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Abstract

Background: The advent of next generation sequencing (NGS) has allowed the discovery of short and long non-
coding RNAs (ncRNAs) in an unbiased manner using reverse genetics approaches, enabling the discovery of multiple
categories of ncRNAs and characterization of the way their expression is regulated. We previously showed that the
identities and abundances of microRNA isoforms (isomiRs) and transfer RNA-derived fragments (tRFs) are tightly
regulated, and that they depend on a person’s sex and population origin, as well as on tissue type, tissue state, and
disease type. Here, we characterize the regulation and distribution of fragments derived from ribosomal RNAs (rRNAs).
rRNAs form a group that includes four (5S, 5.8S, 18S, 28S) rRNAs encoded by the human nuclear genome and two (12S,
16S) by the mitochondrial genome. rRNAs constitute the most abundant RNA type in eukaryotic cells.

Results: We analyzed rRNA-derived fragments (rRFs) across 434 transcriptomic datasets obtained from lymphoblastoid
cell lines (LCLs) derived from healthy participants of the 1000 Genomes Project. The 434 datasets represent five human
populations and both sexes. We examined each of the six rRNAs and their respective rRFs, and did so separately for each
population and sex. Our analysis shows that all six rRNAs produce rRFs with unique identities, normalized abundances,
and lengths. The rRFs arise from the 5′-end (5′-rRFs), the interior (i-rRFs), and the 3′-end (3′-rRFs) or straddle the 5′ or 3′
terminus of the parental rRNA (x-rRFs). Notably, a large number of rRFs are produced in a population-specific or sex-
specific manner. Preliminary evidence suggests that rRF production is also tissue-dependent. Of note, we find that rRF
production is not affected by the identity of the processing laboratory or the library preparation kit.

Conclusions: Our findings suggest that rRFs are produced in a regimented manner by currently unknown processes that
are influenced by both ubiquitous as well as population-specific and sex-specific factors. The properties of rRFs mirror the
previously reported properties of isomiRs and tRFs and have implications for the study of homeostasis and disease.
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Background
rRNAs are the most abundant RNA molecules in
eukaryotic cells [1, 2]. Processed rRNAs are modified and
bound to ribosomal proteins to help make up the small and
large subunits of the ribosomes [3, 4]. In the ribosome,
rRNAs form highly conserved secondary structures in order
to complex with ribosomal proteins while also recognizing
motifs on transfer RNA (tRNA) and messenger RNAs
(mRNAs) [5]. Four rRNAs (5S, 5.8S, 18S, and 28S) are
encoded by the human nuclear genome whereas two add-
itional ones (12S and 16S) are encoded by the mitochon-
drial (MT) genome [6, 7].
Each of the four nuclear rRNAs has multiple copies

scattered across the nuclear genome [6]. Three of the four
rRNAs, namely 18S, 5.8S, and 28S, are transcribed and
processed in the nucleolus from a single precursor mol-
ecule, the 45S rRNA [6]. A fourth rRNA, 5S, is transcribed
independently and later transferred to the nucleolus where
it combines with the 5.8S and 28S rRNAs to form the
large ribosomal subunit (LSU) [6, 8]. There is also a small
ribosomal subunit (SSU) whose rRNA component is the
18S rRNA. Both the SSU and LSU are assembled in the
nucleus before they are transported to the cytoplasm [8].
Once in the cytoplasm, the SSU and LSU combine to form
functional ribosomes [3].
The two MT rRNAs serve the same functions analogous

to those of their nuclear counterparts [7]. They are tran-
scribed from the circular MT genome in a polycistronic
fashion and processed in MT foci called nucleoids [7, 9].
Of the two, 16S combines with mito-ribosomal proteins
to form the MT LSU. Likewise, 12S rRNA combines
with mito-ribosomal proteins to form the MT SSU in
the mitochondriolus. Interestingly, the 5S rRNA is also
found in the mitochondria and has been shown to be
required for the translational function of the mitochon-
drial ribosome [10].
The 45S rRNA gene clusters or “cassettes” are located in

tandem repeats on the p-arms of the acrocentric chromo-
somes 13, 14, 15, 21, and 22 [3, 11]. Their exact copy
numbers vary from person to person but have been esti-
mated to be between ~ 60 and ~ 800 copies per haploid
genome [2, 12, 13]. Similarly, the 5S rRNA exists in
tandem repeats predominantly on chromosome 1 with
10–400 copies per haploid genome [2, 14]. Because they
are vital for the translation machinery of a cell, rRNA
genes are hypo-methylated and transcribed rapidly and
more frequently than other genes [3].
The MT rRNAs can also be transcribed independently

and at a higher rate than the other 22 tRNAs and 13
protein-coding genes that are also encoded by the MT
genome. This independent transcription is accomplished
by a unique transcription-termination sequence that is
located at the boundary between the 16S rRNA and the
downstream mitochondrial tRNALeu [9]. Of note, the

number of MT genome copies varies between MTs within
a cell, from cell to cell, and from person to person: this
has the potential to impact the overall abundance of MT
rRNAs [15, 16].
Increasingly, analyses of deep-sequencing datasets have

been drawing attention to the presence of short RNAs that
are produced routinely and abundantly from all six rRNAs
[17, 18]. These fragments, henceforth referred to as
“rRNA-derived fragments” or rRFs, have been reported in
multiple organisms including human [19]. These emerging
findings mirror previous reporting that each miRNA arm
produces a “cloud of isomiRs” [20] and that precursor and
mature tRNAs produce “clouds of tRFs” as well [21, 22].
The studies of rRFs become particularly relevant when

considered in the context of our long-standing work with
microRNAs (miRNAs), microRNA isoforms (isomiRs),
transfer RNAs (tRNAs), and tRNA-derived fragments
(tRFs). In a series of articles, we showed that the clouds
of isomiRs are produced constitutively in human tissues,
in health [23] and disease [24, 25]. Moreover, we showed
that a person’s race, population origin, and sex modulate
the clouds of isomiRs in health [23] and disease [24] and
do so in a tissue-specific manner [25]. In complete analogy
to the isomiRs, we also showed that the clouds of tRFs are
also produced constitutively in human tissues, in health
[26, 27] and disease [28–31], and are modulated by a per-
son’s race, sex, and population origin, as well as by tissue
type and tissue state, in health and disease [26, 28–31].
In what follows, we examine whether rRFs exhibit prop-

erties analogous to those we reported previously for iso-
miRs and tRFs. We first focus on a public collection of
transcriptomic data that are part of the 1000 Genomes
Project in order to understand global and population-
specific rRF characteristics [32]. The collection comprises
short RNA-seq datasets from many healthy individuals,
representing both sexes evenly, five population groups, and
two continents. Specifically, we investigate the production
of rRFs, within and across populations, and separately for
each sex, and for each of the six rRNAs. We also examine
the presence of rRFs in 80 uveal melanoma samples [33]
and 293T cells and extracellular vesicles [34]. Lastly, we
evaluate whether the profiles of rRFs change when samples
are processed by different laboratories or sequenced using
different library preparation kits.

