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Abstract: Mycotoxin contamination continues to be a food safety concern globally, with the most toxic
being aflatoxins. On-farm aflatoxins, during food transit or storage, directly or indirectly result in the
contamination of foods, which affects the liver, immune system and reproduction after infiltration
into human beings and animals. There are numerous reports on aflatoxins focusing on achieving
appropriate methods for quantification, precise detection and control in order to ensure consumer
safety. In 2012, the International Agency for Research on Cancer (IARC) classified aflatoxins B1, B2,
G1, G2, M1 and M2 as group 1 carcinogenic substances, which are a global human health concern.
Consequently, this review article addresses aflatoxin chemical properties and biosynthetic processes;
aflatoxin contamination in foods and feeds; health effects in human beings and animals due to
aflatoxin exposure, as well as aflatoxin detection and detoxification methods.
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1. Introduction

Food contamination is a global concern in the stages of the production, distribution and
consumption of agricultural and processed products [1–10]. From the perspective of a joined and
integrated approach to food research, three aspects of foods and the food chain should be investigated:
quality, safety, and potential nutraceutical value [11–23]. Food safety is currently a priority in the
processes of the production, processing and distribution of food products. Micro-fungi such as
Penicillium, Fusarium and Aspergillus that grow on foods and feeds when conditions are suitable,
are able to release secondary metabolites (mycotoxins) that endanger the health of humans and
animals after being consumed [24–31]. The Centers for Disease Control and Prevention (CDC) reported
that approximately 4.5 billion people are chronically exposed to mycotoxins [32]. There are over
300 mycotoxins, the most important of which include aflatoxins (AF), patulin, fumonisins, ochratoxins,
ergotamine, deoxyvalenol, and zearalenone [33–36]. Aflatoxins are the main mycotoxins synthesized
by Aspergillus flavus, A. parasiticus and A. nomius [37–39]. Aflatoxin-related contamination by fungi
can occur in food and feed products (e.g., cocoa, spices, figs, rice, wheat, maize, sesame seeds,
millet, and groundnuts) during the processes before and after harvesting [40–52]. Moreover, AF can
contaminate commercial products such as cosmetics, cooking oil, and peanut butter. The Food and
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Agriculture Organization (FAO) reported that 25% of global food crops can be contaminated by
mycotoxins [53]. Although much research has been conducted in this area, AF-related contamination is
still a problem in agriculture and human health worldwide [54]. Because of the adverse effects of AFs,
these compounds have been included in the European Union’s Rapid Alert and Food Alert System
(RASFF) in 2008 [55].

2. Characteristics of Aflatoxins

Aflatoxins are chemically derived from difuranocoumarin with a coumarin nucleus-based bifuran
group and a lactone ring (AFGs) or a pentanone ring (AFBs and AFMs) [56]. Aflatoxin contamination
is highly influenced by environmental factors [57]. Battilani et al., in 2016, reported that the risk of
AF contamination can be increased in cereals following an elevation in the rate of temperature for
every 2 ◦C in European countries, including Italy, Spain, Portugal, Turkey, Cyprus, Albania, Bulgaria,
and Greece [58]. Moreover, Moretti et al., in 2019 estimated that the risk of AF contamination in
maize may be enhanced in Europe because of desired climatic conditions in the next thirty years [59].
Aflatoxin-forming species require temperatures of 25–37 ◦C and moisture of 80–85% for growth [60].
Therefore, climate changes can alter the temperature and water activity (aw) of foods and feeds that
affect the expression level of structural (aflD) and regulatory (aflS and aflR) genes and thus induce
AF secretion by Aspergillus fungi [61,62]. Reverse transcription polymerase chain reaction (RT-PCR)
findings showed that the minimum and maximum expression levels of regulatory genes were at the
temperatures of 20–37 ◦C and 28 ◦C, respectively, highlighting the importance of temperature in the
synthesis of AF [62]. Bernáldez et al. in 2017 found that the temperature of 30 ◦C and the water activity
of 0.99 in maize were the optimal conditions for the growth of A. flavus according to the analysis
of temperature and aw interaction affecting the expression level of aflR [63]. In a study by Lv et al.,
the maximum production of AFB1 was at the temperature of 33 ◦C and the water activity of 0.96 aw [64].
Gizachew et al. in 2019 reported that the maximum level of AF production was at the temperature of
27 ◦C and the water activity of 0.90 aw in A. flavus and A. parasiticus in ground Nyjer seeds [65]. pH is
another factor affecting AF production, where maximum and minimum AF production occurs in acidic
and basic conditions, respectively [66].

