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ABSTRACT Antituberculosis (anti-TB) drug development is dependent on informa-
tive trials to secure the development of new antibiotics and combination regimens.
Clofazimine (CLO) and pyrazinamide (PZA) are important components of recom-
mended standard multidrug treatments of TB. Paradoxically, in a phase IIa trial aim-
ing to define the early bactericidal activity (EBA) of CLO and PZA monotherapy over
the first 14 days of treatment, no significant drug effect was demonstrated for the
two drugs using traditional statistical analysis. Using a model-based analysis, we
characterized the statistically significant exposure-response relationships for both
drugs that could explain the original findings of an increase in the numbers of CFU
with CLO treatment and no effect with PZA. Sensitive analyses are crucial for explor-
ing drug effects in early clinical trials to make the right decisions for advancement
to further development. We propose that this quantitative semimechanistic ap-
proach provides a rational framework for analyzing phase IIa EBA studies and can
accelerate anti-TB drug development.

KEYWORDS Mycobacterium tuberculosis, drug development, pharmacodynamics,
pharmacokinetics

Tuberculosis (TB) is the main cause of death from an infectious disease (1), and new
drugs are urgently needed not only to shorten treatment but also to manage the

rising numbers of cases with drug-resistant TB (2). Accompanying the need for new
drugs, older approved drugs are repurposed (3, 4) to be included in new regimens,
based on preclinical and clinical information.

Clinical symptoms appear when active infection is established. Stationary-phase
infection in pulmonary tuberculosis is characterized by stable CFU counts over time of
mycobacteria grown from sputum collected from untreated patients (5, 6). Experiments
using resuscitation-promoting factors have emphasized that the majority of bacteria in
a clinical sputum sample are noncultivable, nonmultiplying bacteria (7), which are
undetectable using the number of CFU as a biomarker. However, the number of CFU is
often applied in anti-TB drug development and phase IIa studies in particular. A decline
in the number of CFU in the first days of treatment is generally considered a desirable
treatment response, and a lack thereof makes the treatment appear unlikely to be
clinically useful (8).

The aim of phase IIa TB trials is to assess the early antimycobacterial activity and
safety in patients and guide informed decisions about which drug or regimen to move
forward to more comprehensive and costly phase IIb trial evaluations. Usually, a phase
IIa trial is designed to quantify the change in the mycobacterial load during the first 7
to 14 days of treatment. It is performed by quantifying early bactericidal activity (EBA),
defined as the daily fall in the log10 number of CFU per milliliter of sputum (9). Further,
empirical model-based approaches are frequently used to measure the change in the
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number of CFU. These include mono-, bi-, or multiexponential regression models (10,
11) and simultaneously involve all data from one patient in the estimation of the
change in the number of CFU. It is generally accepted that a biphasic decline is due to
a drug effect on different subpopulations of bacteria. As the types of bacteria exhibit
different susceptibilities, an initial rapid decrease in the number of CFU occurs due to
the effect on the most susceptible subpopulations, followed by a slower decline,
representing the killing of the less susceptible subpopulation.

However, these models account only for the effects on viable bacteria that can grow
CFU and not the drug effect on semidormant or nonmultiplying bacteria (persisters),
which are thought to be the majority of the bacterial population and which do not
grow on culture media used for assessing the number of CFU. The multistate tuber-
culosis pharmacometric (MTP) (12) model is a semimechanistic model combining three
different bacterial subpopulations and the transfer between them (Fig. 1). Different
bacterial subpopulations are defined by heterogeneity in metabolic activity, corre-
sponding to fast multiplying (F), slowly multiplying (S), and nonmultiplying (N) bacteria,
and for uniformity are referred to here as multiplying (F), semidormant (S), and persistent
(N) bacteria. The MTP model has previously been successfully applied to preclinical (12,
13) and clinical (14) data for determination of exposure-response relationships, i.e., the
drug effect. Initially developed on in vitro data, the MTP model approach has confirmed
its role in translational medicine of TB, where exposure-response relationships based on
in vitro information have successfully been used to predict the clinical trial response
using clinical trial simulations (15, 16). Combined with the general pharmacodynamics
interaction (GPDI) model (17, 18), a method for assessment of pharmacodynamic (PD)
interactions, the MTP model has also successfully been applied to assessment of the
PD interactions of anti-TB drugs both in vitro (19) and in vivo (16). The approach on
which this work was built was selected by The Impact and Influence Initiative of the
Quantitative Pharmacology (QP) Network of the American Society for Clinical
Pharmacology and Therapeutics (ASCPT) and presented in a recent publication,
which highlighted the most impactful examples of QP application, where QP played
a transformational role, resulting in increased confidence in biomarker-driven
decisions (20).

Clofazimine (CLO) and pyrazinamide (PZA) are established anti-TB drugs whose
efficacy has been proven in clinical trials. CLO and PZA have also been studied in two

FIG 1 Schematic illustration of clofazimine and pyrazinamide pharmacokinetic models together with the multistate tuberculosis
pharmacometric (MTP) model. ka, absorption rate constant; CL/F, apparent oral clearance; V/F, apparent volume of distribution; Ccomp,
central compartment; Pcomp, peripheral compartment; Bmax, system carrying capacity; kFS, time-dependent linear rate parameter describing
transfer from the multiplying (F) to the semidormant (S) state; kSF, transfer rate between the S and the F states; kFN, transfer rate between
the F state and the persister (N) state; kSN, transfer rate between the S and the N states; kNS, transfer rate between the N and the S states;
kG, growth rate constant. Dashed lines indicate the identified exposure-response relationship.
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monotherapy arms in a recent phase IIa trial (ClinicalTrials.gov registration number
NCT01691534) (21). Although both drugs are recommended by the World Health
Organization (WHO) as part of standard treatment regimens for drug-susceptible and
drug-resistant TB (4), unexpectedly, no statistically significant drug effects were ob-
served during 14 days of monotherapy. CLO, studied in an EBA study for the first time,
even showed a numerical increase in the numbers of CFU (21). This was surprising,
because CLO exhibits sterilizing activity in patients (22, 23) with multidrug-resistant TB
(MDR-TB; defined as TB resistant to at least isoniazid [INH] and rifampin [RIF]). The
paradoxical lack of EBA is well-known for PZA (6) and is in contrast to its ability to
shorten TB treatment to 6 months when added to INH and RIF in the first 2 months.