Results
Overview of the rRF RNA-seq analysis pipeline
After removing all samples that came from facility “six”
(see the “Methods” section), there remained 434 RNA-
seq datasets from the 1000 Genomes (1KG) Project [32]
for our downstream analysis. The datasets represented
individuals belonging to five population groups: Utah
Residents with Northern and Western European Ances-
try (CEU), Finnish in Finland (FIN), British in England
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and Scotland (GBR), Toscani in Italia (TSI), and Yoruba
in Ibadan, Nigeria (YRI). In Fig. 1a, we present a pictor-
ial summary of the pipeline that we used to analyze the
434 LCL datasets. The pipeline begins with a brute-
force, deterministic, and exhaustive mapping of all se-
quenced reads on the 6 rRNAs. Only reads that matched
the rRNAs exactly are kept. The pipeline also keeps

track of rRFs that straddle either the 5′- or the 3′-end of
the six reference rRNAs (see the “Methods” section).
Any rRFs whose abundance does not satisfy a sample-
specific threshold determined by Threshold-seq [35] (see
the “Methods” section) are discarded. Figure 1b column
3 shows the number of unique rRFs produced from each
rRNA that passed the Threshold-seq cutoff. In addition

Fig. 1 The rRF analysis pipeline reveals many unique fragments. a Workflow of the pipeline. b Table showing the number of unique rRFs that
map to each rRNA and the number of rRFs per unit length, for the 434 LCL samples. The rRNAs were padded with 50 nts on each side. Note that
many rRFs have abundance ≥ 10 RPM. c Distribution of the number of LCL samples (out of 434) in which a given isomiR, tRF, or rRF could be
found at an abundance ≥ 10 RPM. The boxplots are grouped by genome of origin, nuclear or mitochondrial. d Boxplots show the distribution of
the average abundance (in RPM) for molecules belonging to each category. Only molecules with abundance ≥ 10 RPM were considered in our
subsequent analysis. Boxplots are grouped by genome of origin. c, d The width of the boxes is proportional to the number of unique molecules
in each category, and the horizontal bars in each box represent the median RPM
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to Threshold-seq, we normalize each rRF’s abundance to
reads-per-million (RPM), and for added stringency, we
enforce a stricter minimum threshold of ≥ 10 RPM. Fig-
ure 1b column 5 shows the number of unique rRFs pro-
duced from each rRNA that pass the 10 RPM cutoff.
During a final filtering stage, we discarded those rRFs
whose instances outside of rRNA space exceeded 2% of
all their genomic instances and a signal-to-noise ratio
(S/N) ≥ 50 (see the “Methods” section).

All six rRNAs produce many abundant short fragments
We find that all six rRNAs produce many abundant
rRFs. Column 3 in Fig. 1b shows the numbers of unique
rRFs from each rRNA that exceed the sample-specific
adaptive threshold determined by the Threshold-seq al-
gorithm [35] (see the “Methods” section) across the 434
analyzed datasets. Column 4 shows the same number
normalized by the length of the parental rRNA. Also
listed in the same panel are the numbers of unique rRFs
(column 5) that map to each rRNA and exceed the
threshold of 10 RPM. Column 6 shows the same num-
bers after they have been normalized by the different
rRNA lengths. Only 18,981 rRFs survive this stringent
threshold across all rRNAs. As can also be seen in
Fig. 1b, across all six rRNAs, the number of rRFs per
unit length range from 6.26 to 9.87, i.e., falls within a
narrow window of values, which suggest that rRFs are
processed at a consistent rate. For comparison purposes,
we also examined isomiRs (using the same brute-force
mapping as with the rRFs) and tRFs (using the MIN-
Tmap algorithm [36]) and computed their normalized
RPM abundance. For the isomiRs, tRFs, and rRFs, we
used as denominator the total number of sequenced
reads of each sample. There were 1522 tRFs and 1212
isomiRs whose abundance was at least 10 RPM.

Specific rRFs are present in all samples while others are
group-specific
Considering that all 434 samples belong to the same cell
type (immortalized B cells), we wanted to know if the rRFs
that map to each of the six rRNAs recur across these sam-
ples. To this end, and separately for each rRF, we counted
the number of samples (among the 434) in which each
rRF exceeded the stringent threshold of 10 RPM. We
combined the results for rRFs from the same rRNA into a
single boxplot (Fig. 1c). For comparison purposes, we also
generated the respective boxplots for the 1522 tRFs and
1212 isomiRs that also satisfy the threshold of 10 RPM.
The resulting distributions are shown side by side in
Fig. 1c. The width of each notched boxplot is proportional
to the number of unique fragments within the respective
type of short ncRNA; this number is also indicated in each
of the boxplots.

Despite the fact that the samples represent a single cell
type, the boxplots in Fig. 1c indicate that the bulk of the
rRFs associated with each of the six rRNAs appear in only
a fraction of the samples. The rRF distributions for 18S
and 28S are particularly notable: while these two rRNAs
produce many rRFs (4545 and 9263 respectively), most of
them are present in only a small fraction of the 434 sam-
ples (Fig. 1c). This suggests a dependence on other vari-
ables, a point that we will be addressing below.
It is important to stress that these observations regard-

ing rRF abundance are analogous to our previous findings
for isomiRs and tRFs [23, 25, 26, 29], which are recapitu-
lated by the respective distributions of Fig. 1c. For
example, note how the typical isomiR exists in only 21.9%
of the 434 samples (median = 95 samples). Of all present
isomiRs, only a small number are present in most of the
434 samples. A similar observation can be made for the
tRFs: here, again, only a very small number of tRFs appear
in most of the 434 samples.

rRFs are just as abundant as previously established types
of ncRNAs
Next, we examined the abundance of rRFs across all 434
LCL datasets by juxtaposing their normalized abundances
to those of isomiRs and tRFs (Fig. 1d). While the values of
the median abundance across all three types of RNAs are
essentially the same, it is worth noting that the abundances
of the individual RNAs span a very wide range, from 10 to
over 16,000 RPM with the rRFs spanning 10 to ~ 8000
RPM. Above, we mentioned that the number of unique
rRFs depends on the parental rRNA (Fig. 1b). However, it
is clear that the number of unique rRFs does not correlate
with rRF abundance. Indeed, as can be seen from Fig. 1d,
the rRFs and tRFs have similar abundance distributions
even though their respective molecular categories comprise
distinctly different numbers of fragments. Note also how all
depicted categories have outliers with extremely high
RPM values.

Both the length and sequence composition of rRFs are
relevant
In all of our analyses, we have been excluding sequenced
reads shorter than 16 nucleotides (nts). This is because
such short sequences that can map to, for example, a
tRNA or an mRNA are also more likely to map else-
where on the genome [37, 38]. This ambiguity makes it
difficult to pinpoint the true genomic origin of the re-
spective RNAs.
The 434 LCL samples contain many abundant frag-

ments with lengths between 16 and 33 nts that map to
the six reference rRNAs. To investigate which of these
putative rRFs can also be found outside of the “rRNA
space” (see the “Methods” section), we searched for each
such sequence across the entire genome using a brute-

Cherlin et al. BMC Biology           (2020) 18:38 Page 4 of 19



force, deterministic approach. This allowed us to calcu-
late for each k-mer the following “signal-to-noise” ratio
(S/N) (see the “Methods” section): number of instances
the k-mer has inside rRNA space over number of
instances the k-mer has outside of rRNA space. Only k-
mers that had an S/N ≥ 50 were considered further.
We found that the sequence composition of 5S rRFs is

rather unique among the six rRNAs. Even 5S rRFs with
only 16 nts have an S/N ≥ 63. The S/N for all combina-
tions of length and parental rRNA source are listed in
Table 1. As the table shows, the minimum length of the
rRFs that satisfy this cutoff differs for each of the six
rRNAs. The minimum lengths are as follows: 16 nts for
5S; 18 nts for 12S, 18S, and 5.8S; and 19 nts for 16S and
28S. Only rRFs that satisfied these minimum length cutoffs
and whose corresponding S/N ≥ 50 were used in the subse-
quent analyses.