During the process of AF biosynthesis in crops by A. flavus and A. parasiticus, the primary substrate
of hexanoyl is converted to polyketide using a polyketide synthase and two fatty acid synthases [67–71],
followed by the production of norsolorinic acid anthrone from the polyketide using polyketide synthase
and then the conversion of norsolorinic acid anthrone to norsolorinic acid (NOR) as the first stable
precursor of AF as shown in Figure 1 [72–75]. Then, NOR converted to averantin via reductase
enzyme, see Figure 1 (1) [76] and then 5′-hydroxyaverantin (HAVN) produced from averantin by
monooxygenase enzyme see Figure 1 (2) [77]. Next, the HAVN forms 5′-oxoaverantin (OAVN) using
dehydrogenase, see Figure 1 (3), and subsequently OAVN is converted to averufin (AVF) using cyclase,
see Figure 1 (4) [78–80], followed by the conversion of AVF to hydroxyversicolorone (HVN) via the
Baeyer–Villiger reaction, see Figure 1 (5) [81]. After that, versiconal hemiacetal acetate (VHA) is formed
via the oxidation of HVN, see Figure 1 (6) that is converted to versiconol acetate (VOAc) and then
versiconol (VOH), see Figure 1 (7) [82]; the VOH then uses esterase to produce versiconal, see Figure 1
(8) that is subsequently converted to versicolorin B via cyclase, see Figure 1 (9) [83], followed by the
conversion of versicolorin B to versicolorin A and dimethyl-dihydro-sterigmatocystin (DMDHST) as
shown Figure 1 (10); then the conversion of versicolorin A and DMDHST to dimethyl-sterigmatocystin
(DMST) and dihydro-sterigmatocystin (DHST), respectively, see Figure 1 (11) [84–86].
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Figure 1. Overview of aflatoxins’ biosynthesis. Figure 1. Overview of aflatoxins’ biosynthesis.

Next, O-methyltransferases plays central role in the biosynthesis of AFs to convert the intermediates
of DMST and DHST to sterigmatocystin (ST) and dihydro-O-methylsterigmatocystin (DHOMST),
respectively, as shown in Figure 1 (12) [87]. Afterwards, O-methylsterigmatocystin (OMST) is produced
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from ST, see Figure 1 (13); finally, OMST and DHOMST lead to the production of AFs, as shown in
Figure 1 (13b and 14) [88–95]. Over 20 AF have been identified so far, of which, aflatoxins B1 (AFB1),
B2 (AFB2), G1 (AFG1) and G2 (AFG2) have been characterized under UV radiation where AFB1 and
AFB2 exhibit a strong blue fluorescence while AFG1 and AFG2 show greenish yellow fluorescence
(Figure 2) [96]. According to the evidence, only AFB1/B2 are produced by A. flavus and AFB1/B2/G1/G2
are produced by A. parasiticus, indicating a difference in the origin of AF [97]. Aflatoxin M1 (AFM1)
and AFM2 are not normally present in crops, but the metabolites of these compounds can be separated
from the meat and milk products because of consuming AF-B1/AF-B2-contaminated feed [98,99].
The toxicity levels of AF are different according to the following order of toxicity: AFG2 < AFB2 <

AFG1 < AFB1 [100]. Aflatoxins are soluble in organic solvents (e.g., chloroform and methanol) and
slightly soluble in water, but insoluble in non-polar solutions (e.g., phenyl, cyclohexyl, ethyl, octyl,
and octadecyl) [101,102]. Furthermore, the acid pKa of AF as a heat-stable compound is 17.787, with a
molecular weight range of 312–346 Daltons [103].Foods 2020, 9, x FOR PEER REVIEW 5 of 28 
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3. Contamination of Foods and Feeds

Different factors such as season, post-harvest and management activities, food type and
geographical location, have been known to influence AF contamination of a wide variety of foods,
feeds thereby causing economic losses [104]. Table 1 reports information on aflatoxins levels in
different foods and countries. Analytical methods are also indicated, namely: High Pressure Liquid
Chromatography (HPLC); enzyme-linked immunosorbent assay (ELISA), Liquid Chromatography
coupled to Mass Spectrometry (LC-MS/MS).

Table 1. Prevalence and levels of aflatoxins in different foods from different countries.

