
FAF-Drugs: free ADME/tox filtering of
compound collections
Maria A. Miteva, Stephanie Violas, Matthieu Montes, David Gomez1,

Pierre Tuffery1 and Bruno O. Villoutreix*

Inserm U648, Paris 5 University, 45 rue des Sts Peres, 75006 Paris, France and 1INSERM U726,
EBGM, University Paris 7, France

Received February 8, 2006; Revised February 22, 2006; Accepted March 1, 2006

ABSTRACT

In silico screening based on the structures of the
ligands or of the receptors has become an essential
tool to facilitate the drug discovery process but
compound collections are needed to carry out such
in silico experiments. It has been recognized that
absorption, distribution, metabolism, excretion and
toxicity (ADME/tox) are key properties that need to
be considered early on, even during the database
preparation stage. FAF-Drugs is an online service
based on Frowns (a chemoinformatics toolkit) that
allows users to process their own compound collec-
tions via simple ADME/Tox filtering rules such as
molecular weight, polar surface area, logP or number
of rotatable bonds. SMILES (Simplified Molecular
Input Line Entry System), CANSMILES (canonical
smiles) or SDF (structure data file) files are required
as input and molecules that pass or do not pass the
filters are sent back in CANSMILES format. This ser-
vice should thus help scientists engaging in drug
discovery campaigns. Other utilities and several
compound collections suitable for in silico screening
are available at our site. FAF-Drugs can be accessed
at http://bioserv.rpbs.jussieu.fr/FAFDrugs.html.

INTRODUCTION

Drug discovery is a complex and expensive endeavor that
usually requires seven major steps: disease selection, target
hypothesis, lead compound identification (screening), lead
optimization, pre-clinical trial, clinical trial and pharmacoge-
nomic optimization. Among the various techniques used to
facilitate the drug discovery process, virtual or in silico ligand
screening (VLS) based on the structure of known ligands or

on the structure of the receptor is becoming a method of choice
(1–11), as seen in several recent studies [reviewed in (12–16)].
All these investigations require suitable compound collec-
tions. It has been suggested that these libraries of purchasable
small organic compounds should be filtered [ADME/tox
(absorption, distribution, metabolism, excretion and toxicity)
filtering] in an attempt to work with databases of molecules
with acceptable physical properties and chemical functional-
ities, at least consistent with known drug profiles (17–27).
Common filtering protocols can be variations of Lipinski’s
rule-of-five (or RO5, potential for oral bioavailability) (25):
molecular weight (MW) (poor absorption is observed if MW
is more than 500), computed log P (P ¼ octanol/water parti-
tion coefficient) (should not be more than 5), H-bond donors
(should not be more than 5) and H-bond acceptors (should
not be more than 10). Filters can also include a limit on the
number of rotatable bonds, on the polar surface area (a value
correlated to the number of H-bond donors and acceptors)
among others, or can remove compounds containing specific
chemical substructures associated with poor chemical stability
or toxicity and sometimes attempt to predict drug metabolism
(e.g. cytochrome-mediated metabolism, Pgp efflux) (28–32).
The selected molecules after applying Lipinski’s RO5 or
related filters based on physicochemical properties or invest-
igation of chemical functionalities are erroneously called
‘drug-like’ while in fact, many organic compounds conform
to the above listed rules but they are by no means drug-like
(33). In fact, these rules define only some necessary conditions
for a drug candidate (such as likely solubility, bio-availability)
but not sufficient ones. Different levels of filtering could
be applied in agreement with the aims of the project. For
instance, soft filtering protocols are usually appropriate for
cancer projects while, for some other studies, only small
and rigid compounds/fragments (low MW, few rotatable
bonds) are needed (e.g. fragment-based lead discovery pro-
jects or fraganomics) (34). Only few online ADME/tox tools
are available, they can usually evaluate one compound at a
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time (Table 1) while commercial packages are in general
expensive [see review (35)]. Compound libraries can be
found online, but they are usually not free nor filtered
(Table 2) (36). Only recently, a free 3D database of com-
pounds ready for VLS projects has been reported, ZINC:
http://zinc.docking.org (37). It is also possible to perform
ADME/tox computations via ZINC and in this case they
are carried out by the program Filter (OpenEye Scientific
Software, a program to remove undesirable molecules
based on physicochemical properties and about 100 rules to
eliminate unstable/reactive/dye chemical groups as well as to
desalt the molecules). For the time being, the users of ZINC
can only apply default thresholds for the various computed
properties.

Because ADME/tox calculations are usually not available
online, we have created FAF-Drugs, a tool to perform physi-
cochemical filtering. Also, in order to make VLS experiments
easier to perform to a broad community of users, we have
interfaced several additional utilities (such as binding site
prediction, OpenBabel...) and processed five major compound
collections.