rRFs arise from “hotspots” within each rRNA’s span
Next, we sought to determine where the various rRFs
map along each rRNA. We find that the rRFs can arise
from any portion of the parental rRNA’s span. To be
consistent with the notation that is used for tRFs [26–
31, 36], we refer to those rRFs that arise from the 5′-end
of an rRNA as “5′-rRFs,” those that arise from the inter-
ior of an rRNA as “i-rRFs,” those that arise from the 3′-
end of an rRNA as “3′-rRFs,” and those that straddle the
5′- or 3′-ends of an rRNA as “x-rRFs.” The sequences of
the 16,279 rRFs that survive the stringent thresholds
(Threshold-seq, ≥ 10 RPM, length cutoffs) are listed in
Additional file 4. For each rRF, we indicate its type (5′-
rRF, i-rRF, 3′-rRF, or the terminus crossing x-rRF). We

also list each rRF’s “license plate” extending to the rRFs
the labeling scheme we introduced for the tRFs in 2016
[27] and have been using to label the tRFs that are
currently in MINTbase [28]. The license plate labeling
scheme guarantees a unique label for each rRF and
vice versa, and is particularly suitable for labeling
rRFs given the numerous copies that they have on
the genome.
The heatmaps in Fig. 2a–c show a few examples of the

relative abundance of rRFs that map to highlighted re-
gions of the 28S, 16S, and 5S rRNAs. In each case, we
grouped samples from the same population into con-
secutive rows that we colored differently for each popu-
lation: CEU—purple; FIN—orange; GBR—cyan; TSI—
gray; and YRI—yellow. Adjacent to each heatmap are
boxplots indicating the distributions of the starting and
ending locations for the shown rRFs.
Several observations can be made readily. For instance,

in Fig. 2a shows that the 28S produces 5′-rRFs that begin
at position +1 in all 434 samples (all five populations and
both sexes). Notably, in many of the 434 samples, the 28S
rRNA also produces x-rRFs that begin at position -1 (data
not shown). Another observation is that the 16S region
shown in Fig. 2b produces i-rRFs preferentially in the four
European populations (CEU, FIN, GBR, and TSI) but not
in the African population (YRI).
The 3′-region of the 5S rRNA is shown in Fig. 2c.

Many of the rRFs that map to this portion of the rRNA
are 18 nts or 19 nts long. Of all the rRFs that map to the
5S rRNA, ~ 30% begin at position 103 and end primarily
at either position 120 or position 121 (i-rRFs and 3′-
rRFs respectively).

Table 1 Signal-to-noise ratio. We define the ratio as “rRF instances inside rRNA space” over “rRF instances outside of rRNA space.”
The value of S/N for each rRNA and rRF-length combination is shown

The shaded cells indicate length/rRNA combinations that do not pass our S/N ≥ 50 cutoff—the respective rRFs do not enter our analysis. The empty cells indicate
that there are no fragments with these lengths outside of the rRNA space
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The endpoints of rRFs do not always align with the
endpoints of the parental rRNAs
Our analyses of the rRFs’ endpoints led to an intriguing ob-
servation. We found that a number of observed rRFs with
abundance ≥ 10 RPM can either straddle the boundaries of
several reference rRNAs or avoid them altogether (see the
“Methods” section for reference identifiers). Figure 2d sum-
marizes this observation. The solid-line rectangles denote
the six rRNA transcripts. Positions that are present in the an-
alyzed rRFs and correspond to positions beyond the rRNAs’
reference boundaries (whether upstream or downstream) are
indicated in yellow, where the yellow boxes represent add-
itional nts. Positions that are proximal to either the 5′ or 3′
termini of an rRNA and are not present in any of the ana-
lyzed rRFs are indicated with dashed lines, whereas the
empty boxes represent the omission of nucleotides.
Several observations are worth making here. First, the

rRFs produced from the 5.8S rRNA in the LCL begin 6
nts upstream from the nominal 5′-end listed in

GenBank. Interestingly, it is known that there are two
5.8S isoforms: the shorter of the two is the one listed in
the GenBank entry NR_145819.1 (see the “Methods”
section) whereas the longer one extends a few nucleo-
tides upstream (Fig. 2d). It was recently reported [19]
that in previous studies, the shorter of the two isoforms
was most abundant. While this may well be the case in
LCL too—our analysis examined short and not long
RNA-seq datasets—our data shows that the longer iso-
form produces the most 5′-rRFs. In addition to 5.8S
transcript variants, there are rRFs produced from the
28S and 5S rRNAs that begin one and two nucleotides
upstream of the rRNA’s nominal 5′-ends, respectively.
The rRFs from 12S appear to avoid the first position of
this rRNA: instead, all of them start at the second pos-
ition. For 18S, none of the analyzed rRFs include any of
the last 24 positions of the rRNA: indeed, the rightmost
rRF terminates at position 1845 whereas the length of
this rRNA is 1869 nts. Finally, we note that both 12S

Fig. 2 Examples of rRF-producing hotspots. a–c Shown are regions from 28S rRNA (a), 16S rRNA (b), and 5S rRNA (c). Each heatmap depicts the
relative abundance of rRFs across all of the 434 LCL samples that map to the region of interest. Each adjacent boxplot displays the distribution of start
and end positions of rRFs for the region shown in the heatmap. The heatmaps are scaled by row (sample). d Each reference rRNA (GenBank) is shown
as a rectangle with solid blue contour. The solid black vertical line denotes position 1 of the reference rRNAs. Observed endpoints of x-rRFs that map
immediately upstream or downstream of the reference rRNA sequences are represented by yellow boxes. Reference rRNA transcript locations that are
adjacent to the nominal endpoints and did not have any rRFs mapping to them are shown with empty boxes with dashed lines. Not drawn to scale
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and 16S produce x-rRFs that straddle the respective an-
notated 3′ termini and borrow nucleotides from the
downstream tRNAValTAC and tRNALeuTAA, respectively.

The lengths and abundances of the prevailing rRFs differ
for each rRNA
We next sought to determine whether the lengths of rRFs
are quantized. The line graphs in Fig. 3 show, separately
for each of the six rRNAs, the length distributions of rRFs
that survive the abundance, S/N, and length filters. As can
be seen, the mapped rRFs have length profiles that are
specific to each of the six rRNAs. The mitochondrial 12S
and 16S rRNAs generate primarily longer rRFs (26–29
nts). In one third of the samples, 12S produces shorter
(20–21 nt) rRFs too. The 5S rRNA produces short (18–19
nts) as well as intermediate (24–25 nts) and long rRFs
(32–33 nts). However, note that in those samples where

the short rRFs are prevalent, the intermediate and longer
rRFs are generally absent, and vice versa.
The rRFs that are produced from the three 45S-

derived rRNA (18S, 5.8S, and 28S) are rather intriguing.
In terms of length, they span a wide range. 5.8S rRNA
produces primarily rRFs with length 18 nts (35.7% of all
rRFs map to this rRNA). 18S rRNA produces rRFs of all
lengths. However, there is an evident bimodal behavior:
in those samples where 18S rRFs with lengths between
18 and 23 nts inclusive are prevalent, longer rRFs with
lengths 29 and 30 nt are absent, and vice versa. Lastly,
very few rRFs with intermediate lengths (21–26 nts)
map to 28S. Interestingly, in approximately one third of
the samples, there are virtually no rRFs shorter than 28
nts that map to 28S. Below, we revisit these distributions
by examining them separately for various subsets of the
434 samples.

