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Abstract

Background

Intracoronary infusion of autologous bone marrow-derived mononuclear cells (BMMNC),

after acute myocardial infarction (AMI), has been shown to improve myocardial function.

However, therapeutic efficacy is limited, possibly because cell retention rates are low, sug-

gesting that optimization of cell retention might increase therapeutic efficacy. Since retention

of injected BMMNC is observed only within infarcted, but not remote, myocardium, we

hypothesized that adhesion molecules on activated endothelium following reperfusion are

essential. Consequently, we investigated the role of vascular cell adhesion molecule 1

(VCAM-1) in BMMNC retention in swine undergoing reperfused AMI produced by 120 min

of percutaneous left circumflex coronary occlusion.

Methods and results

VCAM-1 expression in the infarct and remote region was quantified at 1, 3, 7, 14, and 35

days, post-reperfusion (n�6 swine per group). Since expression levels were significantly

higher at 3 days (2.41±0.62%) than at 7 days (0.98±0.28%; p<0.05), we compared the

degree of cell retention at those time points in a follow-up study, in which an average of

43�106 autologous BMMNCs were infused intracoronary at 3, or 7 days, post-reperfusion (n

= 6 swine per group) and retention was histologically quantified one hour after intracoronary

infusion of autologous BMMNCs. Although VCAM-1 expression correlated with retention of

BMMNC within each time point, overall BMMNC retention was similar at day 3 and day 7

(2.3±1.3% vs. 3.1±1.4%, p = 0.72). This was not due to the composition of infused bone

marrow cell fractions (analyzed with flow cytometry; n = 5 per group), as cell composition of

the infused BMMNC fractions was similar.
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Conclusion

These findings suggest that VCAM-1 expression influences to a small degree, but is not the

principal determinant of, BMMNC retention.

Introduction

Cell therapy with autologous bone marrow-derived cells generally yields statistically signifi-

cant, but rather modest, improvements in myocardial function after acute myocardial infarc-

tion (AMI) [1–3]. With 20�106 cardiomyocytes per gram of jeopardized myocardium [4],

potentially lost to infarction, it is evident that the absolute number of cells retained to region-

ally treat the affected area is of great importance. However, cell retention after intracoronary

cell therapy is very low, varying widely between studies, possibly as a result of differences in

cell type, timing of administration and initial cell dose [5–20]. Previous work from our labora-

tory showed that cell retention after intracoronary injection of bone marrow-derived mononu-

clear cells (BMMNCs) at one week of reperfusion in a swine model of AMI, amounted 8% and

6.5%, respectively, at 1.5 hours and 4 days post-injection [14]. Retention of cells, as measured

with immunofluorescence, was observed only within the infarcted region, whereas no cells

were retained when cells were injected selectively into the non-occluded left anterior descend-

ing coronary artery (LAD). The latter findings suggest that cell adherence and retention are

active processes, occurring exclusively in the reperfused infarct-zone, and not just physical

entrapment of the cells due to cell size.

Following AMI, activated endothelium within the infarct region drives the expression of

transmembrane adhesion molecules that mediate leukocyte-endothelium interactions to

orchestrate regional immune responses [21, 22]. These damage-associated adhesion molecules

serve as primary “loading-docks” for cell anchorage and their limited and transient post-AMI

presence may be correlated to the limited retention of infused cells. A key player associated

with endothelial adhesion of circulating immune cells is Vascular Cell Adhesion Molecule 1

(VCAM-1) [23]. It is however, largely unknown to what extent VCAM-1 is present in the

days-weeks following AMI and to what extent VCAM-1 expression influences BMMNC

retention.

In light of these considerations, we investigated i) the temporal expression of VCAM-1 in

infarcted and remote myocardial regions in swine with reperfused AMI; ii), the correlation of

VCAM-1 presence to autologous bone marrow-derived cell retention and iii) temporal

changes in AMI-induced changes in the composition of the injected BMMNCs.