METHODS AND IMPLEMENTATION

ADME/tox filters

We use Frowns (developed by Brian Kelley), a chemoinform-
atics toolkit (http://frowns.sourceforge.net/) written in Python
and C++ to parse/read SMILES (see explanations about the
format at http://www.daylight.com/) or SDF files (see format
at Molecular Design Limited).

We have implemented an algorithm in Python that make
use of Frowns features to compute properties known to be
important for filtering databases and that utilizes Xtool (38)
to compute log P-values.

Because salts and counterions are often present in com-
pound collections we recommend users to first apply the desalt
utility that removes most salts and counterions prior to FAF-
Drugs calculations.

Then, our program computes the following molecular
properties:

(i) Molecular weight (part of Lipinski’s RO5)
(ii) Hydrogen bond donors and acceptors (part of Lipinski’s

RO5)

Defined as the number of hydrogen bond acceptors (sum of
N + O) and hydrogen bond donors (sum of OH + NH).

(iii) Number of rigid bonds
(iv) Number of rings
(v) Size of the rings
(vi) Number of rotatable bond

Defined as any single non-ring bond, bounded to non-
terminal heavy atom (29). The amide C-N bonds are not
considered because of their high rotational energy barrier.

(vii) Number of carbon atoms, number of heteroatoms and
ratio.

(viii) Number of atom with a net charge
(ix) Sum of formal charges
(x) The Topological Polar Surface Area (TPSA)

The method described in (30) has been implemented.
Briefly, the molecular polar surface area (PSA) (i.e. surface
belonging to polar atoms) is a descriptor that was shown to
correlate well with passive molecular transport through mem-
branes. The calculation of PSA, however, is rather time-
consuming because of the necessity to generate a reasonable
3D molecular geometry and the calculation of the surface
itself. A new approach for the calculation of the PSA was
developed by Erlt et al. (30) based on the summation of

Table 1. Example of free online ADME/tox tools

http://www.molinspiration.com/ One molecule at a time
http://www.molsoft.com/ One molecule at a time
http://www.chemaxon.com/ One molecule at a time
http://zinc.docking.org (37) All molecules—ADME/tox filtering with Filter (OpenEye)
http://www.syrres.com/ Computation of logP (one molecule at a time), Syracuse Research Corporation
http://www.logp.com/ Computation of logP (one molecule at a time)
http://146.107.217.178/lab/alogps/ (42) Computation of logP (one molecule at a time)

Table 2. Some online compound collections

http://chembank.med.harvard.edu (44) Free collections
http://www.cermn.unicaen.fr/chimiotheque Free collections
http://www.genome.ad.jp/dbget/ligand.html (45) Free collections
http://Ligand.info (46) Free collections
http://zinc.docking.org (37) Free and ADME/tox filtered collections
http://bioserv.rpbs.jussieu.fr/FAFDrugs.html Free and ADME/tox filtered collections
http://bioweb.ucr.edu/ChemMine (47) Free collections
http://www.mdli.com Available chemicals directory commercial collections—ADME/tox filtering possible
http://www.chemnavigator.com Commercial collections
http://www.ebi.ac.uk/chebi/ Dictionary of small molecules
http://www.bindingdb.org/ (48) Measured binding affinities
http://www.pdbbind.org/ (49) Proteins with co-crystallized ligands and experimental binding affinities
http://kibank.iis.u-tokyo.ac.jp/ (50) Proteins with co-crystallized ligands and experimental binding affinities
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tabulated surface contributions of polar fragments. This
approach was called topological polar surface area, it provides
results that are practically identical with the 3D PSA while the
computation speed is 2–3 orders of magnitude faster.

(xi) Computation of XlogP (P ¼ calculated octanol/water
partition coefficient) (part of Lipinski’s RO5)

We use the XScore package (sw16.im.med.umich.edu/
software/xtool) to compute XlogP as described in (38). This
method gives log P-values by summing the contributions of
component atoms while making use of correction factors.
About 90 atom types are used to classify carbon, nitrogen,
oxygen, sulfur, phosphorus and halogen atoms, and 10 cor-
rection factors are used for some special substructures. The
contributions of each atom type and correction factor were
derived by multivariate regression analysis of about 1850
organic compounds with known experimental log P-values.

In FAF-Drugs, the format for the input files has, for the
time being, to be SDF, SMILES or CANSMILES while the
compounds have to be in Mol2 format for XlogP com-
putations. We use OpenBabel for file format conversion
prior to XlogP calculations. Few compounds are found to
have ambiguous atom types and in this case the log P
is not computed. (Please see definitions about log P at:
http://www.raell.demon.co.uk/chem/logp/logppka.html#
Introduction)

(xii) Atom check

Molecules with some specific atoms can be filtered-out (for
instance molecules containing H, C, N, O, F, S, P, Cl, Br, I
atoms are kept when using default parameters).