In this work, the MTP model was linked to pharmacokinetic (PK) models and thereby
used to investigate exposure-response relationships of the number of CFU after CLO
and PZA monotherapy for 14 days to explain the paradoxical increase in the number of
CFU during CLO treatment and to assess PZA monotherapy efficacy. The analysis
revealed the significant activity of CLO and PZA against persistent and semidormant
mycobacteria, respectively, that remained undetected with traditional methods of
quantification of anti-TB drug effects.

RESULTS
Population pharmacokinetic modeling. The final CLO PK model consisted of a

two-compartment disposition model with first-order absorption and elimination. Ad-
ditionally, a parameter explaining the lag time in absorption was supported by the data.
No statistically significant covariate relationship was found using body weight, sex, or
age on apparent oral clearance (CL/F) or apparent volume of distribution (V/F). Inter-
individual variability (IIV), expressed as the coefficient of variation (CV [in percent]), was
supported for CL/F (75%), the first-order absorption rate constant (ka) (35%), and V/F
(23%), whereas interoccasional variability (IOV) was statistically significant for bioavail-
ability (F; 26%). The residual error model consisted of a proportional error model with
a magnitude of 13.9%.

A previously developed PK model for PZA (24) with a modest modification was
found to describe the PZA PK data well. The original PK model included a bimodal
distribution in ka values representing slow and fast absorbers, which was not supported
by the data in this work. The data supported a unimodal distribution of ka values,
corresponding to the fast-absorber proportion in the original publication. Hence, only
the fast-absorber ka value was applied in this analysis. With this modest discrepancy,
the earlier developed PK model (24) was able to predict population and individual PK
profiles of PZA without reestimation, as seen in Fig. 2B and Fig. S1B in the supplemental
material, respectively. All final PK parameter estimates are presented in Table 1.

Visual predictive checks (VPCs) illustrating the observed data and how the final
models adequately predicted the PK data were performed (Fig. 2A and B). As the
pharmacokinetic-pharmacodynamic (PK-PD) effect evaluation was driven by input from
the individual PK profiles for each patient, the observed and adequate model-predicted
PK profile for each patient was important. The individual PK profiles of PZA and CLO
were well predicted by the final PK models (Fig. S1).

Pharmacokinetic-pharmacodynamic modeling. The MTP model (12, 14) was used
as the underlying disease model to describe the PD data (i.e., the numbers of CFU) from
the two monotherapy treatment groups separately. All MTP model parameters except
for the bacterial growth capacity of the system (Bmax) were fixed to estimates derived
from in vitro natural growth data (12, 14). When modeling the CLO data, estimation of
the baseline numbers of CFU, i.e., Bmax, resulted in a statistically significant drop in the
objective function value (OFV; change in the objective function value [ΔOFV] � �3,212)
compared to that obtained using the in vitro estimate, adjusting for the magnitude of
the bacterial load in the clinical data on the numbers of CFU at stationary phase for the
typical patient on CLO treatment. Introduction of IIV in Bmax was statistically significant,
as the OFV dropped by 106 points, enhancing the model fit and the functionality of the
model, as it allowed for adjustment of the individual baseline numbers of CFU. Similarly,
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estimating Bmax and implementation of IIV in Bmax gave statistically significant OFV
drops for the analysis of the numbers of CFU with PZA treatment.

The Bayesian post hoc PK estimates for each individual, based on the final PK
model for each drug, were used as the input to the PK-PD modeling. A statistically
significant exposure-response relationship (P � 0.05, OFV drop of 5.12) between
adequately predicted individual CLO plasma concentrations, derived from the
developed population PK model, and the killing of persistent bacteria was found. In
this analysis, the discovered significant drug effect, denoted NDk, was a linearly
concentration-dependent, second-order killing rate. The data did not support CLO
killing of the other states alone or in combination. Further, the data did not support
inhibition of the growth of the multiplying bacterial substate. The CLO drug effect
after monotherapy identified in this analysis was in contrast to the findings of the
analysis presented in the original publication (21), where no CLO drug effect in
monotherapy was discovered when the number of CFU was used as a biomarker.
This means that the original analysis could have missed significant drug effects of
CLO on persisters, and if CLO had been a drug in development, it might have been
unjustly abandoned.

For the exposure-response analysis of PZA in monotherapy, a statistically significant
linear relationship (SDk) between individual PZA plasma concentrations and killing of
the semidormant bacterial substate was found (P � 0.05, OFV drop of 5.81). This was in
contrast to the analysis presented in the original publication (21), where no PZA drug
effect in monotherapy was discovered using the number of CFU as a biomarker. The
final exposure-response relationship predicted a decrease in the number of CFU over
time (Fig. 3). The data did not support PZA inhibition of the bacterial growth or killing
of the other states alone or in combination. This can explain the long-debated paradox

FIG 2 Visual predictive check for the observed CLO (left) and PZA (right) concentrations following rich sampling from day 14. Open circles are
the observed data. The upper and the lower dashed lines illustrate the 90th and 10th percentiles of the observed data, respectively. The solid
line is the median of the observed data. From top to bottom, shaded areas represent the 95% confidence intervals of the 90th percentile (light
gray), the median (dark gray), and the 10th percentile (light gray) of the simulated data, based on 1,000 simulations.
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that PZA exhibits a low EBA yet has proven to be able to shorten TB treatment to the
current standard short course of 6 months.