Material and methods

VCAM-1 expression after acute myocardial infarction

Animal experiments were performed in 48, 5–6 month old Yorkshire x Landrace swine of

either sex (31.0±0.3kg). All experiments were performed in strict compliance with the “Guide

for the Care and use of Laboratory Animals” and were specifically approved by the Animal

Ethics Committee of the Erasmus MC Rotterdam, The Netherlands (approval numbers:

EUR1871, EMCnr.109-09-12 and EUR2058, EMCnr.109-10-05). All experiments were per-

formed with appropriate and local Animal Ethics Committee approved analgesics, anesthetics

and euthanasics (see text below for details) and all efforts were made to minimize any discom-

fort. Humane endpoints were carefully respected in collaboration with a dedicated and experi-

enced veterinarian. Humane endpoints were defined as premature killing of animals following

VCAM-1 and stem cell retention
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i) severe and permanent behavioral changes including apathy and lethargy or when the animal

ceased normal food and water intake. ii) Severe cardiorespiratory disease such as acute heart

failure with peripheral cyanosis. Or iii), rapid and excessive weight loss (>20% body weight

reduction).

Surgery. Myocardial infarction was produced in 33 swine (30.5±0.3kg) as previously

described [14, 24, 25]. For this purpose, swine were sedated with an intramuscular injection of

midazolam (1mg/kg), ketamine (20 mg/kg) and atropine (1mg). Then, an intravenous (iv) ear

catheter was placed for induction of anesthesia with thiopenthal sodium (17 mg/kg). Next, ani-

mals were intubated and mechanically ventilated (O2:N2 1:3 v/v), while anesthesia was main-

tained with fentanyl (20μg/kg/h iv). Under sterile conditions, a 9F arterial sheath was placed

in a dissected carotid artery and anticoagulation was ascertained by the iv administration of

10,000 units of heparin + 5,000 units every additional hour of surgery. Physiological body

core temperature was maintained with heating pads [26]. Saline was infused at 100 ml/h iv to

maintain fluid status of the animals, while arterial blood pressure and ECG were monitored

continuously. The left circumflex coronary artery (LCx) was catheterized under fluoroscopic

guidance with a 7F guiding catheter and maximal coronary artery dilation was produced with

1mg isosorbidatedinitrate for optimized balloon sizing. Next, the LCx was visualized with

selective infusion of the contrast agent iodixanol and coronary diameter was measured with

dedicated software (CAAS, Pie Medical, Eindhoven, The Netherlands). After the selection of

the occlusion site by at least two researchers to ascertain optimal protocol adherence, the LCx

was occluded for 2h distally to the first marginal branch followed by reperfusion with a stan-

dard guide wire and an appropriately sized percutaneous transluminal coronary angioplasty

balloon. Following occlusion, anesthesia was switched to isoflurane inhalation anesthesia (1–

3% v/v) [14, 27]. After 2h of occlusion the balloon was deflated and reperfusion was allowed.

Anesthetized animals were monitored until hemodynamically stable. Antibiotic prophylaxis

was given intramuscularly (procainebenzylpenicilline 20 mg/kg and dihydrostreptomycine

sulphate 25 mg/kg). Catheters were removed, the incision site was closed and animals were

allowed to recover.

Follow-up. After 1 (n = 6), 3 (n = 6), 7 (n = 7), 14 (n = 6) or 35 (n = 6) days post-AMI, ani-

mals were sedated as described above. Anesthesia was induced (15 mg iv) and maintained with

pentobarbital sodium (15 mg/kg/h iv). Following sternotomy, the pericardium was opened

and the heart was electrically induced to fibrillate. Next, the heart was excised and rinsed with

ice-cold saline. The left ventricle was isolated and cut into transverse sections and both remote

and infarct tissue were preserved in optimal cutting temperature compound (Tissue-Tek,

Sakura Finetek, Alphen aan den Rijn, The Netherlands) using frozen CO2 (dry ice) for subse-

quent histopathological analyses.

Immunohistochemistry. Cryosections of 5μm were fixed in ice-cold acetone for 10 min.