RESULTS AND DISCUSSION

Online ADME/tox tools are usually not freely available, for
this reason, we have developed FAF-Drugs. This latter stands
for Free ADME/tox Filtering and ‘Drug-like’ compound col-
lections. Our service can be used to filter collections available
online as well as virtual libraries. Different levels of filtering
have been reported in the literature, depending on the stage of
the project, on the target and the disease types. For example,
simple physicochemical property filtering could be used when
searching for new hits on a new target while more complex
ADME/tox models (39) [see for example a list of chemical
groups incompatible with final drug development (36,40)]
could be applied at a later stage. We chose to implement
only simple physicochemical rules because they address
the filtering process using widely understood molecular
properties.

ADME/tox FILTERS

To start FAF-Drugs filtering, users can either write a molecule
in SMILES or 2D/3D SDF format directly in theWeb interface
window or browse and upload a compound library. Salts and
counterions are often present in compound collections and
should be removed prior to ADME/tox calculations. If salts
and counterions are present, we suggest users to run first our
DeSalt utility. At present, the input formats for FAF-Drugs

calculations are CANSMILES, SMILES or SDF (please
check our Web site for explanations about the required for-
mats) but OpenBabel (http://openbabel.sourceforge.net/ or
online at RPBS) can be used for file format conversion
prior to the filtering step (Figure 1a). Then users can decide
about the upper and lower limits of each investigated pro-
perties (adjustable thresholds) such as, to tailor the compound
selection to a specific project. We also propose default
parameters that are commonly used in the field
(25,26,29,32,41).

Users obtain two files with molecules that pass and do not
pass the filters in CANSMILES format together with the ori-
ginal (if available) compound ID provided by the chemical
vendors. All computed properties (e.g. MW, TPSA, XlogP. . .)
are also returned in a third file.

In order to test our program, we performed computations on
50 080 molecules extracted from the ChemBridge compound
collection (Diversity set) with FAF-Drugs and Filter (version
1.0.2, OpenEye Scientific Software) with the same parameters
with the same threshold values (MW, TPSA...). Both, Filter
and FAF-Drugs compute TPSA using the approach of Erlt
et al. (30) and log P using the method of Wang et al. (38).
A total of 49 334 passed the filters with FAF-Drugs and 49 032
with Filter. Small differences could be due to the fact that
some rules are implemented slightly differently, for instance
TPSA or log P calculations or definition of flexible bond.
Our tests on a Linux machine (Dell Precision 650, 3GHz,
2GB SDRAM) show that the standalone version of FAF-Drugs
is able to process the above 50 080 molecules in about 20 min
while equivalent computations on the same computer with
Filter (OpenEye) took about 10 min. FAF-Drugs implementa-
tion is Python-based and is not presently optimized for speed.
With regard to server implementation, similar computations
took about 30 min, but it can be longer (about 3 h) depending
on the server load.

We also compared FAF-Drugs with other online tools:
Molinspiration (www.molinspiration.com) that allows evalu-
ation of few physicochemical properties (one molecule at a
time can be processed, they have implemented their own tools
to calculate log P while they follow the Erlt et al. approach to
compute polar surface), and the log P calculators provided by
Syracuse Research Corporation (see Table 1) and by Tetko and
Tanchuck, ALOGPS 2.1 (42). The method for log P prediction
developed at Molinspiration (miLogP) is based on group con-
tributions. These have been obtained by fitting calculated
log P with experimental log P. ALOGPS uses a neural network
approach to predict logP while Syracuse Research Corporation
tool (LogKow) estimates log P using an atom/fragment con-
tribution method. Over 100 diverse molecules were tested and
in all cases we computed very similar values. To illustrate our
calculations, results on four different molecules are reported
in Table 3 and Figure 1b. Overall, we note a very good agree-
ment among the different methods.

To further assess FAF-Drugs calculations, we compared
over 100 computed log P-values [via our implementation
of XlogP) with experimental log P (obtained via Syracuse
Research Corporation and via the EDETOX database
(http://edetox.ncl.ac.uk/)]. The computed values are in good
agreement with the experimental data, indicating that our
implementation of XlogP is appropriate and that this app-
roach gives very good results (Figure 2).
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(a)

(b)