Fig. 3 Length and abundance profiles of rRFs are globally recurring and population-specific. The line graphs show the ratio (RPM of each length/
total RPM) for each length rRF and each of the 6 rRNAs where the black curve represents the average length ratio across all 434 LCL samples and
the gray area represents the standard deviation of the ratio. Each heatmap shows the rRF length ratios at each sequence length, separately for
the male (207) and female (227) samples. The heatmaps are hierarchically clustered by row. Dark green corresponds to the least abundance
(z-score of − 3), and dark magenta to the most abundance (z- score of + 3)
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The length profiles of rRFs show similarities and
differences across sexes and populations
By design, the 434 samples were selected to span two di-
mensions: sex and population origin. Specifically, the
samples represent five population groups: of these, four
groups are European populations (CEU, FIN, GBR, TSI)
whereas the fifth group is an African population (YRI).
Within a population, men and women are represented
evenly. Figure 3 shows heatmaps of the distributions for
the length of the various rRFs, separately for each sex
and labeled by population. The color-coding scheme for
the five populations is the same as in Fig. 2. The samples
are hierarchically clustered using each sample’s length
profiles. Overall, these heatmaps do not make apparent
any strong dependence on sex or population origin.
Nonetheless, careful inspection shows that such differ-
ences are indeed present.

As a matter of fact, YRI females produce consistently
more 33-mers and fewer 26-/27-mers from 16S rRNA,
compared to the other four populations, suggesting a
population-specific signal that distinguishes between the
European (CEU, FIN, GBR, TSI) populations and the Af-
rican (YRI) population. On the other hand, European
males produce consistently more 26-/27-mers than they
do 33-mers.

Numerous rRFs are differentially abundant by sex and
population origin
Even though the lengths of the rRFs mapping to the vari-
ous rRNAs are largely consistent, we wanted to know if
the abundances of these rRFs exhibit differences that are
sex- or population-specific. To this end, we used two
different approaches: SAM and PLS-DA (see the
“Methods” section). At an FDR threshold of 0.01, SAM

Fig. 4 Numerous rRFs are differentially abundant by sex and population origin. a The number of instances where SAM identified an rRF as differentially
abundant is shown in yellow (FDR ≤ 0.01). The number of instances where PLS-DA identified an rRF as differentially abundant is shown in green (VIP ≥
1.5). The intersection of the two circles shows the number of comparisons where both SAM and PLS-DA found the same rRF to be differentially abundant.
Also shown is the Jaccard index of the comparisons that are found to be differentially abundant by the two methods. b The Jaccard index for each rRNA
is plotted against the median RPM of the iDARs. c For the iDARs, log2 fold change was plotted as a function of significance (q-value) for each of the 10
population combinations, and separately for males and females. The key at the bottom shows the q-value distribution in each of the 10 intervals that
represent a population vs. population comparison
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identified 3103 unique rRFs that are differentially abun-
dant in at least one pairwise population comparison for
samples belonging to the same sex. SAM also identified
88 unique rRFs that are differentially abundant by sex
for samples belonging to the same population. The sec-
ond method, PLS-DA, identified 1697 unique rRFs that
are population-specific (same-sex samples compared)
and 2264 unique rRFs that are sex-specific (same popu-
lation samples compared). Figure 4c and Additional file 1:
Figure S1A show the pairwise rRFs that are found by
SAM and PLS-DA for each rRNA between all popula-
tions and the two sexes.
For stringency, we intersected the two collections of

differentially abundant rRFs, which left us with 549
unique population-specific rRFs and 39 unique sex-
specific rRFs (data not shown). We refer to the rRFs
that both SAM and PLS-DA identify as differentially
abundant in a given comparison as “the intersection of
differentially abundant rRFs” or “iDARs.” By calculat-
ing the Jaccard index of the SAM-derived and PLS-
DA-derived comparisons separately for each rRNA, we
found that the 5S and 5.8S rRFs have the highest indi-
ces (0.32 and 0.34, respectively) for the population-spe-
cific pairwise comparisons (Fig. 4a). 5.8S also has the
highest Jaccard index (0.17) for the sex-specific pair-
wise comparisons (Additional file 1: Figure S1A). Fig-
ure 4b shows that 5.8S produces iDARs with high
median RPM (31.4) that also participate in compari-
sons with the highest Jaccard index (0.34) - shown with
red box in Figure 4a. Meanwhile, 5S produces iDARs
with the third highest median RPM (19.4) that also
participate in comparisons with the second highest Jac-
card index (0.32) - shown with red box in Figure 4a.
Additionally, Figure S1B shows that the sex-specific
iDARs from 5.8S have the second highest median RPM
(48.4) and participate in comparisons with the highest
Jaccard index (0.17). Together, this suggests that rRFs
from the 5.8S rRNA can be population-specific and
sex-specific.
When we look at the differential abundance of the

iDARs, the acute differences by sex and population ori-
gin become readily apparent (Fig. 4c, Additional file 1:
Figure S1C). To visualize the fold differences of the
iDARs, we plotted the log2 fold change for all pairwise
comparisons and separately for each sex (Fig. 4c). A
quick glance at this panel reveals a striking commonal-
ity: regardless of how many rRFs are iDARs in each case,
all six rRNAs produce many rRFs with consistently
higher abundance in the four European populations
(CEU, FIN, GBR, and TSI) than the African population
(YRI). This holds true for both males and females.
Moreover, within the four European populations, there

are population-specific differences. For example, the
CEU population produces rRFs from the 5S and 5.8S

rRNA in lower abundance than the FIN, GBR, and TSI
populations, in both males and females. CEU males pro-
duce more 18S rRFs than their FIN, GBR, and TSI coun-
terparts whereas CEU females produce variable 18S rRFs
as compared to the other European females (FIN, GBR,
and TSI). Interestingly, both males and females from the
CEU population produce multiple “upregulated” and
“downregulated” 28S rRFs as compared to the other four
populations (FIN, GBR, TSI, and YRI).
We also looked in more depth at the differential abun-

dance of the 88 unique, sex-specific iDARs (Additional file 1:
Figure S1). Notably, almost all of these rRFs exhibit higher
abundance in females than in males. The majority of these
rRFs map to the 5.8S rRNA (16 unique iDARs). Surpris-
ingly, the 5.8S rRFs exhibit sex-specific abundance differ-
ences only in three of the four European populations: CEU,
GBR, and TSI. FIN and YRI females produce more iDARs
from 16S, 18S, and 5S than males. And the one 28S iDAR
that is sex-specific is present at a higher level in males than
females in the GBR population.