Aflatoxin Type Food/Feed Type Area of Origin Sample Size Mean and/or Median Levels Range Levels Analysis Method Reference
AFB1 Black tea Pakistan +76% 0.11 and 16.17 µg·kg−1 0.08–8.24 µg·kg−1 HPLC [105]

AFB1 Chinese condiment
(Doubanjiang) China +34% 4.78 ± 0.16 µg·kg−1 1.26–16.41 µg·kg−1 ELISA [106]

AFB1 Peanuts Zambia +44% 0.45 µg·kg−1 0.015–46.60 µg·kg−1 HPLC [107]
AFB1 Spices Italy +15% 0.30 µg·kg−1 0.59–5.38 µg·kg−1 HPLC [108]
AFB1 Maize flour Turkey +66% 0.20 µg·kg−1 0.041–1.12 µg·kg−1 HPLC [109]
AFB1 Maize Serbia +57% 11.4 ± 14.5 µg·kg−1 1.3–88.8 µg·kg−1 HPLC [110]
AFM1 Milk Portugal +27% 23.4 ± 24.0 ng·L−1 0.005–0.069 µg·kg−1 ELISA [111]
AFM1 Milk Indonesia +95% 216 ng·L−1 24–570 ng·L−1 ELISA [112]

AFM1 Milk China +80% 23.7 ng·L−1 5.1–104.4 ng·L−1 ELISA and
LC-MS/MS [113]

AFM1 Milk Lebanon +58% 0.035 µg·L−1 0.011–0.440 µg·kg−1 HPLC [114]
AFM1 Infant formulae Mexico +20% 40 ± 99 ng·L−1 40–450 ng·L−1 HPLC [115]

AFB1, AFB2,
AFG1, and AFG2 Household maize Kenya +100% 62.5 µg·kg−1 2.14–411 µg·kg−1 UHPLC [116]

Katsurayama et al., have reported the occurrence of AF in Brazilian rice as less than 14% [117].
They observed that A. flavus was observed either in rice or in their cultivation soils from both
drylands and wetlands. Initially, five different fungi were isolated and identified on the basis of
phenotypic (extrolite and morphology traits), polyphasic and molecular (beta-tubulin gene sequences)
properties and then analyzed for AFB1 production, of which, only 17% were able to produce AFB1.
Using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and modified quick, easy,
cheap, effective rugged, and safe (QuEChERS) techniques, Zhao et al., showed that wheat and cracker
samples from Chinese supermarkets had AFB1 contaminations of 18.8% and 8.2%, respectively [118].
Other researchers utilized high-performance liquid chromatography with fluorimetric detection
(HPLC-FLD) and competitive enzyme-linked immunosorbent assay (ELISA) techniques to analyze
804 buffalo and cow milk samples for the detection of AFM1, and found a milk sample with AF
contamination more than European permissible level (0.05 µg·kg−1) [119]. The same methods were
employed by Bahrami et al., to evaluate the AFM1 occurrence in traditional dairy products, and the
results indicated an AFM1 prevalence of 44.6%, 65.3% and 84.3% in the raw goat, cow and sheep
milk, respectively [120]. Granados-Chinchilla et al., assessed food and feed samples for the presence
of AF, and the highest AF prevalence was 27.8% and 38.6% for corn ingredients and white corn,
respectively [121]. In a study by Heshmati et al., dates, apricots and figs showed a contamination of AFs
lower than the maximum limit (4 µg·kg−1) reported by the European Union (EU) but dried mulberry
exhibited a higher level (4.12 µg·kg−1) [122,123]. In a study by Lippolis et al., ginger collected in the
rainy season showed AF contamination exceeding the EU limit [124]. Singh and Cotty., reported more
than 60% contamination of AFB1 in chilies spice samples [125].

4. AF Detection Strategies

The detection of AFs is performed by several conventional methods based on the emission
and absorption characteristics, such as liquid chromatography mass spectroscopy (LC-MS) [126],
thin layer chromatography (TLC) [127], gas chromatography (GC) [128], high-performance liquid
chromatography (HPLC) [129], immunoaffinity column assay (ICA) [130], and enzyme-linked
immunosorbent assay (ELISA) [131].

Chromatographic techniques such as HPLC, TLC, LC-MS, and GC are calculated in accordance
with the interaction energy of the solute with the stationary phase and the mobile phase. The separated
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components are distributed between two mobile and stationary phases. The mobile phase, such as
supercritical fluids, liquids and gases, penetrate along or through the stationary bed (solid or liquid).
The samples needed for analysis are first dissolved in the mobile phase and then used in the stationary
phase as a spot. The sample carries along the mobile phase and sorbent, which leads to differential
partitions of compounds between stationary and mobile phases in accordance with the moving rate of
different components of the sample. The limit of quantification (LOQ) for AFB1, AFB2, AFG1 and
AFG2 was reported as 0.5 mg·L−1 using the HPLC method in enriched milk and plant-based beverages,
meaning it was lower than the maximum EU level [132]. In a study, the levels of AFG1, AFB1, AFG2
and AFB2 were determined in plant-based beverages and enriched milk samples using the LC-MS/MS
and HPLC analysis, the results of which the showed a recovery range of 82–104%, an LOQ value of
0.5 mg·L−1 and a relative standard deviation of <9.7%, suggesting some merits for this method such
as a shortened time and reduced cost of data analysis due to ease of use and the need to consume a
smaller solvent [133].