The final differential equation system (equations 1 to 5) for the MTP model including
the effects of CLO or PZA on the persistent or semidormant substate was as follows:

dF ⁄ dt � kG · log �Bmax ⁄ �F � S � N�� · F � kSF · S � kFS · F � kFN · F (1)

dS ⁄ dt � kFS · F � kNS · N � kSN · S � kSF · S � ESD · S (2)

dN ⁄ dt � kSN · S � kFN · F � kNS · N � END · N (3)

where t is time; F, S, and N are the numbers of bacteria (milliliter�1) in the F, S, and N
states, respectively; kG is the growth rate constant; kSF is the transfer rate between the
S and the F states; kFS is the time-dependent linear rate parameter describing transfer
from the F to the S state; kFN, is the transfer rate between the F and the N state; kNS is
the transfer rate between the N and the S states; and kSN is the transfer rate between
the S and the N states and where

END � NDk · CCLO (4)

and

ESD � SDk · CPZA (5)

where END and ESD represent the linearly concentration-dependent drug effects for
CLO and PZA, respectively; CCLO is the CLO concentration; and CPZA is the PZA
concentration. The initial conditions of the differential equation system can be found in
the NONMEM codes in Text Files S2 and S3. All final parameter estimates for the drug
effects discovered using the MTP model as the underlying disease model can be found
in Table 1.

FIG 3 Visual predictive check of the final exposure-response model for patients receiving PZA. Dashed lines represent the 90th and 10th
percentiles of the observed CFU data, whereas the solid line is the median of the observed CFU data. From top to bottom, the shaded
areas represent the 95% confidence intervals of the 90th percentile (light gray), the median (dark gray), and the 10th percentile of the
simulated data, based on 1,000 simulations. All open circles illustrate observation points.
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The final MTP model provided adequate prediction of the observed numbers of CFU
from patients in both treatment arms, as observed in Fig. 3 and 4, respectively. Typical
bacterial simulations of each bacterial subtype and CFU counts can be found in Fig. S2.

Sensitivity analysis. The performed sensitivity analysis covered the impact of
relative amounts between the different substates of bacteria at baseline on the final
model. For instance, the kSN parameter was changed so that the persistent bacterial
subtype consisted of 99% to 90% of total bacteria. No significant drop in the OFV
(indicating that the alternative model did not improve the fit significantly) was ob-
served following an empirical change of the original system parameters. This sensitivity
analysis demonstrated that the CLO drug effect was statistically significant when the
original system parameter estimates were used and that the model fit did not improve
by empirically changing the system parameter estimates.

DISCUSSION

In this work, the MTP model was utilized as a framework for studying antitubercular
drug effects of CLO and PZA in monotherapy, using individual PK and PD (number of
CFU) data from patients in a phase IIa study. In contrast to the primary analysis of the
data (21), where no statistically significant rate of decline in the log10 CFU counts over
the first 14 days of treatment were found, this analysis demonstrated statistically
significant antimycobacterial activity for both CLO and PZA in monotherapy. The results
indicate that the original analysis could have missed significant drug effects of CLO on
persisters, and if the substance had been in development, it might have been wrongly
rejected. Further, the results might explain the low EBA of PZA, even though it has been
proven to shorten TB treatment to the current standard short treatment of 6 months.
The results also indicate the increased statistical power obtained using the MTP model
approach and emphasizes possible misinterpretations of potential drug effects when

FIG 4 Visual predictive check of the final exposure-response model for patients receiving CLO. Dashed lines represent the 90th and 10th
percentiles of the observed CFU data, whereas the solid line is the median of the observed CFU data. From top to bottom, the shaded
areas represent the 95% confidence intervals of the 90th percentile (light gray), the median (dark gray), and the 10th percentile of the
simulated data, based on 1,000 simulations. All open circles illustrate observation points.
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traditional statistical analysis is used. As the number of CFU is a summary biomarker
only of multiplying bacilli, it is essential to emphasize that a drug that produces no
decrease in the number of CFU in EBA studies using a one-population model may be
a drug with efficacy against bacterial populations other than those able to grow CFU
rather than one with no effect, as proposed in the original analysis. The findings are in
accordance with previously published research (25), in which a simulated drug effect on
the killing of the N substate (i.e., persisters) resulted in an indirect increase in the
number of CFU. The results are also in line with those of earlier work showing that the
MTP model approach gives a higher power to find statistically significant drug effects
than traditional statistical analysis (25). The semimechanistic MTP model has previously
been utilized to describe the drug effect on different TB bacterial substates in vitro (12),
in mice (13), and with clinical data (14). Additionally, the MTP model has been externally
validated for clinical trial simulations and proven to be able to predict a decrease in the
number of CFU due to rifampin treatment (14).

Clofazimine was suggested to have a significant, linearly concentration-dependent
effect on the persistent subpopulation. The data did not support any exposure-
response relationship on the other bacterial substates, leaving the effect on the
persistent state more interesting. Further, what makes this effect even more appealing
is that it explains the numerical increase in the number of CFU seen in the original
publication (21). A model-based explanation of the increase in the number of CFU lies
in a regrowth phenomenon caused by the Gompertz growth function in the MTP
model. The growth of the different bacterial subpopulations is constrained by a growth
capacity, which is defined by the Bmax term. When persistent bacteria are depleted,
the density is decreased, paving the way for regrowth proportional to the decrease of
the persistent state. Mathematically, the Gompertz function defines the growth of the
multiplying state, according to equation 6:

kG · log �Bmax ⁄ �F � S � N�� (6)

When persister (N-state) bacteria are killed, the growth of multiplying bacteria is
enhanced due to a greater quota. This suggests an increase in the number of multi-
plying bacteria. As the number of CFU is a summary biomarker of multiplying (F)- and
semidormant (S)-state bacteria, a total increase in the number of CFU is seen. However,
it is important to recognize that this is the explanation directly inferred from the
presented model. There may be alternative explanations that appear to be more
mechanistically relevant. To our knowledge, this is the first clinically defined exposure-
response relationship for CLO determined using EBA data.