Endogenous peroxidase activity was blocked with 0.3% H2O2 in 40% methanol for 60 min.

Adjacent sections were incubated with anti-VCAM-1 (mouse-anti pig, 1:300, gift from Prof.

D. Haskard, London, United Kingdom) overnight at 4˚C. Next, using the Vectastain biotiny-

lated horse-anti mouse kit (Brunschwig Chemie, Amsterdam, The Netherlands) and diamino-

benzidine (DAKO, Eindhoven, The Netherlands) expression was visualized. Stained sections

were photographed with a virtual microscope (Hamamatsu NanoZoomer, 2.0-HT Slide Scan-

ner). Whole sections, containing 5–6 high-power fields (40x) were analysed for VCAM-1 pres-

ence with dedicated software using a color threshold (BioPix iQ, 2.2.1, BioPix AB, Göteborg,

Sweden). Data were expressed as a percentage of the total surface area.

RT-PCR. Cryopreserved infarct and remote tissue was homogenized (n = 5 or 6 per

group) and RNA was isolated using the RNeasy Fibrous Tissue Mini Kit (Qiagen, Hilden, Ger-

many) according to manufacturer’s instructions. Quantity and Quality (A260/A280 ratio) of

VCAM-1 and stem cell retention
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isolated RNA was determined with a NanoDrop ND10000 spectrophotometer (Thermo

Fischer Scientific, USA) and RNA integrity was confirmed by using the Agilent Bioanalyzer

2100. Next, cDNA was synthesized from 500ng of RNA using the SentiFAST cDNA synthesis

kit (Bioline, Luckenwalde, Germany).

Using the comparative Ct (ΔCt) method (forward primer: TGTGAAGGGATTAACCAGGCT,

reverse primer: CAGTGTCCCCTTCCTTGACG)VCAM-1 expression was determined. Results

are expressed as fold-increase to the normalized day 1 post-AMI remote expression of the

housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH, forward primer:

GCTCATTTCCTCGTACGACAAT, reverse primer: GAGGGCCTCTCTCCTCCTCGC) using the

CFX manager software (Bio-Rad). PCR product accurateness was confirmed by sequencing.

Effects of VCAM-1 expression on cell retention

Based on the results obtained in the VCAM-1 expression studies described above, two time

points were selected to test whether regional up-regulation of VCAM-1 leads to increased cell

retention after AMI.

Surgery, cell isolation and -infusion. In 15 swine (32.3±0.6kg), reperfused AMI was

induced as above and serial blood for biomarker measurements was taken as described before

[24]. At 3 or 7 days post-AMI (n = 6 surviving pigs per group), bone marrow was harvested

under sterile conditions from the ileac crest and/or the proximal femur of the anesthetized

pigs as described before [14]. In brief, up to 160 ml bone marrow was aspirated using 5ml hep-

arinized syringes and received in 50 ml centrifuge tubes containing 10 ml phosphate buffered

saline (PBS) and 5,000 units of heparin. Bone marrow was selectively enriched for the mono-

nuclear fraction by density centrifugation (20 min at 800g at RT), using equal amounts of

Lymphoprep as a separation medium (Lucron, Milsbeek, The Netherlands). Using a sterile

pipette, the mononuclear cell fraction was carefully aspirated and filtered using a 100 μl cell

strainer. The fraction was washed twice by centrifugation in wash buffer (PBS containing 0.1%

of autologous serum, 10 min at 600 g at RT). The obtained cells were resuspended in wash

buffer and added to a red blood cell lysis solution for 10 min at RT (1:3, 8.3 g NH4Cl + 1.0 g

KHCO3 + 1.8 ml 5% EDTA in 1000 ml H20) to remove erythrocytes. Enriched and washed

cells were collected by centrifugation (2 min at 2000 g at RT). A conventional Bürker-Türk

haemocytometer and trypan blue exclusion were used to count total cell number and ascertain

viability. Up to 50�106 cells were labeled with the non-cytotoxic fluorescent membrane marker