The specific antigen-antibody or ligand-receptor bindings make it possible to quantify complexes
by immunochemical methods like ELISA and ICA through the absorption of photon energy using the
spectrophotometry. Different labels such as radioisotopes, fluorophores and enzymes can be used to
amplify the binding process for better signal recognition. In a study by Mohammedi-Ameur et al.,
the levels of AFM1 was detected by ELISA method, which ranged between 95.59 and 557.22 ng·L−1

with a total mean concentration of 71.92 ng·L−1 in raw milk, thereby exceeding the USA and EU
allowance limit (500 ng·L−1 and 0.050 µg·kg−1) [134].

Another important approach with regard to AF detection is immunosensor techniques such as
electrochemical immunosensors, optical immunosensors, and piezoelectric quartz crystal microbalances
that is a biosensor applying antigen or antibody as a biodetector via a signal transducer, such as
carbon, gold and graphite, to detect species-specific binding to complement component. In a study by
Selvolini et al., an inexpensive and simple approach was used as an electrochemical enzyme-linked
oligonucleotide sensor to detect the AFB1 in corn samples, and the findings showed a limit of detection
of 0.086 ng·mL−1 and dose–response curve of 0.1–10 ng·mL−l [135]. In another study, the aptamer
molecular beacon assay was used for the rapid detection of AFB1, which could detect AFB1 spiked in
diluted liquor wine, methanol, or corn flour samples with the aid of an aptamer probe [136].

Despite many advantages, the conventional techniques require special skills and are
time-consuming methods, so recent efforts have been made to design novel rapid and easy
approaches to detect AFs such as hyperspectral imaging (HSI) [137], non-destructive methods based
on fluorescence/near-infrared spectroscopy (FS/NIRS) [138] and polymerase chain reaction (PCR).

The molecular structures of substances can be characterized by fluorescence spectrophotometry on
the basis of absorption in UV/visible region, but the absorption processes have been employed for some
molecules on the basis of various wavelengths of light emission. The molecules can be analyzed and
characterized by fluorescence through the emission of energy at specific wavelengths, thus measuring
AF (5 to 5000 µg·kg−1) within less than 5 min. Rui et al., introduced highly selective surface molecular
imprinted polymers (FDU-12@MIPs) approaches as a potent AF adsorbent from AF-contaminated
cereals [139]. To this end, the FDU-12@MIPs were first characterized by techniques, including X-ray
diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX)
and attenuated total reflection-Fourier transform-infrared spectroscopy (ATR-FT-IR). Subsequently,
experiments were continued to analyze rice, peanut, corn, wheat and soybean samples for the presence
of AFB1, B2, G1 and G2 using the coupling of HPLC to FDU-12@MIPs. According to the results,
an acceptable linear response was obtained for studied AF, ranging from 0.1 to 50 µg·kg−1, with an
R2 ranging from 0.9992 to 0.9996. In this way, the FDU-12@MIPs acted as an impressive adsorbent
for the solid-phase extraction to enrich desired AFs in the real samples. Aflatoxin B1 contamination
of maize kernels was detected by Kimuli et al., using short-wave infrared (SWIR) hyperspectral
imaging (HSI) technique where the maize kernels were categorized by some analytical approaches,
including principal component analysis (PCA), partial least squares discriminant analysis (PLSDA)
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and factorial discriminant analysis (FDA) [140]. Based on the PCA findings, the control kernels were
partially separated from kernels contaminated by AFB1 for each variety, but there was no pattern of
separation between the pooled samples. The best classification model of PLSDA was obtained by
combining first derivative pre-treatments and standard normal variate, with accuracies of 96% and
100% in validation and calibration from Illinois variety, respectively. The best classification model
of AFB1 was achieved by FDA on raw spectra, with 100% accuracy in validation and calibration for
Nebraska and Illinois varieties. It should be noted that there were poor classification models of AFB1
for the pooled samples when comparing with individual varieties for either PLSDA or FDA models,
which can be attributed to the chemical constituent limited variation and also there might have been the
introduction of some factors effect such as moisture content, orientation, and year of harvest on these
results. The combination of SWIR spectra with spectra pre-treatments and chemometrics predisposed
the detection of maize kernels at different AFB1-coated varieties. In accordance with the suggestion of
the study, the accuracy of detecting the AFB1 contamination might be affected by the reinforcement of
maize kernel constituents like lipid, starch, protein and water in the pooled samples.