In order to adjust for differences in the baseline number of CFU between the in vitro
setting in which the MTP model was developed and the clinical data in this work, the
parameter Bmax was reestimated. Reestimation of Bmax had no effect on the relative
amounts of bacterial subpopulations but had an effect only on the baseline number of
CFU. The relative amounts of multiplying, semidormant, and persistent bacterial sub-
states were determined from the transfer rates between the subpopulations, which
were fixed to in vitro estimates. The set of parameter values used resulted in a
prediction of 99% persistent bacteria at baseline for a stationary-phase infection. This
assumes that the relative amounts of the different subpopulations are the same in vitro
and in patients. As a sensitivity analysis, the different transfer rates were empirically
manipulated, resulting in different relative amounts, followed by reestimation of the
CLO drug effect. No significant improvement was observed, which may provide further
justification for the conclusion that CLO kills persistent bacteria (Fig. S2).

Clofazimine is a highly lipophilic antibiotic with a log partition coefficient (logP)
value of �7 (26), exhibiting a long half-life. Previous reports suggest a half-life of
10 days after a single oral dose of 200 mg (27), while some reports suggest a half-life of
�70 days with longer treatment (28). Due to the lipophilicity and high distribution into
tissues, it is plausible and expectable that CLO exhibits a long half-life. Crystal-like
inclusions composed of CLO have been reported in several tissues in vivo (29) and in
patients (30), which demonstrates a capability to accumulate. As absorption into
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plasma is vastly dependent on the concentration of dissolved molecules in solution, the
lipophilic nature of CLO causes a large variability in absorption due to poor solubility
in physiological fluids (31).

IIV was supported by the data for CL/F, V/F, and ka, whereas IOV was included in
bioavailability (F). Due to the physiochemical and PK properties of CLO discussed
above, it is expected that bioavailability varies between individuals and occasions of
intake. As oral clearance is dependent on bioavailability and could be affected by ka, a
high variability in absorption might have been the reason for the high uncertainty in
the estimated typical CL/F value. Reports have indicated significant food effects on the
bioavailability of CLO, showing a 45% increase when CLO is administered with a
high-fat meal compared to that when it is administered in a fasting state (31). Rich PK
sampling on day 14 revealed high variability in exposure data (see Fig. S3 in the
supplemental material). The highly variable nature of the PK properties of CLO intro-
duced uncertainty into the estimated population PK parameters, as the total number of
subjects was low. However, for the subsequent PD analysis using the MTP model, this
was not a problem, as the adequately model-predicted individual PK profiles were used
for the input into the evaluation of drug effects.

As a TB culture or infection enters stationary phase, the majority of the bacteria may
not grow on solid media (32). Alternatively, they may grow better in liquid media. It has
been demonstrated for a high-dose rifampin trial that one subpopulation of TB was
quantifiable in liquid media but not on solid media (where rifampin exhibited a
dose-dependent effect on this subpopulation) (33). The persistent (N) state of the MTP
model may partly or completely correspond to the considered bacterial subpopulation
that can grow in liquid culture. The effectiveness and low prevalence of resistant strains
against CLO could be due to the fact that it was rarely used for the treatment of TB in
the past, it has several molecular mechanisms of action (34, 35) on persistent bacteria,
and it has a propensity to accumulate in tissue. As CLO exhibits high lipophilicity, it is
expected to penetrate lesions and has been demonstrated to kill hypoxic nonreplicat-
ing bacteria in vitro (36). Furthermore, it has been demonstrated to exhibit membrane-
destabilizing properties, an effect that was attenuated in the presence of membrane-
stabilizing agents (37). In a clinical setting, the addition of CLO to multichemotherapy
regimens resulted in significantly higher sputum culture conversion compared to
individualized background treatment (22). Furthermore, the treatment success rate was
higher in the CLO-containing regimen, with cavity closure occurring earlier than it did
with individualized background treatment. However, the exact mechanism of CLO-
mediated antimicrobial activity needs further investigation.

In contrast to the original analysis of the PZA CFU data, a statistically significant
linearly concentration-dependent effect for the killing of semidormant bacteria follow-
ing PZA treatment was discovered. The effect was evaluated using adequately pre-
dicted individual exposures. These findings are in accordance with those of previous
research stating that infected macrophages contain phagolysosomes with a low pH, an
environment that results in semidormant bacteria as well as the activation of PZA (38).
As an acidic environment shifts bacterial metabolism and creates circumstances ade-
quate for the PZA drug effect, the discovered findings are plausible. These findings are
also in accordance with the clinical situation, in which PZA is effective during the first
2 months of the standard multidrug anti-TB treatment, potentially eradicating the
majority of slow multipliers. Furthermore, PZA is metabolized in the tubercle bacterium
into pyrazinoic acid, an active metabolite that has shown a capability to distribute into
lesions to the same extent as PZA (38). As stated by the original authors, PZA exhibits
a slight EBA when biomarkers other than the number of CFU are used, but this work
demonstrates a statistically significant drug effect when the numbers of CFU are used
as well.

In the investigation of exposure-response relationships, it is favorable to have PK
and PD (number of CFU) data from the same individuals, which, fortunately, was the
case for this clinical study. Primarily, adequate individual model-predicted PK profiles
relative to the provided PK data were ensured and subsequently used to evaluate drug
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effects. Most phase IIa trials aiming to investigate EBA in TB research involve 10 to 15
patients per arm (9). Despite this small number of patients, the translational MTP model
demonstrated a higher power than the traditional statistical analysis performed in the
original study. This demonstrates a clear advantage when a semimechanistic PK-PD
model, such as the MTP model, is used rather than when traditional statistical methods
are used. The reason for the increased power is the use of a nonlinear mixed effects
approach, in which all data are analyzed simultaneously, and the fact that the analysis
includes a semimechanistic structure of not only multiplying substates but also a
nonreplicating state, which makes up a majority of the total bacterial burden. Due to
the parameters of the semimechanistic MTP model, it was possible to estimate a drug
effect of CLO that suggests mycobacterial killing, even though the numbers of CFU
increased. Using a traditional analysis, an increase would not be interpreted as the drug
being effective, whereas the MTP model approach includes all data simultaneously,
including individual PK exposures, and does not constrain the analysis to a decrease in
the numbers of CFU. To avoid unperceived exposure-response relationships in the data,
the model-based analysis utilized a PK-PD approach and previously demonstrated a
higher statistical power than traditional statistical analysis (25, 39, 40). As the sizes of
phase IIa trials in anti-TB drug development constrain the definition of such relation-
ships using traditional analysis methods, it is important to emphasize more sensitive
and modern methodologies. By reducing the number of patients required to detect
significant drug effects, anti-TB drug development could be less costly and, therefore,
enhanced. Although the model was developed on in vitro data, it is translationally
capable of describing clinical data, as in the case of the CLO drug effect. However, in
order to rationally implement these findings in the clinic, further clinical trials investi-
gating the CLO drug effect are desired. To define CLO PK and its variability components
with higher precision, additional data are needed.