PKH26 (Sigma-Aldrich, Zwijndrecht, The Netherlands) and successful labeling was unremit-

tingly ascertained with fluorescence microscopy of a small aliquot (labelling efficiency >99%;

data not shown; see supplemental S1 Fig for a typical example). Labeled cells were then cau-

tiously resuspended in washing buffer to obtain a density of 1.7�106 cells/ml and infused intra-

coronary using a multi-purpose infusion catheter into the infarcted area of the heart at a rate

of 1�106 (slow, n = 2 per group) or 5�106 (fast, n = 4 per group) labeled cells per minute. One

hour after the completion of the infusion protocol, the hearts of the deeply anesthetized ani-

mals were electrically fibrillated and subsequently excised, and the complete infarct region was

subsequently carefully sectioned into 1cm2-sized cubes and processed for histopathology as

described above.

Quantification of retained cells. VCAM-1 was quantified in cell infusion-treated animals

as described above. Next, using a checkerboard-like approach, 5 μm cryosections from the

infarcts were fixed with ice-cold acetone for 10 minutes. Sections were washed with PBS and

mounted with 4’,6-diamidino-2-phenylindole (Vectashield with DAPI, Brunschwig Chemie).

Using a Zeiss Axiovert S100, 10x photos were taken of the stained sections, converted to gray-

scale to allow for further software-based analyses and using a color threshold PKH26 positive

VCAM-1 and stem cell retention
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cells were counted with ImageJ (version 1.46r, National Institutes of Health, USA). Using sec-

tion thickness, average cell thickness and tissue dimensions we calculated absolute and relative

cell retention.

Effects of myocardial infarction on composition of the mononuclear

fraction

Flow cytometry. Parallel to processing of cells for intracoronary cell injection experi-

ments, a representative aliquot from each bone marrow aspirate (n = 5 per group, due to tech-

nical failure of the flow cytometer during one experiment in each group) was processed for

flow cytometry to assess relative contribution of the various cell types within the mononuclear

fraction, in order to determine the composition of the mononuclear fraction at 3 vs 7 days

post-AMI. For this purpose, we quantified the percentage of B-cells (CD79a+, AbD Serotec,

Puchheim, Germany), T-cells (CD3+, Abcam, Cambridge, UK), α4-integrin positive cells

(CD49d+, AbD Serotec), β2 integrin positive cells (CD18+, VMRD, Pullman, WA, USA),

CD34 positive cells (CD34+, R&D Systems, Abingdon, UK) and mesenchymal stem cells (as

defined by CD105+/CD90+/CD14-/CD45-, CD105: Exbio, Prague, Czech Republic; CD90: BD

Biosciences, Breda, The Netherlands; CD14 and CD45 AbD Serotec). For the B- and T-cell

staining, cells were resuspended in azide/serum/protein-free PBS at a concentration of 10�106

cells/ml. Fixable Viability Dye, for cell viability selection, was added and incubated for 30 min-

utes at 4˚C. After washing with FACS Flow (BD Biosciences), CD3 antibody was incubated for

15 minutes at room temperature. Cells were washed and incubated with Leucoperm Reagent

A for 15 minutes at RT followed by washing and incubation with Leucoperm Reagent B for 30

minutes at RT, final washing and resuspension in FACS Flow. For CD18, CD34, CD49d and

their combinations with CD14- and CD45- staining, cells were resuspended in FACS Flow and

incubated with the first primary antibodies (CD18, CD49d or CD34) for 15 minutes at room

temperature. After washing, cells were incubated with secondary antibodies for 30 minutes at

room temperature, followed by washing and incubation with the second set of primary anti-

bodies (CD14 and CD45) for 15 minutes at room temperature. For cell viability selection

7-amino-actinomycin D (7-AAD, BD Biosciences) was added and cells were washed and

resuspended in FACS Flow. For the MSC analysis, cells were resuspended in FACS Flow and

incubated with the primary antibodies (CD105, CD90, CD14 and CD45) for 15 minutes at

room temperature followed by addition of 7-AAD. After washing, cells were resuspended in

FACS Flow. Flow cytometric analysis was performed on a FACSCanto (BD Biosciences) and

subsequent data analysis by use of FlowJo software (Tree Star Inc, Ashland, OR, USA).