PCR technique is able to detect successfully mycotoxigenic fungi present in samples through the
co-amplification of species-specific genes and regulatory or structural genes associated with pathways
of mycotoxin production. Singh et al., employed real-time PCR to detect AF and found that AFs were
present in 53 out of 129 poultry/cattle feed samples [141].

5. Toxicity and Health Impacts of Aflatoxins

Aflatoxin-contaminated foods and feeds are associated with health risk for human beings and animals.
Aflatoxins have been shown to have different health impacts such as hepatotoxicity [142], mutagenesis [143],
carcinogenesis [144], immunosuppression [145], neurotoxicity [146], epigenetic effects [147],
reproductive dysfunctions [148] and stunted growth [149]. There have been many studies that scrutinize
the mechanisms of these health effects [150–152]. Thus, different and strict regulations have been globally
implemented to control the contamination of AF in foods and feeds aimed to maintain human and animal
health. The maximum permissible levels of AF for human consumption range from 4 to 30 µg·kg−1

depending on the food type [153]. The maximum allowed levels of total AFs by the EU is 2 µg·kg−1 for
AFB1 and 4 µg·kg−1 for total AFs [154,155], but 20 µg·kg−1 of AFs in the United States [156,157]. The LD50

or 50% Lethal Dose value for AFs was 18 mg·kg−1 in rats and 0.3 mg·kg−1 in rabbits [158].
In a study by Li et al., the dietary 0.6 mg·kg−1 of AFB1 inhibited chicken spleen growth via

G0/G1 cell-cycle arrest, as well as reduced mRNA expression of cyclin D1 and elevated CDK6,
p21/53 and ATM expression, suggesting that AFB1 induced G0G1 phase arrest through activated
ATM-p53-p21-cyclin D/CDK6 route in the splenocytes [159]. Chen et al. investigated whether
the toxicity of AFB1 on Leydig cells could be attributed to the enhancement of ROS generation,
the prevention of T-biosynthesis gene expression, the reduction in Leydig cell count, and induction
of cell apoptosis via AMPK/mTOR-mediated suppression of autophagic flux [160]. In an in vitro
study, Liu et al., reported genotoxic impacts induced by AFB1 and MC-LR combinative exposure in
hepatocytes through oxidative stress and DNA base excision repair genes [161]. AF-contaminated
feeds (0.3 and 0.6 mg·kg−1) among male broilers could increase the apoptotic splenocytes through
elevated oxidative stress [162]. AFB1-induced hepatocarcinogenesis can be developed by the impacts
of aldehydes production following the formation of hepatic AFB1 metabolism-induced LPO, as some
of these effects are the induction of a hepatic prone to mutagenesis induced by DNA damage,
DNA repair prevention, mutated codon 249 of p53 gene, DNA damage induction and LPO cycle
propagation [163]. Frequent consumption of AFB1 in adult male rats impaired the hypothalamic
regulation of neuropeptides in feeding behaviour [164]. Peng et al. reported that AFB1 could influence
apoptosis and the expression of Bax, Bcl-2, and Caspase-3 in the thymus and bursa of fabricius in
broiler chickens [165].
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6. Methods of Aflatoxin Detoxification

High AF detoxification resistance to common treatment strategies such as pasteurization and
sterilization have been reported, therefore necessitating the development of effective physical,
chemical and biological approaches to control AF [166–170].

Aflatoxin detoxification may occur through the degradation of its structure using different gases or
chemical agents that oxidize (e.g., hydrogen peroxide or ozone) or hydrolase (e.g., aldehydes, bases or
acids) or thermal treatment. In the hydrolysis method of detoxification, acidic and alkaline conditions
are able to open the lactone rings of AF to form a water-soluble compound called beta-keto acid that is
easily removed from the sample by rinsing with water (Figure 3). Aflatoxin B1-contaminated soybean
(7.4–8.2 µg·kg−1) treated by tetraic acid for 18 h showed 95% detoxification using High Performance
Liquid Chromatography with Fluorescence Detection (HPLC-FLD) as a quantitative analysis as reported
in Figure 3 (1), and in Figure 3 (6) [171]. Saladino et al., reported 89% detoxification of AFB1 in Italian
piadina exposed to isothiocyanates with antimicrobial properties, thereby inhibiting A. parasiticus
growth on the samples as illustrated in Figure 3 (2) [172]. Mohammadi et al., observed a 50% AFM1
detoxification (0.56 µg·kg−1) in milk samples using a chemical detoxification method via 80-mg·min−1