In contrast to the original analysis, statistically significant drug effects were discov-
ered for both PZA and CLO in monotherapy using the number of CFU as a biomarker.
The drug effect on persistent tubercular bacilli explains the unexpected increase after
CLO monotherapy and sheds light on possible misinterpretations of drug effects when
the number of CFU is used as a biomarker together with traditional statistical analysis.
Thus, the MTP model can be utilized for analysis and simulation of clinical trials to
accelerate anti-TB drug development.

MATERIALS AND METHODS
Patients and study design. Data were obtained from a 14-day phase IIa, two-center, open-label,

randomized clinical trial including a PZA treatment arm (1,500 mg once daily [o.d.]; n � 15) and a CLO
treatment arm (300 mg o.d. on days 1 to 3 and 100 mg o.d. on days 4 to 14; n � 14) (21). Counts of
Mycobacterium tuberculosis CFU were quantified daily from sputum collected 16 h (overnight) from 2
days before the start of treatment to the last treatment day. PK plasma sampling was conducted hourly
from predose to 5 h postdose on days 1, 2, 3, and 8, with rich sampling being performed on day 14 by
also including collection time points of 10, 16, and 24 h after dosing. All patients were adults with
confirmed treatment-naive pulmonary TB. Ethical clearance was obtained from the local ethics commit-
tee, and informed consent was obtained from all patients prior to the study. The trial was conducted in
accordance with good clinical practice and was approved by the Research Ethics Committee, University
of Cape Town, Cape Town, South Africa, and Pharma Ethics Pty. Ltd., South Africa. More detailed
information regarding the clinical trial design and baseline characteristics can be found in the original
publication (21).

Population pharmacokinetic modeling. One- and two-compartment disposition models were
tested for CLO. Based on previously published work (31), a parameter accounting for an absorption lag
time was explored. To account for the difference in dosage between days 1 to 3 and days 4 to 14, a
relative bioavailability (F), expressed as a quota, was tested and compared to a scenario in which typical
bioavailability was fixed to a value of 1. The stochastic model was developed by exploring IIV and IOV,
alone and in combination, in all structural parameters. Nonsignificant parameters were not included.
Proportional and/or additive residual error models were implemented, to elucidate the appropriate error
model for the data. Allometric scaling was applied on oral clearance, intercompartmental clearance (Q/F),
and both the apparent volume of distribution in plasma (Vc/F) and the apparent volume of distribution
in the periphery (Vp/F), as described by Anderson and Holford (41).

CLi � CLtyp · (WTi ⁄ 53)0.75 (7)

Vi � Vtyp · (WTi ⁄ 53)1 (8)
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where CLi and Vi are scaled typical values of CL and V for individual i, respectively. CLtyp and Vtyp

correspond to CL and V parameters for a typical individual of 53 kg (median weight of the study
population). WTi is the body weight of individual i (in kilograms). A notation similar to that observed in
equations 7 and 8 was implemented for Q and Vp. Further, body weight, age, and sex were tested as
covariates on CL/F and V/F.

For the PZA PK data, a previously developed population PK model was utilized without the
reestimation of population parameters (24). In brief, the PZA model consisted of a one-compartment
distribution model with first-order absorption and elimination to and from the central compartment,
respectively. The model included a component to account for a bimodal distribution of ka values and was
therefore evaluated. Further, the model included a zero-order rate constant accounting for the release
of drug from the formulation, expressed as the input into the absorption compartment. IIV was included
in CL/F, V/F, and the duration of the zero-order release from the formulation. IOV was included in CL/F
and ka. Residual variability was described using a combined-error model consisting of a proportional
error at high concentrations and an additive error component at lower concentrations. Body weight was
included as a covariate on CL/F and V/F, while sex was included as a covariate on V/F.

Pharmacokinetic-pharmacodynamic modeling. The MTP model (12), originally developed on in
vitro data, was applied to the clinical CFU counts from the different treatment arms as a disease model
to explore significant drug effects on the different bacterial subpopulations. The number of CFU was
predicted based on the sum of the sizes of the multiplying (F) and semidormant (S) bacterial substates,
whereas the persistent (N) bacterial substate was considered nonmultiplying on solid medium and as
such was in a hidden state (42). In brief, the MTP model consists of a differential equation system
accounting for the transfer rates and conversion from one substate to another and reflected a change
in metabolic activity. The assumed scientifically plausible direction of flows can be observed in Fig. 1, as
well as in the following differential equations (equations 9, 10, and 11), which defined the MTP system:

dF ⁄ dt � kG · log �Bmax ⁄ �F � S � N�� · F � kSF · S � kFS · F � kFN · F (9)

dS ⁄ dt � kFS · F � kNS · N � kSN · S � kSF · S (10)

dN ⁄ dt � kSN · S � kFN · F � kNS · N (11)

in which the rate constant k is labeled with two-letter subscripts, with the first letter representing the
origin and the second letter representing the flow direction. The transition rate from multiplying (F) to
semidormant (S) bacterial substate, denoted kFS � kFSlin·t (where kFSlin is the time-dependent transfer rate
from the fast to the slowly multiplying state) was unique, in terms of the time (t) after infection (days)
dependency. Growth of the multiplying (F) state (kG) was accounted for using a Gompertz function. F, S,
and N were the model-predicted bacterial number (milliliter�1) in the multiplying, semidormant, and
persistent states, respectively. All transitions were allowed to occur, except for the flow of the persistent
state to the multiplying state, although this is indirectly possible through the transition to a semidormant
state. As represented in Fig. 1 and in equations 9, 10, and 11, direct growth of the multiplying (F) state
was possible, whereas an increase in the number of bacteria in the semidormant (S), and persistent (N)
states occurred only indirectly as a result of bacterial transfer. The transfer rates of all MTP parameters
except Bmax were fixed; Bmax was estimated and represents the bacterial growth capacity of the system.
Patients were assumed to have stationary-phase infections at the start of treatment, which corresponded
to 150 days after infection in a model-based setting. An IIV component in Bmax was added to account for
a different baseline in the bacterial load between patients. Further, residual variability was accounted for
by applying two additive components on a log scale. One of the residual error components was
implemented on all replicates (�), whereas the other residual error component accounted for replicates
from the same sputum sample (�repl).