Statistics

Data are presented as mean ± SEM. Data in Fig 1 were analyzed with Sigmaplot (Version 11.0,

Drunen, The Netherlands), using two-way (time x treatment) ANOVA followed by post-hoc

Student-Newman-Keuls correction when appropriate. Data in Figs 2A and 4A were analyzed

by unpaired t-test. Data in Fig 3 were analyzed using ANCOVA with % VCAM-1 as covariate

and 3 and 7 days as independent factors. Statistical significance was accepted when p<0.05.

Results

VCAM-1 expression after acute myocardial infarction

Mortality and exclusion. Two out of 33 swine encountered non-convertible ventricular

fibrillation during the ischemia-reperfusion protocol and could not complete the protocol. No

premature euthanasia was performed as no animals suffered from human endpoint-associated

VCAM-1 and stem cell retention
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(co)morbidities. Of the remaining 31 animals that successfully completed the protocol, 6 tis-

sue-sets were ultimately not suitable for final analyses as a result of cryopreservation-induced

tissue deformities leaving 25 analyzable datasets.

VCAM-1 presence after myocardial infarction. Fig 1A visualizes the transient presence

of VCAM-1in remote and infarct tissue at 1, 3,7, 14 and 35 days post-AMI. Subsequent quanti-

fication of VCAM-1 (Fig 1B) shows that VCAM-1 presence in remote tissue remained low at

all times (0.20±0.03%). In contrast, VCAM-1 presence in the infarct region was elevated at 3

days (2.41±0.62%, n = 4, p<0.001) and 7 days (0.98±0.28%, n = 5, p = 0.01) post-AMI. Impor-

tantly, VCAM-1 expression peaked at 3 days post-AMI and showed a transient pattern with

normalization 14 days post-AMI.

Fig 1. Panel A. Typical examples of VCAM-1 presence in infarct and remote myocardial tissue at 1, 3, 7, 14 and 35 days after myocardial infarction. Brown

is VCAM-1. Panel B. Temporal VCAM-1 presence at 1 (n = 4), 3 (n = 4), 7 (n = 5), 14 (n = 6) and 35 days (n = 6) after myocardial infarction. Data are

expressed as mean ± SEM. light grey bar = remote tissue, dark grey bar = infarct tissue. * = p<0.05 vs. corresponding remote; † = p<0.05 vs. day 1; †† =

p<0.05 vs. day 3. Panel C. Temporal VCAM-1 expression at 1 (n = 6), 3 (n = 5), 7 (n = 6), 14 (n = 6) and 35 days (n = 5) after myocardial infarction. Data are

presented as fold-change ± SEM from the VCAM-1 expression in the remote zone on day 1 post-infarct, and corrected for expression of the housekeeping

gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH). light grey bar = remote tissue, dark grey bar = infarct tissue. * = p<0.05 vs. corresponding

remote; † = p<0.05 vs. day 1.

https://doi.org/10.1371/journal.pone.0178779.g001
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VCAM-1 expression after myocardial infarction. Fig 1C confirms that VCAM-1 ex-

pression remained low at all times in remote tissue. VCAM-1 expression in infarct tissue

homogenates confirm that VCAM-1 expression is less pronounced as compared to histological

findings yet significantly upregulated in the sub-acute phase after reperfused myocardial

infarction in a transient matter.

Effects of VCAM-1 expression on cell retention

Mortality and infarct mass. Three out of 15 swine did not complete the protocol. Two

swine that encountered ventricular fibrillation could not be converted to normal sinus rhythm

and one swine died prematurely because of electromechanical dissociation during ischemia. No

animals met the criteria for human endpoints or died after stratification into the 3 or 7 days

post-AMI group or during cell infusion. Infarct mass at baseline, estimated from the plasma con-

centration of heart specific fatty acid binding protein determined at 50 min of reperfusion [24],

was similar between the 3 day (11±2 g) and 7 day (13±4 g) groups (n = 6 per group; p = 0.65).