Sex- and population-specific differences in rRF abundance
are group-defining
The rRF with the highest change in abundance is the 24-
mer GGGCUACGCCUGUCUGAGCGUCGC from 5.8S.
This i-rRF maps to the 3′-prime end of the 5.8S rRNA
(Additional file 2: Figure S2) and ends two nucleotides
shy of the nominal 5.8S transcript. This i-rRF is differen-
tially abundant in the following comparisons: YRI/CEU
(− 2.31 log2 fold change), YRI/FIN (− 2.37 log2 fold
change), YRI/GBR (− 2.49 log2 fold change), and YRI/
TSI (− 2.47 log2 fold change). In Fig. 5a, the abundance
of this 24-mer i-rRF is stratified by the boxplots. We ob-
serve the statistically significant trend which shows that
all 4 European (CEU, FIN, GBR, and TSI) populations,
independent of sex, produce more of this fragment than
males and females from the YRI population. Because this
i-rRF is differentially abundant between the YRI and all
four European populations, the rRF may reflect
geography-based differences at the level of a continent
(i.e., European vs. African rRFs).
We also observe that the 5.8S i-rRF 19-mer UAAUGU

GAAUUGCAGGACA, which is produced from the cen-
ter of the 5.8S rRNA transcript, is differentially abundant
(p-value = 0.03) by sex (Additional file 3: Figure S3A
top), suggesting that it is potentially a sex-specific rRF.
In addition to the significant sex-specific difference, we
unpacked the sexes by population and observed that
while there is an overall sex-specific trend, there is a
strong population-specific dependence as well (Add-
itional file 3: Figure S3A bottom) with CEU and GBR
having statistically significant differences between the
sexes with p-values of 0.014 and 0.010, respectively.
Interestingly, while the CEU, GBR, and TSI females
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produce more of this 19-mer i-rRF than their respective
males, FIN females actually produce less of this fragment
than FIN males. YRI males and females produce the
fragment at approximately the same abundance. We also
investigated the abundance of a 5.8S 21-mer i-rRF
UAAUGAGAAUUGCAGGACACA, which has the same
5′-end start position as the 19-mer i-rRF but contains
two additional nucleotides on the 3′-end of UAAUGU
GAAUUGCAGGACA (Additional file 3: Figure S3).
Interestingly, we observed that just like the 19-mer, the
21-mer i-rRF is differentially abundant (p-value = 0.007)
and maintains similar population- and sex-specific dif-
ferences. However, this i-rRF is present at a lower

abundance than the 19-mer i-rRF suggesting selective
sequence production.

Analyses of independently obtained samples corroborate
the presence of rRFs in LCLs
In Fig. 1c, we saw that only a small number of rRFs,
isomiRs, and tRFs are present in all LCL samples,
suggesting fragment specificity based on subgroups. In
addition, Fig. 5a shows that even while the differential
abundance of individual rRFs is significant between
populations, they still exhibit large “in group” abun-
dance variations. With this in mind, we pursued ex-
perimentally the sex- and population-specific findings

Fig. 5 Independent experimentation validates the presence of rRFs in LCLs. a Boxplots show the abundance of the 5.8S 24-mer i-rRF (GGGCUA
CGCCUGUCUGAGCGUCGC) across the five LCL populations (434 total samples). Males are represented by gray boxes, and females are represented
by orange boxes. The abundance is shown in the boxplots where there is a statistically significant difference between each population according
to Welch’s t-test. b Two northern blots probing for the 5.8S 24-mer i-rRF in RNA from nine male and nine female LCLs. Three cell lines from each
of CEU, GBR, and YRI were used for each sex. Each lane contains 5 μg of RNA from each sample, and the first lane in each blot has 5 pmol of 5.8S
24-mer target cDNA (lower band). Full-length 5S (ACGUCUGAUCUGAGGUCGCGU) is the top band and served as loading control. rRF bands were
normalized to the 121-nt 5S loading control band. Below each blot is a quantification of the 5.8S rRF probe where CEU is represented by purple,
GBR is represented by cyan, and YRI is represented by yellow
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with the help of LCLs obtained from 18 healthy
people from the 1KG Project which accounted for
three populations (CEU, GBR, and YRI) (see the
“Methods” section for the cell line identifiers). These
18 samples are not among the samples that were se-
quenced by the 1KG Project.
We ran northern blots with RNA from these cell

lines using the reverse complement of the 5.8S 24-
mer i-rRF GGGCUACGCCUGUCUGAGCGUCGC as
a probe. The northern blots of Fig. 5b provide inde-
pendent experimental validation of the presence of
this i-rRF. There is a wide distribution of abundances
across the 18 samples, which include samples from
males and females (Fig. 5b). Note how this distribu-
tion is concordant with the findings of our computa-
tional analyses (Fig. 5a): indeed, while the median
abundance of this i-rRF is characteristically and

significantly higher for the four European populations
compared to the African population, the actual abun-
dance values span a very wide range within each
population. Although we do not expect the difference
of the median values to be captured by the handful
of samples that we analyzed, we are able to see sex-
and population-specific trends. The quantification of
the northern blots in Fig. 5b shows that overall
CEU and GBR females produce more of the fragment
than their male counterparts. YRI females produce a
similar amount of the i-rRF at a low abundance. Add-
itionally, a population-specific difference trend be-
tween the two female European populations (CEU
and GBR) and the one female African population
(YRI) is discernible (Fig. 5b bottom). This trend can-
not be observed among the few male samples we
assessed.

Fig. 6 Preliminary evidence that the rRF profiles are tissue-dependent. Boxplots show the abundance of rRFs at each length for the 434 LCL
samples, all 80 TCGA UVM samples, three replicates of 293T cells, and three replicates of 293T EV. Yellow boxes indicate the max y-axis values
represented on each boxplot. The sequence that is common to all rRFs is shown underlined. Each rRF differs from its adjacent rRF by one
nucleotide. a i-, 3′-, and x-rRFs produced from the 3′-end of the 5S rRNA transcript. b 5′-rRFs produced from the 28S rRNA transcript. The data
values for the 5S and 28S rRFs for the three 293T cells and three 293T EV are in Additional file 4
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The identity and abundance profiles of rRFs can also
differ across tissues
We next wanted to know if the most ubiquitously and
highly abundant rRFs we observe in the 434 LCL data-
sets also exist in other human tissues. For this purpose,
we chose 80 RNA-seq datasets from primary uveal mel-
anoma (UVM) samples from The Cancer Genome Atlas
(TCGA) [33], as well as three 293T cell RNA-seq data-
sets and their three corresponding 293T EV RNA-seq
datatasets from publicly available data from the Gene
Expression Omnibus (GEO) [34] (see the “Methods” sec-
tion and Additional file 4). Figure 6 tracks the most
abundant rRFs from the LCL datasets in the other three
collections. The most abundant rRFs, ACCGGGUGCU
GUAGGCUU an i-rRF and ACCGGGUGCUGUAG
GCUUU a 3′-rRF, come from the 3′-end of the 5S
rRNA and differ by a single nucleotide. These i- and 3′-
rRFs have lengths of 18 nts and 19 nts, respectively, and
a median abundance of 1434 and 1334, RPM respect-
ively. As can be seen from Fig. 6a, rRFs that correspond
to shorter or longer instances of these two abundant
rRFs are produced either at a lower abundance or not at
all in the LCL collection. The UVM and 293T cell and
293T EV datasets show a similar distribution pattern
to the LCL datasets. However, the abundance of these
two rRFs is considerably lower in the 293T EV and
UVM datasets. Moreover, neither the UVM nor the
293T cell or 293T EV datasets contain the 17-mer i-
rRF ACCGGGUGCUGUAGGCU in any notable
abundance.
Figure 6b tracks CGCGACCUCAGAUCAGACGU

and CGCGACCUCAGAUCAGACGUGGCGACC, two
5'-rRFs from the 28S rRNA—their common sequence
segment is shown underlined. The 5'-rRFs have lengths
20 and 27 nts, respectively, and are highly abundant in
the LCL datasets (median abundances are 1136 and 707
RPM, respectively). In the UVM datasets, these 5'-rRFs
are not very abundant. However, the abundance of the
22-mer variant CGCGACCUCAGAUCAGACGUGG is
676 RPM. Interestingly, not only do the 293T cells and
293T EV produce the 20-mer CGCGACCUCAGAUC
AGACGU at an extremely high abundance (median
abundances are 9030 and 27,593 RPM, respectively)
but the 19-mer CGCGACCUCAGAUCAGACG is also
highly abundant (median abundances are 3870 and
5807 RPM, respectively—note the different range of
the y-axis in these two plots). Additionally, the 293T
cells produce the 23-mer CGCGACCUCAGAUC
AGACGUGGC at a median abundance of 1376 RPM
whereas in the 293T EV the same 23-mer is present at
an even higher median abundance (4192 RPM), which
suggests that it is preferentially secreted. This 23-mer
5'-rRF is less abundant in the UVM and LCL
collections.