Model-predicted individual PK profiles were utilized, to let adequate individual drug exposures drive
an effect on different effect sites in the MTP model. Potential effect sites were defined as inhibition of
the growth of multiplying bacteria or stimulation of the death of multiplying, semidormant, or persistent
bacteria. Included drug effect models were on/off (a constant fixed drug effect with exposures above
0 mg/liter), linear, maximum effect (Emax), and sigmoidal Emax.

The exposure-response relationship in the clinical data was investigated in four sequential steps, as
described by Svensson and Simonsson (14). The first step incorporated univariate drug effects on the
different effect sites, utilizing the previously mentioned effect models. To not exclude effect sites that
were apparent only in combination, the second step included combination of all effect sites with at least
a linear effect model. The third step reevaluated the most significant exposure-response relationship at
each of the effect sites, retesting all effect parameters. As the final step, a backward elimination of all
exposure-response parameters was performed, to exclude nonsignificant effect sites at a 1% significance
level (ΔOFV � 6.63 for removal of one parameter).

To evaluate the impact of the fixed system-related parameters on the final CLO drug effect model,
a sensitivity analysis was conducted. Each parameter was empirically subject to a change of 15, 80, 120,
and 185% of the original in vitro estimate, followed by reestimation of the drug effect and comparison
of OFV (see Table S1 in the supplemental material).

Statistical analysis. The models were primarily selected on the basis of VPCs, the difference in the
OFV, parameter precision, diagnostic plots, and scientific plausibility. Minimizing the OFV has been
interpreted as maximizing the likelihood of the estimated model parameters, given the clinical data,
using the first-order conditional estimation method with interaction. Model parameters and OFV were
estimated using the software NONMEM (version 7.3; Icon Development Solutions, Hanover, MD) (43). A
nested hierarchical model with the addition or exclusion of one parameter was considered to be
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statistically significant, at a 5% significance level, if OFV decreased by at least 3.84 for 1 degree of
freedom (�2 distribution). All diagnostic plots and data visualizations were performed using the R
package Xpose (version 4.5.2; Department of Pharmaceutical Biosciences, Uppsala University, Uppsala,
Sweden; http://xpose.sourceforge.net/). VPCs were generated using Pearl-Speaks-NONMEM (PsN; version
4.3.2; Department of Pharmaceutical Biosciences, Uppsala University; https://uupharmacometrics.github
.io/PsN/), using 1,000 simulations (44). VPCs were assessed, in order to evaluate the 95% confidence
intervals for the median and the 90th and 10th percentiles of the model-simulated data. As the drug
effect evaluation was driven by individual PK profiles, each patient’s observed profile and the model-
predicted PK profile were assessed using the same R package used for the diagnostic plots and data
visualization. In addition, a 1,000-sample bootstrap using PsN was utilized to generate nonparametric
90% confidence intervals for all parameters in the final models (44) (https://uupharmacometrics.github
.io/PsN/). Adequate tracking of the record and comparison of the models was maintained using Pirana
software (version 2.9.7; Pirana Software & Consulting; http://www.pirana-software.com/) (45).

Data availability. The NONMEM code for the PK models and the PK-PD models can be found in the
supplemental material. All relevant data are available from the authors upon reasonable request.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.6 MB.

ACKNOWLEDGMENTS
We express gratitude toward all patients that participated in the clinical trial, as well

as the principal investigators and staff that executed the trial. We are grateful for the
sharing of data by the Global Alliance for TB Drug Development.

All authors contributed to the data analysis and writing of the manuscript. A.H.D.
was the principal investigator of the clinical study.

We have no competing interests to declare.

REFERENCES
1. WHO. 2018. Tuberculosis 2018. WHO, Geneva, Switzerland.
2. WHO. 2017. Global tuberculosis report 2017. WHO, Geneva, Switzerland.
3. Maitra A, Bates S, Kolvekar T, Devarajan PV, Guzman JD, Bhakta S. 2015.

Repurposing—a ray of hope in tackling extensively drug resistance in
tuberculosis. Int J Infect Dis 32:50 –55. https://doi.org/10.1016/j.ijid.2014
.12.031.

4. WHO. 2018. Treatment guidelines for multidrug- and rifampicin-resistant
tuberculosis. WHO, Geneva, Switzerland. Accessed 16 January 2019.

5. Sirgel F, Venter A, Mitchison D. 2001. Sources of variation in studies of
the early bactericidal activity of antituberculosis drugs. J Antimicrob
Chemother 47:177–182. https://doi.org/10.1093/jac/47.2.177.

6. Jindani A, Aber VR, Edwards EA, Mitchison DA. 1980. The early bacteri-
cidal activity of drugs in patients with pulmonary tuberculosis. Am Rev
Respir Dis 121:939 –949. https://doi.org/10.1164/arrd.1980.121.6.939.

7. Mukamolova GV, Turapov O, Malkin J, Woltmann G, Barer MR. 2010.
Resuscitation-promoting factors reveal an occult population of tubercle
bacilli in sputum. Am J Respir Crit Care Med 181:174 –180. https://doi
.org/10.1164/rccm.200905-0661OC.