VCAM-1 presence. VCAM-1 presence in the cell retention studies was similar to the

results of the first VCAM-1 histological studies (3 days post-AMI: 2.09±0.60 vs. 2.41±0.62%,

p = 0.73; 7 days post-AMI: 0.99±0.21 vs. 0.98±0.28%, p = 0.97).

Cell retention. Initial 2-way ANOVA (time of administration x injection rate) analyses

did not show any significant differences (P�0.4). Consequently, fast and slow infusion results

were pooled for further analyses and typical examples of immunofluorescence stainings in sec-

tions with BMMNC retention are shown in Fig 2A. Quantitative results are presented in Fig

2B and show that similar numbers of cells were infused in every group, 42±6�106 cells at 3 days

post-AMI vs. 43±4�106 at 7 days post-AMI (p = 0.93). An average of 8.4±0.8 individual tissue

samples were selected per animal and an average of 40±6 photos per animal were quantified

for PKH26-positive cells. Results show that the absolute number of retained cells was not dif-

ferent at 3 or 7 days post-AMI (0.73�106±0.44�106 cells vs. 1.17�106±0.51�106, p = 0.52), with

Fig 2. Panel A. Typical examples of BMMNC retention in infarcted myocardium at 3 days and 7 days post infarction. Presented are a selection of the

original photos as well as the grayscale conversion used for further quantification. Panel B. Retention of cells in infarcted myocardium 3 days (n = 6) or 7

(n = 6) days post infarction expressed as absolute numbers or as a percentage of the initial dose and corrected for infarct mass (i.e. expressed per gram

infarct). Data are expressed as mean ± SEM.

https://doi.org/10.1371/journal.pone.0178779.g002
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similar results when data were expressed as a percentage of the initially infused number of cells

(2.3±1.3% vs. 3.1±1.4%, p = 0.72). Moreover, when results were corrected for infarct mass at

baseline, results were again not statistically different for both absolute retention (0.054�106±
0.031�106 cells/g vs. 0.088�106±0.039�106 cells/g, p = 0.51) as well as relative retention (0.17

±0.11%/g vs. 0.24±0.12%/g, p = 0.65) at 3 and 7 days respectively.

VCAM-1 expression and cell retention. Post-AMI cell retention levels did not differ

between 3 and 7 days although VCAM-1 expression levels were significantly higher at 3 com-

pared to 7 days post-AMI. Interestingly, there were significant correlations between VCAM-1

expression and cell retention at both 3 days (r2 = 0.69, p = 0.03) and 7 days (r2 = 0.74, p = 0.04)

post-AMI, so that higher expression of VCAM-1 was associated with a higher rate of cell reten-

tion within each group (Fig 3). However, the slope of the relation between VCAM-1 expres-

sion and retention tended to be lower at 3 as compared to 7 days post-AMI (p = 0.062). These

findings suggest that while VCAM-1 is a determinant of cell retention, other factors must also

play a role. One such factor could be the cell-composition of the mononuclear cell fraction

that was harvested and injected at 3 days vs 7 days post-AMI.

Effects of myocardial infarction on composition of the mononuclear fraction

Fig 4A and 4B show that the contribution of B-cells, T-cells, CD34+ cells and MSCs to the

mononuclear cell fraction was similar at both time points. Furthermore, cell surface adhesion

molecules α4 (part of VCAM-1) integrin and β2 (part of ICAM-1) integrin showed similar

expression levels in both groups. Thus, no differences in composition of the infused fraction

were observed between 3 and 7 days post-AMI. Similarly, there were no significant correlations

noted between composition of the injected cells and magnitude of cell retention per gram of

infarcted tissue (n = 5 per group). For B-cells (day 3: r2 = 0.61, p = 0.12; day7: r2 = 0.00, p = 0.94),

T-cells (day 3: r2 = 0.07, p = 0.67; day7: r2 = 0.04, p = 0.76), CD34+ cells (day 3: r2 = 0.04, p =

0.76; day7: r2 = 0.41, p = 0.25) or MSCs (day 3: r2 = 0.16, p = 0.50; day7: r2 = 0.66, p = 0.09).

