
Gene expression profiling reveals consistent differences
between clinical samples of human leukaemias and their model
cell lines

In experimental cancer research, the study of clinical material,

i.e. tumour biopsies, must often be complemented by in vitro

experiments on cancer cell lines, as these enable functional

molecular studies to be performed that would not be possible

with biopsy material. In leukaemia research, cell lines, such as

the BCR/ABL-positive K562 myeloid cell line, derived from a

chronic myeloid leukaemia (CML) patient in blast crisis, or the

leukaemic t(15;17)-positive NB4 cell line, derived from a

patient with acute promyelocytic leukaemia (APL), are often

used to study the molecular pathology of CML and APL

respectively.

To extrapolate conclusions from cell line data to the clinical

setting, it is crucial to determine how closely a given cell line

and its molecular features resemble the respective clinical

material. Such comparisons of leukaemic cell lines and patient

samples can now be obtained with the help of the DNA

microarray technology (Golub et al, 1999). In this study, we

assessed the degree of resemblance of gene expression profiles

between fresh clinical samples and the corresponding leukae-

mic cell lines.

Patients and methods

Patients and cell lines

We analysed peripheral white blood cell samples from six

untreated patients with CML in chronic phase (all BCR/ABL-

positive), as well as four patients with APL; acute myeloid

leukaemia French–American–British (AML FAB) subtype M3;

t(15;17)) and from four patients with acute monocytic

leukaemia (AML FAB M5; no specific karyotypic abnormality).

Informed consent was obtained from all patients. For

comparison, the human myeloid BCR/ABL+ leukaemia cell

line K562, the t(15;17)-positive NB4 cell line and the HL60 cell
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Summary

Microarray gene expression profiles of fresh clinical samples of chronic

myeloid leukaemia in chronic phase, acute promyelocytic leukaemia and

acute monocytic leukaemia were compared with profiles from cell lines

representing the corresponding types of leukaemia (K562, NB4, HL60). In a

hierarchical clustering analysis, all clinical samples clustered separately from

the cell lines, regardless of leukaemic subtype. Gene ontology analysis showed

that cell lines chiefly overexpressed genes related to macromolecular

metabolism, whereas in clinical samples genes related to the immune

response were abundantly expressed. These findings must be taken into

consideration when conclusions from cell line-based studies are extrapolated

to patients.

Keywords: chronic myeloid leukaemia, acute myeloid leukaemia, BCR/ABL,
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line, established from a patient with AML FAB subtype M2,

were also analysed.

Sample preparation

Preparation of Biotinylated cRNA and profiling with Human

Genome U133 Gene Chips was performed according to

standard protocols (Affymetrix, Santa Clara, CA, USA). Cell

lines were analysed in duplicate, clinical samples were analysed

with one chip per patient. The array images were quantified

utilising Micro Array Suite (MAS) software (Affymetrix).

Microarray quality control and normalisation

After visual inspection of each microarray scan for irregular-

ities, the quality of the whole microarray set was assessed using

the ‘affyPLM’ package from the Bioconductor project (Gentle-

man et al, 2004). Expression values were obtained after

background subtraction (Irizarry et al, 2003), normalisation

(Bolstad et al, 2003) and probe set summarisation (Irizarry

et al, 2003) on a logarithmic (base 2) scale with the ‘affy’

package (Gautier et al, 2004).

Data analysis

Hierarchical clustering analysis of expression profiles was

performed using one minus Pearson’s correlation coefficient as

a measure of pairwise distance between samples and Ward’s

linkage as the agglomeration method. All 22’216 probe sets

were used. The differential expression between fresh clinical

samples and cell line samples was assessed using an empirical

Bayes test statistic (Smyth, 2004) available through the ‘limma’

software package (Smyth et al, 2005). The obtained P-values

were corrected for multiple testing using the False Discovery

Rate method (Benjamini & Hochberg, 1995).

GOstat (Beissbarth & Speed, 2004) was used to perform a

gene ontology analysis of differentially expressed genes. A

separate analysis was carried out for the top 1000 up- and top

1000 downregulated genes.

Results

A hierarchical clustering analysis was performed to investigate

the global similarity between the 20 expression profiles

(Fig 1A). Remarkably, the main split in the dendrogram

perfectly separated leukaemic cell lines from fresh patient

samples. Cell lines clustered with a distinct common expres-

sion profile, and accordingly, the dendrogram united both

fresh AML and CML samples in a separate common group.

Specifically, the K562 and the NB4 cell lines did not cluster

with the clinical samples bearing the same chromosomal

translocation, i.e. with the CML and the APL samples

respectively. In contrast, CML patient samples were clearly

separated from fresh AML samples, which in turn clustered

according to their morphological and biological features [APL

(M3) or acute monocytic leukaemia (M5) respectively]. The

correlation matrix (Fig 1B) visualises the pairwise similarity of

all fresh patient samples and cell lines directly. Surprisingly, the

K562 cell line showed a higher resemblance to AML samples

than to CML samples.

Table I displays the top 24 probe sets ordered by decreasing

evidence for differential expression between fresh samples and

cell lines (See also Tables SI, SII, SIII). For example, the E2F6

gene was upregulated in cell lines compared with clinical

samples. It belongs to a group of genes that have a pivotal role

in the regulation of cellular proliferation by controlling the

expression of genes that are essential for either entry into, or

passage through, the cell cycle (Bell & Ryan, 2004).