8. Perrin FMR, Lipman MCI, McHugh TD, Gillespie SH. 2007. Biomarkers of
treatment response in clinical trials of novel antituberculosis agents.
Lancet Infect Dis 7:481– 490. https://doi.org/10.1016/S1473-3099(07)
70112-3.

9. Donald PR, Diacon AH. 2008. The early bactericidal activity of anti-
tuberculosis drugs: a literature review. Tuberculosis (Edinb) 88(Suppl
1):S75–S83. https://doi.org/10.1016/S1472-9792(08)70038-6.

10. Jindani A, Doré CJ, Mitchison DA. 2003. Bactericidal and sterilizing
activities of antituberculosis drugs during the first 14 days. Am J Respir
Crit Care Med 167:1348 –1354. https://doi.org/10.1164/rccm.200210
-1125OC.

11. Rustomjee R, Lienhardt C, Kanyok T, Davies GR, Levin J, Mthiyane T,
Reddy C, Sturm AW, Sirgel FA, Allen J, Coleman DJ, Fourie B, Mitchison
DA, Gatifloxacin for TB (OFLOTUB) Study Team. 2008. A phase II study of
the sterilising activities of ofloxacin, gatifloxacin and moxifloxacin in
pulmonary tuberculosis. Int J Tuberc Lung Dis 12:128 –138.

12. Clewe O, Aulin L, Hu Y, Coates ARM, Simonsson U. 2016. A multistate
tuberculosis pharmacometric model: a framework for studying anti-
tubercular drug effects in vitro. J Antimicrob Chemother 71:964 –974.
https://doi.org/10.1093/jac/dkv416.

13. Chen C, Ortega F, Rullas J, Alameda L, Angulo-Barturen I, Ferrer S, Simon-

sson US. 2017. The multistate tuberculosis pharmacometric model: a semi-
mechanistic pharmacokinetic-pharmacodynamic model for studying drug
effects in an acute tuberculosis mouse model. J Pharmacokinet Pharmaco-
dyn 44:133–141. https://doi.org/10.1007/s10928-017-9508-2.

14. Svensson R, Simonsson U. 2016. Application of the multistate tubercu-
losis pharmacometric model in patients with rifampicin-treated pulmo-
nary tuberculosis. CPT Pharmacometrics Syst Pharmacol 5:264 –273.
https://doi.org/10.1002/psp4.12079.

15. Wicha SG, Clewe O, Svensson RJ, Gillespie SH, Hu Y, Coates ARM,
Simonsson U. 2018. Forecasting clinical dose–response from preclinical
studies in tuberculosis research: translational predictions with rifampi-
cin. Clin Pharmacol Ther 104:1208 –1218. https://doi.org/10.1002/cpt
.1102.

16. Chen C, Wicha SG, de Knegt GJ, Ortega F, Alameda L, Sousa V, de
Steenwinkel JEM, Simonsson U. 2017. Assessing pharmacodynamic in-
teractions in mice using the multistate tuberculosis pharmacometric and
general pharmacodynamic interaction models. CPT Pharmacometrics
Syst Pharmacol 6:787–797. https://doi.org/10.1002/psp4.12226.

17. Wicha SG, Chen C, Clewe O, Simonsson U. 2017. A general pharmaco-
dynamic interaction model identifies perpetrators and victims in drug
interactions. Nat Commun 8:2129. https://doi.org/10.1038/s41467-017
-01929-y.

18. Chen C, Wicha SG, Nordgren R, Simonsson U. 2018. Comparisons of
analysis methods for assessment of pharmacodynamic interactions in-
cluding design recommendations. AAPS J 20:77. https://doi.org/10.1208/
s12248-018-0239-0.

19. Clewe O, Wicha SG, de Vogel CP, de Steenwinkel JEM, Simonsson U.
2018. A model-informed preclinical approach for prediction of clinical
pharmacodynamic interactions of anti-TB drug combinations. J Antimi-
crob Chemother 73:437– 447. https://doi.org/10.1093/jac/dkx380.

20. Gupta N, Bottino D, Simonsson USH, Musante CJ, Bueters T, Rieger T,
Macha S, Chenel M, Fancourt C, Kanodia J, Nayak S. 10 November 2019.
Transforming translation through quantitative pharmacology for high
impact decision-making in drug discovery and development. Clin Phar-
macol Ther https://doi.org/10.1002/cpt.1667.

21. Diacon AH, Dawson R, von Groote-Bidlingmaier F, Symons G, Venter A,
Donald PR, van Niekerk C, Everitt D, Hutchings J, Burger DA, Schall R,
Mendel CM. 2015. Bactericidal activity of pyrazinamide and clofazimine
alone and in combinations with pretomanid and bedaquiline. Am J

Faraj et al. Antimicrobial Agents and Chemotherapy

May 2020 Volume 64 Issue 5 e01905-19 aac.asm.org 12

http://xpose.sourceforge.net/
https://uupharmacometrics.github.io/PsN/
https://uupharmacometrics.github.io/PsN/
https://uupharmacometrics.github.io/PsN/
https://uupharmacometrics.github.io/PsN/
http://www.pirana-software.com/
https://doi.org/10.1016/j.ijid.2014.12.031
https://doi.org/10.1016/j.ijid.2014.12.031
https://doi.org/10.1093/jac/47.2.177
https://doi.org/10.1164/arrd.1980.121.6.939
https://doi.org/10.1164/rccm.200905-0661OC
https://doi.org/10.1164/rccm.200905-0661OC
https://doi.org/10.1016/S1473-3099(07)70112-3
https://doi.org/10.1016/S1473-3099(07)70112-3
https://doi.org/10.1016/S1472-9792(08)70038-6
https://doi.org/10.1164/rccm.200210-1125OC
https://doi.org/10.1164/rccm.200210-1125OC
https://doi.org/10.1093/jac/dkv416
https://doi.org/10.1007/s10928-017-9508-2
https://doi.org/10.1002/psp4.12079
https://doi.org/10.1002/cpt.1102
https://doi.org/10.1002/cpt.1102
https://doi.org/10.1002/psp4.12226
https://doi.org/10.1038/s41467-017-01929-y
https://doi.org/10.1038/s41467-017-01929-y
https://doi.org/10.1208/s12248-018-0239-0
https://doi.org/10.1208/s12248-018-0239-0
https://doi.org/10.1093/jac/dkx380
https://doi.org/10.1002/cpt.1667
https://aac.asm.org


Respir Crit Care Med 191:943–953. https://doi.org/10.1164/rccm.201410
-1801OC.