Fig 3. Regression analysis of VCAM-1 expression at 3 (�, r2 = 0.69, p = 0.03) and 7 days (●, r2 = 0.74,

p = 0.04) days post-infarction vs. % of retained autologous bone marrow-derived cells per gram

infarct.

https://doi.org/10.1371/journal.pone.0178779.g003
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Discussion

The present study investigated the temporal presence of VCAM-1 in infarcted and remote

myocardial regions in swine with reperfused AMI, and its correlation with retention of autolo-

gous bone marrow-derived mononuclear cells harvested and injected at 3 or 7 days post-AMI.

The major findings were that: (i) vascular cell adhesion molecule 1 (VCAM-1) expression is

upregulated in the microcirculation of infarct-impaired myocardial tissue in a transient man-

ner with VCAM-1 presence peaking at 3 days (~12- fold) and 7 days (~5-fold) post-AMI, with

normalization to baseline values within 14 days post-AMI; (ii) VCAM-1 expression correlated

with the magnitude of cell retention both at 3 days and 7 days post-AMI, but average cell reten-

tion was not different at 3 days vs. 7 days, indicating that cell retention was primarily indepen-

dent of VCAM-1 presence; (iii) composition of the mononuclear fraction was not different 3

or 7 days post-AMI and selected cell types individually did not correlate with retention. The

implications of these findings will be discussed.

Cell retention after cell therapy

The limited therapeutic efficacy of cell therapy reported in clinical studies [1, 2] could, at least

in part, be due to the relatively low retention rates of administered cells. Retention rates as

high as 57.7% of the infused fraction [11] or as low as 0.8% of the infused fraction [13] have

Fig 4. Panel A. Typical FACS flow plots of autologous bone marrow derived mononuclear composition studies. MSC = mesenchymal stem cell.

Panel B. Composition of autologous infused bone marrow-derived mononuclear cells at 3 (n = 5) and 7 (n = 5) days post infarction. MSC =

mesenchymal stem cell. Data are expressed as mean ± SEM.

https://doi.org/10.1371/journal.pone.0178779.g004
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been reported after intracoronary infusion (Table 1). Also, no uniform approach in retention

studies exists owing to the variations in parameters that can influence retention. These differ-

ences include, but are not limited to, the number and types of cells infused, as well as the tim-

ing and procedure of administration including infusion density and speed. Importantly, the

preferred tracking method appears to be scintigraphy as it was used in ~83% of retentions

studies. This method however, in which cells are labeled with a radioactive tracer does not cor-

rect for the heterogeneous label efficiency that exists when a heterogeneous cell population

including differences in cell type and cell size is taken into account. This may lead to skewed

results when a subpopulation of large cells containing much radiolabel is retained primarily

[28]. Also radiolabeled cell debris may result in false-positive retention. Here we assessed

BMMNC retention in detail using a histopathological approach of the complete infarct region

This detailed approach, not affected by false positive scoring or differences in heterogeneous

label efficiency, may explain our relatively low retention rates compared to other studies.

Post-infarct endothelial response

Upon AMI, endothelium within the affected area is activated resulting in a proinflammatory

and procoagulant environment characterized by increased interactions with leukocytes [29].

Numerous adhesion factors are upregulated within the affected area including VCAM-1 [30].