ozonation for 5 min, see Figure 3 (3) [173]. A 60 µmol·mol−1 ozonation of AFB1-contaminated wheat
for 180 min led to a 95% detoxification as illustrated in Figure 3 (4) [174]. A 40-min ozonation of the
AFB1-contaminated corns with 13.5% of moisture content reduced the AFB1 level up to 9.9 µg·kg−1 from
83 µg·kg−1 as shown in Figure 3 (5) [175]. Rastegar et al., investigated the removal of AFB1 by roasting
with lemon juice and/or citric acid in naturally contaminated pistachio nuts [176]. They reported a 93.1%
decrease in AFB1 level after roasting pistachio nuts (50 g) in the presence of water (30 mL), lemon juice
(30 mL) and citric acid (6 g) at a temperature of 120 ◦C for an hour. They also reported a 49% AFB1
level decrease following an alteration of citric acid and lemon juice concentration. Therefore, there was
a synergistic impact between lemon juice/citric acid concentration and heating on AFB1 degradation.
Rushing and Selim converted over 71% AFB1 to its detoxified form, AFB2a, in contaminated feed
through a similar citric acid treatment [177]. Chen et al. employed the ozonation technique to detoxify
65.9% and 65.8% of AFB1 and total AFs in the peanuts, respectively, and stated that the exposure time
and the ozone concentration were two factors affecting the detoxification of AFs [178]. Aflatoxins can
be attenuated by chemical degradation of nutrients in spite of some disadvantages, such as the high
cost, and low aesthetic quality of treated foods and feeds.

Thermal inactivation (e.g., microwaving, extrusion, and heating), irradiation ultraviolet light
(UV) and gamma radiations), and adsorption agents (e.g., bentonite, hydrated sodium calcium
aluminosilicate (HSCAS)) are the most prevalent physical techniques to detoxify AF (Figure 4).