Persistence of rRF profiles across laboratories and
different library preparation methods
It is conceivable that the differences in rRFs that we
showed exist among the LCL datasets result from differ-
ences in the collection or growth protocols, or interla-
boratory differences. The Geuvadis Consortium, which
generated the datasets that we analyzed, selected five
samples (one from each of the five populations) that
they sequenced independently at seven different Euro-
pean sequencing centers [39], generating a total of 35
datasets. When we compare the 35 datasets using the
top 1000 rRFs from each rRNA, we find high correla-
tions across the sequencing centers (Additional file 5:
Figure S4A).
It is also possible that the rRF differences we see are arti-

facts of cDNA library preparation. To address these possi-
bilities, we deep-sequenced two age-matched and sex-
matched, commercially available LCLs (that were not a part
of the 1KG Project samples whose RNA-seq profiles were
reported in the literature): ND02672, which is derived from
a 63-year-old male African American, and ND07114, which
is derived from a 66-year-old male Caucasian American.
We deep-sequenced each cell line using two different li-
brary preparation kits: Illumina’s TruSeq and NEB’s NEB-
Next (see the “Methods” section). In each of the four
datasets, we identified rRFs using the methodology de-
scribed in our manuscript. For each of the six rRNAs, we
identified the top 1000 most-abundant rRFs and used them
to compute pairwise Pearson correlations (Additional file 5:
Figure S4B). As can be observed in Additional file 5: Figure
S4B, the inter-kit comparisons exhibit high correlations
(Pearson correlation ≥ 0.76) indicating that the same rRFs
were being identified by the two kits and with comparable
abundances.

Further evidence and presence of rRFs in the context of
parental rRNA structures
In order to further validate our findings of persistent,
highly abundant, and differentially abundant rRFs, we
show northern blots for four rRFs that are abundant in the
LCL datasets (Additional file 6: Figure S5): GGGCUA
CGCCUGUCUGAGCGUCGC (5.8S 24-mer i-rRF, average
RPM= 489), UACGCCUGUCUGAGCGUCGCU (5.8S 21-
mer i-rRF, average RPM= 642), ACCGGGUGCUGUAG
GCUU (5S 18-mer i-rRF, average RPM= 1752), and
CGCGACCUCAGAUCAGACGU (28S 20-mer 5′-rRF,
average RPM= 1473) (see the “Methods” section). These
include the 24-mer i-rRF that was differentially abundant
(Fig. 5) as well as three new rRFs. Again, rRFs were com-
pared to their respective synthetic DNA positive controls.
We see in the northern blots in Additional file 6: Figure
S5A-D that the rRFs for which we probed are part of a lar-
ger collection of distinct rRFs. Interestingly, the 5.8S 24-
mer and 21-mer and the 5S 18-mer i-rRFs are strongly
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detected even in the context of the longer fragments
whereas the 28S 20-mer is much less abundant when com-
pared to the longer 28S fragments.
Next, we wanted to know whether these short rRNA

fragments had their own secondary structure, which could
suggest potential biogenesis mechanisms. In Add-
itional file 6: Figure S5, we see that two of the three 3′-
rRFs have consistent hairpin structures, while the
remaining one is partially structured and the 28S 5′-
rRF has no structure at all. We also examined the location
of the four rRFs in the predicted secondary structure of
the full-length rRNAs (Additional file 7: Figure S6). We
observe that while the two 5.8S i-rRFs (Additional file 7:
Figure S6A) map to the same overall location of the par-
ental 5.8S rRNA, they are being processed from different
structural locations. The 24-mer 5.8S i-rRF is cleaved at
its 5′-end in the middle of a double-stranded hairpin
structure of the 5.8S rRNA (between position 131-132)
while its 3′-end is two nucleotides shy of the 3′-end of the
full-length rRNA (position 155). The 5′-end of the 21-mer
5.8S i-rRF is cleaved right at the intersection of two RNA
hairpins (position 136) and extends to the second to last
position of the 3′-end of the full-length 5.8S rRNA (pos-
ition 156). In Additional file 7: Figure S6B, we can observe
that the 5′-end of the 18-mer 5S i-rRF is cleaved at the
base of a loop (between position 102-103) and extends to
the second to last nucleotide in the full-length 5S rRNA
(position 120). Finally, in Additional file 7: Figure S6C, the
20-mer 28S 5′-rRF has its 3′-end at the base of a loop
(position 20).
Taken together, the findings and results shown in

Figs. 2, 3, and 5 suggest that human rRFs are produced
from specific hotspots that persist across cell types.
However, these hotspots produce rRFs with endpoints,
lengths, and abundances that suggest dependence on cell
type and tissue type, in addition to the dependence on
sex and population origin that we discussed above.
Moreover, these RNAs appear to be packaged into extra-
cellular vesicles selectively. These rRF properties mirror
previously-reported findings on isomiRs [20, 23, 25, 29,
40–43] and tRFs [21, 22, 26–31, 36, 44–51].

Discussion
The early discoveries of short ncRNAs were first based on
forward genetics with a phenotype motivating the discov-
ery of a genomic or transcriptomic cause. Following the
surge of NGS, short and long ncRNAs are being continu-
ously discovered via reverse genetics and in an unbiased
manner. In fact, NGS has allowed the discovery of novel
categories of ncRNAs and the enumeration of their mem-
bers. While short ncRNAs such as miRNAs, isomiRs, tRFs,
snoRNAs, and piRNAs have been studied extensively in
health and disease for more than a decade already [52],
short ncRNAs that derive from rRNAs have been largely

overlooked. Arguably, this is because of their high abun-
dance in cells where full-length rRNAs comprise about
80% of all RNA molecules present and are actively re-
moved from long sequencing data using commercial
methods like TruSeq Stranded Total RNA Gold (Illumina)
and RiboMinus (ThermoFisher). While the removal of
rRNAs is routine in long RNA-seq (where one wishes to
quantify mRNAs and long ncRNAs), rRNA depletion is
not part of the short RNA-sequencing protocols. Presum-
ably, this is because rRFs are nowhere as abundant in the
cell as the full-length rRNAs. This led to early reports of
rRFs. The availability of many datasets from the same tis-
sue or cell type has now made possible comparative stud-
ies such as the one we presented here, and the increasing
accumulation of evidence that rRFs comprise a molecular
category that warrants in-depth exploration [19].
In this study, we reported our findings on the rRFs,

the emerging class of short fragments that derive from
nuclear and mitochondrial rRNAs. The rRFs arise from
all six reference rRNAs: the four nuclear rRNAs (18S,
5.8S, 28S, 5S) and the two MT rRNAs (12S, 16S). To
characterize rRFs, we designed and used a pipeline that
applied stringent filters aimed at discarding putative
rRFs that are either not adequately abundant or unlikely
to arise from the six rRNAs. Application of the pipeline
to 434 short RNA-seq datasets from the 1KG Project
identified numerous unique sequences that are derived
from these six rRNAs. These sequences are present at
abundance levels that parallel those of isomiRs and tRFs
(Fig. 1), which is a first indication that rRFs could be im-
portant in analogy to isomiRs [20, 23, 25, 29, 40–43] and
to tRFs [21, 22, 26–31, 36, 44–51].
A key consideration of our approach was to account