22. Tang S, Yao L, Hao X, Liu Y, Zeng L, Liu G, Li M, Li F, Wu M, Zhu Y, Sun
H, Gu J, Wang X, Zhang Z. 2015. Clofazimine for the treatment of
multidrug-resistant tuberculosis: prospective, multicenter, randomized
controlled study in China. Clin Infect Dis 60:1361–1367. https://doi.org/
10.1093/cid/civ027.

23. Van Deun A, Maug AKJ, Salim MAH, Das PK, Sarker MR, Daru P, Rieder HL.
2010. Short, highly effective, and inexpensive standardized treatment of
multidrug-resistant tuberculosis. Am J Respir Crit Care Med 182:
684 – 692. https://doi.org/10.1164/rccm.201001-0077OC.

24. Wilkins JJ, Langdon G, McIlleron H, Pillai GC, Smith PJ, Simonsson U.
2006. Variability in the population pharmacokinetics of pyrazinamide in
South African tuberculosis patients. Eur J Clin Pharmacol 62:727–735.
https://doi.org/10.1007/s00228-006-0141-z.

25. Svensson RJ, Gillespie SH, Simonsson U. 2017. Improved power for TB
phase IIa trials using a model-based pharmacokinetic-pharmacodynamic
approach compared with commonly used analysis methods. J Antimi-
crob Chemother 72:2311–2319. https://doi.org/10.1093/jac/dkx129.

26. Quigley JM, Fahelelbom KMS, Timoney RF, Corrigan OI. 1990. Tempera-
ture dependence and thermodynamics of partitioning of clofazimine
analogues in the n-octanol/water system. Int J Pharm 58:107–113.
https://doi.org/10.1016/0378-5173(90)90247-2.

27. Schaad-Lanyi Z, Dieterle W, Dubois JP, Theobald W, Vischer W. 1987.
Pharmacokinetics of clofazimine in healthy volunteers. Int J Lepr Other
Mycobact Dis 55:9 –15.

28. Holdiness MR. 1989. Clinical pharmacokinetics of clofazimine. Clin Pharma-
cokinet 16:74–85. https://doi.org/10.2165/00003088-198916020-00002.

29. Swanson RV, Adamson J, Moodley C, Ngcobo B, Ammerman NC,
Dorasamy A, Moodley S, Mgaga Z, Tapley A, Bester LA, Singh S, Grosset
JH, Almeida DV. 2015. Pharmacokinetics and pharmacodynamics of
clofazimine in a mouse model of tuberculosis. Antimicrob Agents Che-
mother 59:3042–3051. https://doi.org/10.1128/AAC.00260-15.

30. Mansfield RE. 1974. Tissue concentrations of clofazimine (B663) in man.
Am J Trop Med Hyg 23:1116 –1119. https://doi.org/10.4269/ajtmh.1974
.23.1116.

31. Nix DE, Adam RD, Auclair B, Krueger TS, Godo PG, Peloquin CA. 2004.
Pharmacokinetics and relative bioavailability of clofazimine in relation to
food, orange juice and antacid. Tuberculosis (Edinb) 84:365–373. https://
doi.org/10.1016/j.tube.2004.04.001.

32. Mukamolova GV, Kaprelyants AS, Young DI, Young M, Kell DB. 1998. A
bacterial cytokine. Proc Natl Acad Sci U S A 95:8916 – 8921. https://doi
.org/10.1073/pnas.95.15.8916.

33. Bowness R, Boeree MJ, Aarnoutse R, Dawson R, Diacon A, Mangu C,
Heinrich N, Ntinginya NE, Kohlenberg A, Mtafya B, Phillips PPJ, Rachow
A, Plemper van Balen G, Gillespie SH. 2015. The relationship between

Mycobacterium tuberculosis MGIT time to positivity and CFU in sputum
samples demonstrates changing bacterial phenotypes potentially re-
flecting the impact of chemotherapy on critical sub-populations. J An-
timicrob Chemother 70:448 – 455. https://doi.org/10.1093/jac/dku415.

34. Gopal M, Padayatchi N, Metcalfe JZ, O’Donnell MR. 2013. Systematic
review of clofazimine for the treatment of drug-resistant tuberculosis. Int
J Tuberc Lung Dis 17:1001–1007. https://doi.org/10.5588/ijtld.12.0144.

35. Cholo MC, Mothiba MT, Fourie B, Anderson R. 2017. Mechanisms of
action and therapeutic efficacies of the lipophilic antimycobacterial
agents clofazimine and bedaquiline. J Antimicrob Chemother 72:
338 –353. https://doi.org/10.1093/jac/dkw426.

36. Cho SH, Warit S, Wan B, Hwang CH, Pauli GF, Franzblau SG. 2007. Low-
oxygen-recovery assay for high-throughput screening of compounds
against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents
Chemother 51:1380–1385. https://doi.org/10.1128/AAC.00055-06.

37. Van Rensburg CE, Jooné GK, O’Sullivan JF, Anderson R. 1992. Antimicro-
bial activities of clofazimine and B669 are mediated by lysophospholip-
ids. Antimicrob Agents Chemother 36:2729 –2735. https://doi.org/10
.1128/aac.36.12.2729.

38. Prideaux B, Via LE, Zimmerman MD, Eum S, Sarathy J, O’Brien P, Chen C,
Kaya F, Weiner DM, Chen P-Y, Song T, Lee M, Shim TS, Cho JS, Kim W,
Cho SN, Olivier KN, Barry CE, Dartois V. 2015. The association between
sterilizing activity and drug distribution into tuberculosis lesions. Nat
Med 21:1223–1227. https://doi.org/10.1038/nm.3937.
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