High temperatures of between 237 and 306 ◦C are heating methods of detoxification.
Numerous researchers recruited gamma radiation decontamination called as a cold process to extend
food shelf life by declining microbial density. Mycotoxins are significantly degraded by effective doses
of gamma radiation. Iqbal et al. reported 92% to 98% detoxification of AFB1 in chili samples exposed
to 6-kGy dose of gamma (γ) radiation, see Figure 4 (1) [179]. Another study showed about 94.5% AFB1
detoxification in 50 µg·kg−1 maize feeds following 10-kGy dose of γ irradiation, see Figure 4 (2) [180].
Ghanghro et al. found 82% to 90% detoxification of AFB1 wheat grain (200 µg·kg−1) following 160-min
UV radiation as shown in Figure 4 (3) [181]. Mao et al., observed a 96% detoxification of AFB1 peanut oil
(128 µg·kg−1) following 30 min UV irradiation using Ultra Performance Liquid Chromatograph-Thermo
Quadrupole Exactive Focus mass spectrometry/mass spectrometry (UPLC-TQEF-MS/MS analysis) as
shown in Figure 4 (4) [182]. In another study, the effect of microwave heating wheat samples at 160 ◦C
for 6 min resulted in a 54% reduction in AFB1 as shown in Figure 4 (5) [183]. In a study by Zheng et al.,
AFB1-contaminated peanut meals were exposed to extrusion cooking process, and finally the results
showed an AFB1 degradation rate of 77.6% ± 2.2% at a temperature of 150 ◦C. (Figure 4 (7)) [184].
Kanapitsas et al. observed a 65% AFB1 reduction in raisin samples following a 10kGy gamma
irradiation [185]. Wang et al., reported that 15-s pulsed light treatment decreased AFB1 and AFB2
levels up to 90.3% and 86.7%, respectively, in rice bran samples gathered from the Farmers’ Rice
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Cooperative (West Sacramento, CA, USA), whereas 80-s treatment decreased the AFB1 and AFB2
levels up to 75.0% and 39.2% in rough rice, respectively [186]. Despite several physical detoxification
methods, these approaches eliminate the AFs in part and are time-consuming.
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In the adsorption techniques, toxin-absorbent binding in the gastrointestinal tract can decrease
the content of mycotoxins, and proper positioning of functional groups and polarity can be effective
for better adsorption of AF. The main adsorbing compounds are synthetic polymers (polyvinyl
pyrrolidone, cholestyramine, cellulose, polysaccharides, peptidoglycans, glucomannans, and alumino
(hydrated sodium calcium aluminosilicate [HSCAS], bentonite, clay, sodium and calcium aluminum
silicates). Moussa et al., in Egypt, evaluated the efficacy of calcium bentonite clay and kaolin on
AFM1-contaminated raw milk samples (50 ng·L−1) collected from dairy shops [187]. They treated
the samples with different concentrations of calcium bentonite clay and Kaolin for the detoxification
of AFM1, and then detected the AFM1 level by ELISA. According to their findings, the mean AFM1
concentration in raw milk samples was 10.7 ± 0.89 ppb, indicating that the raw milk samples exceeded
the EU permissible limits (50 ng·L−1) and Egyptian standards (50 ng·L−1) of AFM1 in milk; the rate of
AFM1 detoxification was between 86.1% and 97.7%. In a study, highly active sodium bentonite (SB)
soil (SB-E) was used to absorb AF, the results of which showed the maximum binding capacity of these
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biological adsorbents to AF at pH values of 6.5 and 2, with high enthalpy (-H) and confirmed their
safety approved by Hydra bioassay [188].
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The application of enzymes and microorganisms in AF bio-detoxification is a good alternative
to conventional techniques in the food industry [189–205] (Figure 5a,b). There are two mechanisms
for AF detoxification by microbial methods, these are: cell wall component adhesion and microbial
enzymes. Lactic acid bacteria (LAB) and yeast strains are utilized in fermented food products and
beverages as starters due to their ability to detoxify AFs. Aflatoxin bio-absorption mechanisms of
Lactobacillus, fungi and other bacteria have been reported by several authors [206–209]. Saladiano et al.
reported 84.1–99.9% reduction in AF levels in contaminated bread due to LAB and yeast fermentation
for 3–4 days, see Figure 5a (1) [210]. High-Performance Liquid Chromatography analysis exhibited
63% detoxification of AFM1 in milk (100 µg·kg−1) through non-covalent electrostatic binding such as
Van der Waals forces and hydrogen bonds because of the inoculation of L. rhamnosus GG (5 × 108 CFU
mL−1) at a temperature of 37 ◦C for 18 h, see Figure 5a (2) [211]. Sarlak et al. removed AFM1 from
doogh by adding 9 log CFU·mL−1 of L. acidophilus at pH 4.2 and observed less reduction in non-viable
(heat-killed) bacteria than in viable bacteria, see Figure 5a (3) [212]. The co-administration of LAB
strains and inulin led to 55% detoxification of AFM1 in yogurt samples as illustrated in Figure 5a
(4) [213]. L. casei LC-01 reduced AFM1 levels by 58% in the fermented milk (Figure 5a (5)) [214].
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In the in vitro study of Panwar et al., 24-h incubation of probiotic lactobacilli in AFM1-contaminated
skim milk reduced AFM1 levels by up to 52% during digestion tests as shown in Figure 5a (6) [215].
Zeinvand-Lorestani et al., reduced AFB1 levels by 67% in the presence of laccase enzyme after two
days, see Figure 5a (7) [216]. Kefir microorganisms decreased AFB1 levels by 82% by binding to AFB1
(1 µg·kg−1) as shown in Figure 5a (8) [217]. Ma et al., used 109 cfu·g−1 of corn silage bacteria and
reached AFB1 levels to 0.35 µg·kg−1 within three days incubation period, see Figure 5b (10) [218].
A study by Rao et al. achieved the microbial AFB1 degradation rate of 94.7% using Bacillus licheniformis
CFR1 that had been confirmed via Electron spray ionization-Mass Spectrometry (ESI-MS), HPLC,
High-Performance Thin Layer Chromatography (HPTLC) analysis, see Figure 5b (11) [219]. In a study
by Sadeghi et al., L. acidophilus and L. brevis caused 50% detoxification of AFB1 after 24 and 48 h of
incubation, see Figure 5b (12) [220]. In an in vitro study by Fernandez et al., the strains of E. faecium
isolated from dog stool samples could eliminate AFB1 by 42% after 48 h of incubation, see Figure 5b
(13) [221]. Binding capacity of L. fermentum led to 85% detoxification of AFB1 in the media after two
hours incubation period, see Figure 5b (14) [222]. High-Performance Liquid Chromatography analysis
showed 1000-fold detoxification of AFs due to the starter culture with L. rhamnosus yoba (108 cfu·g−1),
see Figure 5b (15) [223]. According to findings, L. casei showed 98% AFB1 binding (4.6 µg·mL−1)
through bioabsorption process across cell wall peptidoglycan and polysaccharides (Figure 5b. 16) [224].
Others reported that AFB1 was detoxified by L. rhamnosus strain GG through binding to cell surface
proteins as shown in Figure 6 (4) [225]. In a study by Hernandez- Mendoza et al., L. reuteri strain
NRRL14171 and L. casei strain Shirota were able to show AFB1 detoxification activity by binding to
teichoic acids and peptidoglycans, see Figure 6 (4) [226]. Yiannikouris et al., demonstrated the central
function of (1→3)-β-D-glucans conformation of the bacterial cell wall in the interactions with AFB1 via
intermolecular hydrogen bonding and Van der Waals force, see Figure 6 (4) [227].