for the unique genomic attributes of rRNAs. As men-
tioned in the Background, rRNA genes have many gen-
omic copies each. At the same time, and in addition to
the full-length rRNAs, the nuclear genome is riddled
with numerous partial copies of rRNAs. This is in paral-
lel to what we observed for tRFs [26, 30, 31, 48]. How-
ever, unlike tRFs, the partial copies of the longer rRNAs
such as 12S, 16S, 18S, and 28S that can be found on the
genome are themselves long. The copies also have exten-
sive sequence similarities with the original rRNA tem-
plates. It is difficult to argue against the possibility that
these retained partial copies have been co-opted into
new roles in the cell. Consequently, and unlike what we
did in the case of tRFs and tRNA space, we defined the
“rRNA space” as the union of all full-length rRNAs and
of all partial copies found in the nuclear genome that
were at least 16 nts long.
We also found that within the rRNA space, sequence

composition matters. For example, even short rRFs, e.g.,
16-mers and 17-mers, that map to 5S are highly unlikely
to be found elsewhere on the genome (high S/N).
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However, this is not the case for 16-mers and 17-mers
that map to the remaining five rRNAs. We accounted
for these differences by evaluating rRFs of all lengths
and separately for each rRNA. This allowed us to estab-
lish for each rRNA a minimum length at which its rRFs
have an S/N ≥ 50 (Table 1). By enforcing this minimum
S/N cutoff, we discarded shorter rRFs that map outside
of rRNA space with high frequency.
Our analyses revealed that highly abundant rRFs are

produced from specific “hotspots” that are different for
each of the six rRNAs (Fig. 2). Additionally, the rRFs
have distinct starting and ending points, and favor spe-
cific lengths (Fig. 3), which are also specific to each
rRNA. Despite these differences, the rRF profiles remain
largely unchanged across like samples (Fig. 2 and 3).
These observations argue in support of a regimented
process that underlies the biogenesis of rRFs and differs
for each rRNA.
During the mapping of sequenced reads to rRNAs, we

also kept track of instances where the mapped reads
might straddle the genomic boundaries of the reference
rRNAs. This allowed us to discover multiple instances of
rRFs that straddle the nominal endpoints of rRNAs
(Fig. 2d). We believe that this is an important observa-
tion. For example, if we do not allow reads to straddle
the boundaries of rRNAs, we find no reads mapping on
the 5′-end of 5.8S rRNA. Similarly, no reads would have
been mapped on the 3′-end of 16S rRNA. Given that
these observations persist across so many biological
samples, it is reasonable to assume that these rRFs play
important roles in the cell. Consequently, it will be pru-
dent for future studies to continue to consider rRFs that
straddle the known boundaries of rRNAs.
We also examined the possible dependence of rRF

profiles on sex and population origin. We found statisti-
cally significant differences in the rRF profiles of datasets
that differed by sex, population origin, or geographical
ancestry (Fig. 4). In our computational analysis, we had a
lot of statistical power due to the 434 samples we were
analyzing (~ 40 female and ~ 40 male samples for each
population group) and the population-specific differ-
ences were clear despite the wide range of rRF abun-
dances within a population group (Fig. 5a). Even though
we were limited by six LCL samples from each popula-
tion and three LCL samples for each sex, we were able
to recapitulate the variability of the abundance of the
24-mer 5.8S i-rRF and observe trends supporting the i-
rRF’s dependence on sex and population (Fig. 5b).
Our analyses also provide preliminary evidence suggest-

ing that rRF fragmentation profiles change as a function of
tissue type. We saw that for select rRFs, the relative abun-
dance changed when we compared the LCL, UVM, 293T
cell, and 293T EV datasets (Fig. 6). In addition, we observed
the importance of rRF composition in tissue type. For

example, while a 20-mer 5′-rRF is highly abundant in the
LCLs, 293T cells, and 293T EV, it is absent in the UVM
samples. Furthermore, a 5′-rRF with 2 additional nucleo-
tides is absent in the very same LCL, 293T cell, and 293T
EV samples and abundant in the UVM samples (Fig. 6).
This tissue-dependence observation is something that we
showed to be the case through two large-scale analyses of
isomiRs [25] and tRFs [30]. And, a recent report in bioRχiv
[53] showed evidence that the aggregate production of rRFs
from the 5′-end of 28S differs across several tissues. We
note, however, that this last study examined the wholesale
rRF production from the 5′-end of this rRNA and did not
show how specific rRFs changed in abundance across
tissues.
Had rRFs been degradation products, one would have

expected to see them scattered across the length of the
various parental rRNAs. Moreover, their 5′ and 3′ end-
points would not be expected to show preferences for
any particular position [54]. Perhaps more importantly,
the stochastic nature of the process would mean that the
relative abundance of any two rRFs from the same or
different parental rRNAs would not be expected to
remain constant across samples. However, what we
observe is a combination of two things: a persistent pref-
erence for specific endpoints in like samples and abun-
dance ratios that remain constant in like samples
(Figs. 3 and 4).
In this study, we also provide evidence that rRFs are

not the product of technical variability. By comparing,
deep-sequencing data for the same five LCLs that were
generated by seven different sequencing centers, we
found high inter-center Pearson correlations when we
analyzed the top 1000 rRFs of each replicate (Add-
itional file 5: Figure S4A.) We also observed that inde-
pendent of the cDNA library preparation kit (Illumina’s
TruSeq or NEB’s NEBNext), the resulting deep sequen-
cing generated very similar rRF profiles for the same cell
line. This was indicated by the high value of the pairwise
correlations that we computed by using the top 1000
rRFs (Additional file 5: Figure S4B).
We validated the presence of rRFs that our computa-

tions determined to be important. We ran northern blots
and probed for 4 different rRFs in LCLs that were not part
of the sequencing data analyzed for this study (Add-
itional file 6: Figure S5). We were able to detect these frag-
ments as well as additional longer fragments with distinct
lengths. For example, as shown in Additional file 6: Figure
S5D, while we are able to detect the smaller 20-mer 28S
5′-rRF, we see several mid-length rRFs. Because the LCL
sequencing data we analyzed contained reads up to 33 nt,
any fragments that were longer would not have been
present in the sequencing data that we analyzed. Future
rRF research should consider this when designing short
RNA-seq experiments.
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Furthermore, as Additional file 6: Figure S5A shows,
there are several rRFs with similar core sequences that can
be detected by a given northern probe (e.g., GGGCTACG
CCTGTCTGAGCGTCGC and TACGCCTGTCTGAGCG
TCGCT share a core sequence). While this confirms the
presence of several more rRFs in addition to the rRF being
sought, it does not necessarily help determine the identity
of these other rRFs. Complicating matters is the fact that
with the exception of deep sequencing, there are no other
commercially available schemes that can measure the
amount of a specific short RNA (e.g., isomiR, tRF, or rRF)
while guaranteeing the identity of both of its endpoints
[55]. The recently published dumbbell-PCR method [56] is
a very effective and innovative solution to the quantification
problem but is not scalable. It is worth mentioning here
that while deep sequencing is effective in detecting and
measuring rRFs, it also has a few limitations. For example,
in its standard version, it will only detect and report RNAs
that have 5′-P and 3′-OH endpoints, respectively. Conse-
quently, abundant non-conforming RNAs will not be re-
ported without additional considerations [57]. Additionally,
just like their rRNA precursors, rRFs are expected to carry
nucleoside modifications that can potentially interfere with
the reverse transcription step of cDNA library preparation.
Whenever this occurs, and since cDNA library preparation
relies on the ligation of 5′ and 3′ adapters to the present
RNAs prior to amplification, the corresponding rRFs will
not get amplified and thus will not be among the se-
quenced reads [58]. In other words, it is likely that the true
complement of rRFs that are present in a cell is a superset
of what we can identify and report by analyzing collections
such as the one we discuss in this presentation. We also
note here a related analysis where we additionally examined
whether the modifications whose locations within tRNAs
are known could give rise to artificially produced tRFs: our
analyses of tRFs found in more than 10,000 TCGA datasets
representing 32 cancers and multiple tissues do not show
any evidence that this is the case [30].
It is important to stress that these are but nascent stud-