Figure 1. (a) Schema of the FAF-Drugs service. Compound collections in SMILES, CANSMILES or SDF format are needed as input. Users can select a threshold
for each investigated physicochemical properties. XlogP calculations are performed with Xtool (see text). Users obtain two output files, one with molecules that
pass the filters and the other with compounds that do not pass the filters. A third file with all the computed properties can also be downloaded. Several other utilities
are available at FAF-Drugs, these involve online XlogP calculations (38) computed with Xtool, online OpenBabel for file format conversion and implementation
of the JavaMolecular Editor fromDr P. Ertl (Novartis PharmaAG, Basel, Switzerland) to drawmolecules and obtain the corresponding SMILES string. In addition,
at FAF-Drugs, users can find five ADME/tox filtered compound collections ready for VLS computations. Three levels of filtering were applied (see our web site
for further details) in order to better suit the needs of potential users. The OpenEye’s Omega program was used to generate 3D models, either single conformation
or up to 50 conformations, for each molecule that passed the ADME/tox filters. The compound collections can be downloaded in Mol2 format or in SMILES
format. Other utilities consist of a Test Set that contains six protein targets (PDB format) and about 10 corresponding ligands (Mol2 format, see information about
the format at http://www.tripos.com) to facilitate evaluation of docking/scoring methods and an interface to PASS (43), a program that predicts binding pocket
at the surface of a receptor. Many additional tools pertaining to the field of structural bioinformatics are also available at RPBS such as protein electrostatic
computations, loop search, solvent accessibility prediction...(see RPBS services). (b) FAF-Drugs results. Four molecules with different physicochemical
properties were selected in order to compare FAF-Drugs calculations with other online tools.
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Taken together, the above data suggest that our ADME/
tox program is robust. Once users obtain the CANSMILES
output, they can decide about adjusting the filters and
run additional computations or use 1D/2D to 3D conversion

programs such as Corina (http://www2.chemie.uni-erlangen.
de/software/corina/free_struct.html), Omega (OpenEye
Scientific Software), Converter (Accelrys) and start a VLS
project.

Table 3. Comparison of FAF-Drugs with several online tools

Some computed data FAF-Drugs Molinspiration Syracuse_logP ALOGPS logP experimental Compound

MW 154.1 154.25 154.25 154.25 1,8-Cineole CAS: 470-82-6
HD (OH+NH) 0 0 — —
HA (O+N) 1 1 — —
Rot_bond 0 0 — —
TPSA 9.23 9.23 — —
log P 2.59 2.71 3.13 3.37 2.50
MW 182 182.15 182.16 182.16 Triethyl Phosphate CAS: 78-40-0
HD 0 0 — —
HA 4 4 — —
Rot_bond 6 6 — —
TPSA 54.57 44.77 — —
log P 0.58 0.69 0.87 0.71 0.80
MW 232.1 232.23 232.24 232.24 Phenobarbital CAS: 50-06-6
HD 2 2 — —
HA 5 5 — —
Rot_bond 2 2 — —
TPSA 75.27 75.26 — —
log P 1.32 0.79 1.33 1.41 1.47
MW 181.4 181.45 181.45 181.45 1,2,4-Trichlorobenzene CAS: 120-82-1
HD 0 0 — —
HA 0 0 — —
Rot_bond 0 0 — —
TPSA 0 0 — —
log P 3.89 3.89 3.93 4.08 4.02

FAF-Drugs computes several descriptors, such as molecular weight (MW), hydrogen bond donors (HD), hydrogen bond acceptors (HA), number of rotatable bonds
(Rot_bond), TPSAand logP (see text). Similar/identical resultswere obtainedvia theMolinspirationwebsite andbyFAF-Drugs.Experimental logP-values andCAS
registry numbers were found in the EDETOX database (http://edetox.ncl.ac.uk/) and at the http://www.syrres.com/ (Syracuse Research Corporation) server. The
corresponding molecules are shown in Figure 1B.

Figure 2. Experimental versus computed logP. Correlation between experimental and calculated log P-values for over 100 compounds.

W742 Nucleic Acids Research, 2006, Vol. 34, Web Server issue

http://www2.chemie.uni-erlangen
http://edetox.ncl.ac.uk/
http://www.syrres.com/


For the time being, to protect our server from intensive use,
we suggest scientists to upload files with less than 30 000
molecules. In the present version of the service, computations
for several tens of thousands of compounds remain time
consuming (e.g. several hours depending on the number of
jobs in the queue) but work is in progress to improve this
point. For this reason and in order to save CPU time and
disk space, we also provide five filtered compound collections
(Figure 1a).

CONCLUSION AND FUTURE DIRECTIONS

A rational approach to increase the efficiency of finding new
drugs and reduce the R&D cost is to reduce the attrition rate
in the costly downstream stages (e.g. clinical trials). Several
important methods toward this goal have been developed,
involving early computations of ADME/tox properties. We
have developed FAF-Drugs to help modelers and biologists
to embark into drug discovery projects. Users can filter their
own compound libraries and adapt the thresholds to a specific
project. Other tools pertaining to the field of drug design/
compound collections are also available at our Web site.
We are presently working on improving the speed of the
calculations on our server.
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