase
Delta Syndrome
Standard treatments for APDS include antimicrobial prophylaxis
and immunoglobulin replacement as anti-infective prevention (73).
Different immunosuppressive regimens (steroids, Rituximab, and
calcineurin and rapamycin inhibitors) in different combinations
can be used to control the symptoms of lymphoproliferation and
autoimmunity (74). Most of APDS clinical symptoms were
improved after HSCT, but an elevated rate of post-HSCT viral
reactivation and engraftment failure have been reported (75, 76).
Selective PI3K delta inhibitors constitute a targeted therapy based
on the molecular mechanisms of APDS. Drugs such as leniolisib
and nemiralisib have been successfully used, resulting in the
reduction of lymphoproliferation, and improvement of clinical
manifestations, including autoimmune cytopenia episodes (77, 78).

New Treatment Strategies of AICs in
Patients With IEI
Several trials with new drugs (B-cell directed monoclonal
antibodies; B-cell receptor inhibitors; IgG-mediated phagocytosis
inhibitors) are ongoing orbeing planned.Given theirmechanismof
action, a potential use in AIC with underlying immunodeficiency
may be envisioned. However, no specific information regarding IEI
is currently available.

Treatment of IEI Patients With
Hematopoietic Stem Cel Transplantation
and Gene Therapy
Allogeneic hematopoietic stem cell transplantation constitutes
the only life-saving and curative treatment for some severe IEIs
(ie: SCID) who currently do not benefit from any target therapy.
Frontiers in Immunology | www.frontiersin.org 8
As mentioned above, also non-SCID patients may benefit of
HSCT, requiring a complete conditioning regim to
achieve engraftment.

Other management options, for example enzyme
replacement, and gene therapy may provide an alternative
approach to HSCT in specific IEIs.

Gene therapy is a relatively new approach to IEIs, based on
the infusion of autologous hematopoietic stem cell (HSCs)
transplantation to deliver stem cells with added or edited
versions of the gene of interest (79). Gene therapies with
retroviral and lentiviral vectors are being developed for
di ff erent IEIs and may be find an appl icat ion in
many immunedeficiencies.
CONCLUSION

The ability to identify the correct molecular diagnosis in IEI has a
direct impact on prognosis and it has opened the pathway for the
use of novel target therapies which are capable to correct
abnormal functioning of the immune response.

These therapies have shown to be particularly effective in
patients with hyperinflammation and immune dysregulation, but
access to this new family of drugs requires precise identification
of the genetic basis of the disease. Additional studies are needed
to evaluate whether the use of precision therapies can optimize
disease management in children with autoimmune cytopenia.
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