A gene ontology analysis of the top 1000 discriminatory

genes showed that genes with an increased expression in cell

lines were significantly related to macromolecular synthesis

and nucleic acid metabolism. Genes with an increased

expression in fresh patient samples, on the other hand, were

Fig 1. (A) Hierarchical clustering of samples was used to explore the

similarities between expression profiles. The branch length represents

the distance between two samples or two sample groups. (B) Colour-

coded correlation matrix. The colour represents the Pearson’s corre-

lation coefficient of the gene expression profiles of each sample pair

(scale on the right).
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significantly related to defence and immune response (see

Tables SI, SII, SIII).

Discussion

Much of our knowledge on the molecular functional pathways

of human leukaemia is derived from experiments with cell

lines rather than from work on clinical samples (Sandberg &

Ernberg, 2005). In our present comparison we would have

expected that, for example, BCR/ABL-positive leukaemias, i.e.

the clinical material and the respective cell line, would

primarily be allocated to a common gene expression profile

group, and clearly be separated from BCR/ABL-negative

leukaemias, given the strong impact of the BCR/ABL fusion

gene in the molecular pathology of CML. However, we found

that differences between leukaemia subtypes were dominated

by stronger and consistent differences between cell lines and

clinical samples. This observation indicates that the most

important common denominator of cell lines at a molecular

level are gene alterations linked to their immortalisation (an

essential feature of any type of cancer cell line), which, in terms

of gene expression, apparently overrule type-specific gene

alterations, such as chromosomal translocations that define the

respective clinical entities. The gene ontology analysis con-

firmed this hypothesis and showed that in cell lines, genes

related to DNA or RNA metabolism and genes related to

macromolecule synthesis are particularly active. In contrast, in

clinical samples, genes related to immune or host response are

overexpressed.

We believe that these observations must be taken into

account when experimental data on the molecular pathology

of leukaemia obtained from leukaemic cell lines are

extrapolated to clinical samples, given the fundamental

differences in gene expression profiles between the two

groups.
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Table I. Top 24 differentially expressed genes in cell lines (K562, NB4, HL60) compared with clinical samples (CML, APL, AML M5).

Rank Probeset Id Gene symbol Log 2 fold change Adjusted P-value Gene title

1 203820_s_at IMP-3 3Æ9 1Æ2 · 10)15 IGF-II mRNA-binding protein 3

2 209120_at NR2F2 3Æ3 4Æ0 · 10)14 Nuclear receptor subfamily 2, group F, member 2

3 218976_at DNAJC12 3Æ3 4Æ9 · 10)13 DnaJ (Hsp40) homologue, subfamily C, member 12

4 205194_at PSPH 2Æ3 8Æ9 · 10)12 Phosphoserine phosphatase

5 219371_s_at KLF2 )3Æ9 1Æ7 · 10)11 Kruppel-like factor 2 (lung)

6 209434_s_at PPAT 2Æ1 2Æ1 · 10)11 Phosphoribosyl pyrophosphate amidotransferase

7 208961_s_at COPEB )3Æ5 2Æ9 · 10)11 Core promoter element binding protein

8 204228_at PPIH 2Æ1 3Æ7 · 10)11 Peptidyl prolyl isomerase H

9 205394_at CHEK1 2Æ1 5Æ2 · 10)11 CHK1 checkpoint homologue

10 214155_s_at LOC113251 1Æ8 8Æ8 · 10)11 c-Mpl binding protein

11 213435_at SATB2 2Æ7 8Æ8 · 10)11 SATB family member 2

12 219006_at C6orf66 2Æ3 2Æ2 · 10)10 Chromosome 6 open reading frame 66

13 208763_s_at DSIPI )2Æ8 2Æ3 · 10)10 Delta sleep inducing peptide, immunoreactor

14 219479_at KDELC1 1Æ9 7Æ2 · 10)10 KDEL (Lys-Asp-Glu-Leu) containing 1

15 203696_s_at RFC2 1Æ5 7Æ2 · 10)10 Replication factor C (activator 1) 2,

16 209406_at BAG2 3Æ0 1Æ1 · 10)9 BCL2-associated athanogene 2

17 209891_at Spc25 2Æ0 1Æ1 · 10)9 Kinetochore protein Spc25

18 203281_s_at UBE1L )1Æ4 1Æ7 · 10)9 Ubiquitin-activating enzyme E1-like

19 204795_at PRR3 1Æ3 2Æ3 · 10)9 Proline rich 3

20 209832_s_at CDT1 3Æ0 2Æ3 · 10)9 DNA replication factor

21 222024_s_at AKAP13 )2Æ7 4Æ3 · 10)9 A kinase (PRKA) anchor protein 13

22 209900_s_at SLC16A1 2Æ7 4Æ3 · 10)9 Solute carrier family 16

23 203957_at E2F6 1Æ6 4Æ5 · 10)9 E2F transcription factor 6

24 213320_at HRMT1L3 1Æ8 4Æ6 · 10)9 HMT1 hnRNP methyltransferase-like 3

Positive (or negative) mean log2 fold change indicates upregulation (or downregulation) in cell lines compared with fresh samples (refer to Table S1.

for the extensive gene list).

P-values were adjusted to account for multiple testing with a false discovery rate approach (Benjamini & Hochberg, 1995).
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Supplementary material

The following supplementary material is available for this

article online:

Table SI. This Table lists all probe sets, ordered by

decreasing evidence for differential expression between fresh

samples (CML, AML M3, AML M5) and cell lines (K562, NB4,

HL60). Positive log fold changes indicate upregulations in cell

lines compared with fresh samples. When multiple probe sets

were reporting for the same gene, only the most significant was

kept.

Table SII. GO analysis of top 1000 upregulated genes

(overexpression in cell lines compared with clinical samples).

Table SIII. GO analysis of top 1000 downregulated genes

(underexpression in cell lines compared with clinical samples).

This material is available as part of the online article from

http://www.blackwell-synergy.com
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