Rabie et al. found a 78% reduction in AFM1 in milk by Lactobacillus acidophilus and
Bifidobacterium lactis after one-day incubation [228]. Martínez et al. observed a decrease in AFM1 in
milk through the bio-degradation and bio-adsorbtion mechanisms in Pediococcus pentosaceus and
Kluveromyces marxianus [229]. In a study by Samuel et al., Pseudomonas putida could tolerate the
exposure of AFB1 (0.2 mg·mL−1) in the medium [230]. Based on the findings of FTIR, GCeMS, HPLC,
TLC and UV spectrometry analysis, AFB1 biotransformation to AFD1, AFD2, and AFD3, as shown in
Figure 6 (2) during 24-h incubation modulated AFB1 ring lactone and furan and declined the toxicity.
In another study, S. aureofaciens ATCC 10762, Rhodococcus erythropolis ATCC 4277 and Streptomyces
lividans TK 24, three species of Actinomycete, were co-cultured to degrade AFB1 in a liquid medium,
see Figure 6 (3) [231]. The results showed that AFB1 was detoxified by these strains through various
mechanisms; for example, the TLC method reported AFB1 degradation via R. erythropolis through the
lactone cleavage. According to an in vitro study by Chlebicz and Śliżewska, the level of AFB1 was
decreased by S. cerevisiae and Lactobacillus sp. by up to 65% and 60%, respectively, as illustrated in
Figure 5a (9) [232].

Liu et al. reported the detoxification of AFB1 in cottonseed meal by Cellulosimicrobium funkei
bacterium [233]. In a study by Hontanaya et al., dry mustard flour glucosinolates decreased AFs
in the nuts and fruits by 88–89% [234]. In a study, AFB1-contaminated foods were detoxified by
the manganese peroxidase (MnP) extracted from Phanerochaete sordida YK-624, a white-rot fungus,
see Figure 6 (1) [235].

The efficiency of AFB1 degradation was 86.0% after 48 h. The analysis of HR-ESI-MS and
H-NMR techniques demonstrated that the oxidization of AFB1 initially generated AFB1-8,9-epoxide
in the presence of MnP, and then the hydroxylation led to the production of AFB1-8,9-dihydrodiol.
According to other reports, the reductases from mycobacteria were able to detoxify AFB1 through the
AFs α,β-unsaturated ester moiety reduction, catalyzing the deazaflavin cofactor F420H2, as shown in
Figure 6 (5) [236]. The growth of fungus Pleurotus ostreatus on various agricultural residues leads to
the formation of ligninolytic enzymes involved in the detoxification of AFB1. Accordingly, Das et al.
co-cultivated AFB1-contaminated rice straw with P. ostreatus, the result of which was 89% detoxification
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of AFB1 [237]. The results of a study showed 100% prevention of AF formation in the presence of
natural powdered pomegranate peels (at the concentrations of 5%, 10%, 20%, combined with inoculated
rice, w/w) for the four month-storage of rice at the moisture of 18% and the temperature of 25 ◦C,
whereas lemon peels had inhibitory effect during three months [238]. In a recent study, Neem leaves,
which are agricultural residues by-products, inhibited AF formation within two and four months when
used in maize and wheat products, respectively [239].
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7. Conclusions

Aflatoxin contamination of foods and feeds results in economic losses and affects human and
animal health, either directly or indirectly. Inadequate knowledge in this area highlighted the necessity
of investigations into the chemical properties and biosynthetic processes of AFs and various mechanisms
of their detoxification, also considering possible natural agents against the proliferation of field pests
for the crops [240]. Numerous studies have been conducted recently to control these toxins, but many
are not yet developed at the commercial scale. Accordingly, further research is recommended to focus
on field-applicable new technologies for the control of AFs with the aim of protecting human and
animal food/feed safety and health. In general, all people involved in commodity value chains should
consider AF control measures to promote food safety, increase awareness about public health and
prevention, raise economic benefits, and decrease costs.
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