VCAM-1 is expressed after infarct-induced cytokine release and serves as a “docking station”

for leukocytes to facilitate the regional immune response [31]. Understanding the post-AMI

up-regulation pattern of regional VCAM-1 may reveal the optimal timing for intracoronary

infused bone marrow-derived mononuclear cell therapy. Here, we report the temporal expres-

sion pattern of VCAM-1 in the microcirculation of porcine ischemia-reperfusion impaired

myocardium. VCAM-1 expression peaked at 3 days post-AMI and was normalized after

14 days, suggesting that cell retention would be optimal when applied at a time point that

VCAM-1 expression is highest. Results of qPCR experiments confirm a significant and tran-

sient upregulation of regional VCAM-1 in the infarct zone in a transient matter in the sub-

acute phase after AMI but do not fully corroborate with histological findings. We hypothesize

that VCAM-1 here may be partially non-differentially expressed, differences in half-life of the

VCAM-1 protein and mRNA may be different or other not-sufficiently defined post-transcrip-

tional mechanisms underlie discrepancies between our expression studies and histological

findings [32]. Retention of autologous BMMNCs, however, when administered at time points

in which VCAM-1 was significantly upregulated, only partly supported our hypothesis. Thus,

while a correlation between increased VCAM-1 expression and cell retention was observed

both at 3 days and 7 days post-AMI, average cell retention at 3 days vs 7 days was similar

despite different levels of VCAM-1 expression. These results suggest that cell retention may

not only be determined by total VCAM-1 expression, and could have been influenced by other

factors, including (i) different composition of the injected BMMNCs at 3 vs 7 days post-AMI,

and (ii) simultaneous changes in endothelial expression levels of other adhesion factors such as

E-selectin [33], P-selectin [34] or ICAM-1 [35] from 3 to 7 days post-infarction, thereby mask-

ing an effect of the increased VCAM-1 expression at 3 compared to 7 days. Since the latter

were difficult to study due to lack of commercially available specific and reliable antibodies for

pigs, we investigated the former and studied whether a change in composition of the injected

BMMNCs at 3 and 7 days could play a role. The results showed that the composition was not

different between 3 and 7 days. Clearly, future studies are required to further investigate the

role of VCAM-1 in BMNNC retention in more detail, by determining the influence of other

adhesion molecules (which the lack thereof is a limitation of the present study), in post-AMI

cell-retention and study which cell types within the BMMNC injectate are primarily retained

VCAM-1 and stem cell retention
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within the infarcted myocardium. Finally, the observations in the present study in swine may

also provide an explanation for the results of the TIME-trial [36], that showed that treating

patients with intracoronary autologous bone marrow-derived cells at 3 days, as compared to 7

days, post-AMI showed no significant improvement in the recovery of global or regional left

ventricular function at six months follow-up.

Composition of mononuclear cell fraction

Analysis of the BMMNC fraction isolated at 3 days or 7 days post-AMI did not reveal any dif-

ferences in composition. In addition, the nature of the quantification study and the scarce

availability of porcine antibodies restricted the phenotypical identification of retained cells

within the infarct area and is considered a major limitation of this work. For future optimiza-

tion studies, it remains of great interest to determine which cell type is dominant in retention

studies. Our results however, do enable us to exclude that retained cells are MSCs only, as the

average absolute number of MSCs is limited to ~2000–2500 cells per infused fraction whereas

absolute retained number of cells approximate at least 0.7�106 cells. Thus, cell composition of

the BMMNC isolated 3 or 7 days post-AMI did not have an effect on absolute or relative cell

retention suggesting that the role of composition of the cell infusate may not be decisive.

Conclusions

The present study in swine with a reperfused AMI demonstrates that VCAM-1 is significantly

upregulated in the microvasculature of infarcted myocardial tissue in a transient manner peak-

ing at 3 days post-AMI with normalization to baseline at 14 days post-AMI. Although VCAM-

1 expression correlated with the magnitude of cell retention at either 3 or 7 days post-AMI, the

absolute and relative retention rates of BMMNCs were similar between these time points. This

was not due to differences in the composition of infused bone marrow cell fractions, as cell

composition of the infused BMMNC fractions was similar at 3 and 7 days post-AMI. Taken

together, these findings indicate that VCAM-1 expression is not the principal determinant of

BMMNC retention in reperfused myocardium post-AMI.

Supporting information

S1 Fig. Typical example of PKH26 label efficiency in BMMNC-retention studies. Results of

typical PKH26 staining confirm >99% staining efficiency and differences in fluorescent avid-

ity.
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