ies of a new category of short ncRNAs whose biogenesis
and functional roles elude us currently. The findings bear
notable similarities to the dependencies we have been
reporting for two other large categories of short ncRNAs,
the isomiRs [20, 23–25, 29, 40–43] and the tRFs [21, 22,
26–31, 36, 44–51]. Additionally, there is a clear and recur-
rent consistency in both health and disease settings and a
dependence on a person’s attributes [25, 30]. The work
that we presented above is adding to emerging evidence in
support of further studies aimed at uncovering the roles of
these molecules in the cell. Knowing which rRFs are dif-
ferentially abundant between which groups of samples
(whether the groups are defined by sex, population of ori-
gin, or other variable) can help prioritize among these
new molecules and focus subsequent work.

Conclusion
These findings on rRFs add to the continuously growing
and extremely important small ncRNA field. In conclu-
sion, our analysis shows rRFs are uniquely produced,
highly abundant, and context-specific, thus providing a
comprehensive scaffold to build future work in areas of
biogenesis, function, disease biomarkers, and other ele-
ments of RNA biology.

Methods
Dataset: 1000 Genomes Project
We used the short RNA-seq datasets that were released
by the 1KG Project [32] and were derived from the lym-
phoblastoid cell lines (LCL) of individuals belonging to
five population groups: CEU (Utah Residents with
Northern and Western European Ancestry), FIN
(Finnish in Finland), GBR (British from England and
Scotland), TSI (Toscani in Italia), and YRI (Yoruba in
Ibadan, Nigeria). The 1KG Project released 452 total
short RNA-sequencing datasets (and 35 technical repli-
cates). The samples were sequenced at seven facilities
(Geuvadis Consortium). The 48 samples that were sent
to one of the facilities (number “six”) were sequenced
using 47 cycles of sequencing whereas all other samples
were sequenced using 33 cycles. In order to be consist-
ent, we removed all samples that came from facility
“six”—this left us with 434 LCL datasets for our down-
stream analyses (83 CEU, 94 FIN, 88 GBR, 87 TSI, and
82 YRI). We used the 35 technical replicates (1 CEU, 1
FIN, 1 GBR, 1 TSI, and 1 YRI sequenced at seven facil-
ities) for the rRF correlations.

Other datasets: Gene Expression Omnibus and The
Cancer Genome Atlas
We analyzed short RNA-seq for six samples from the
Gene Expression Omnibus (GEO) data (GSE99430) [34]
which looked at the 293T cells and their derived extracel-
lular vesicles (EV). 293T cell samples are as follows:
SRR5628228, SRR5628229, and SRR5628230. The EV
samples are as follows: SRR5628231, SRR5628232, and
SRR5628233. The abundances of the rRFs found in
these datasets can be found in Additional file 4. We
also analyzed short RNA-seq data for the 80 uveal
melanoma (UVM) samples from The Cancer Genome
Atlas (TCGA) [33].

Reference rRNAs
We used the GenBank 45S (RNA45SN1), 5S (RNA5S12),
12S (MT-RNR1), and 16S (MT-RNR2) rRNAs as our
reference rRNA sequences for this analysis. The Gen-
Bank accession numbers are as follows: NR_145819.1,
NR_023374.1, NR_137294.1, and NR_137295.1, respect-
ively. RNA45SN1 was chosen as a representative 45S
and is 13,351 nucleotides (nts) long. RNA5S12 was
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chosen as a representative 5S rRNA and is 121 nts long.
MT-RNR1 and MT-RNR2 are the two consensus MT
rRNAs and are 954 and 1,559 nts long, respectively.

Defining the “rRNA space”
We define “rRNA space” as the union of (a) the genomic
regions that comprise the six rRNAs (see previous para-
graph), (b) all rRNA repeats that are listed in RepeatMas-
ker [59] including partial instances, and (c) any additional
genomic regions that are identified via a glsearch [60]
search of the genome using the six rRNAs as queries, de-
fault parameters, and an E value cutoff of 1E−08. An rRF
that can be found in the union of the genomic regions ob-
tained through steps a, b, and c above as well as elsewhere
in the genome is referred to as an “ambiguous” rRF.
Otherwise, it is referred to as being “exclusive” to the
rRNA space. This is analogous to our definition of tRNA
space and our analyses of tRFs [26, 30, 36, 48].

Mapping
We first processed the 434 short RNA-seq datasets using
cutadapt [61] to quality-trim and remove adapters from
the sequenced reads. The reads were then mapped to
the genome using a brute-force, deterministic, and ex-
haustive approach that enforced exact matching to the
genome. Only reads with a minimum of 16 nts were
kept and analyzed further. During mapping, we catalo-
gued reads which are exclusive to the rRNA space and
which are ambiguous. We also kept track of reads that
straddle either the left or the right boundary of any of
the six rRNAs (Fig. 1a blue box).

Thresholding
We thresholded the rRFs using the Threshold-seq tool
[35] and default parameter settings. Threshold-seq cal-
culates an adaptive sequence read cutoff that is different
for each sample (Fig. 1a green box). We also calculated a
≥ 10 RPM threshold by first normalizing each rRF’s
abundance to reads-per-million (RPM) by dividing the
number of reads that support the rRF by the total num-
ber of sequenced short RNA reads (i.e., read depth) and
multiplying by 1 million then keeping only unique rRFs
that passed a threshold of ≥ 10 RPM. (Fig. 1a orange
box).

Determining length cutoffs
As might be expected, shorter sequences are more likely
than longer sequences to have many genomic instances
that are not part of the rRNA space. In fact, we find that
many of the identified rRFs with lengths ≥ 16 nts are
ambiguous. Thus, for each rRNA in turn, we identified
the minimum length at which fewer than 2% of the gen-
omic instances of an rRNA’s rRFs fall outside of the
rRNA space. To do this, we first examined rRFs from

the same rRNA if and only if their sequence lengths
ranged from 16 through 33 nts inclusive. Next, for each
rRF, we counted the number of its instances that fall in-
side the rRNA space, outside the rRNA space, and
across the whole genome. For all rRFs from a given
rRNA, and for each sequence length value (16–33 nts),
we calculated the ratio of the number of instances that
fall inside of the rRNA space over the total number of
rRFs that fall outside of the rRNA space and call this the
signal to noise ratio (S/N). We identified the minimum
rRF length for which the S/N becomes ≥ 50 (the number
of instances that fall outside of the rRNA space over the
total number of genomic instances is ≤ 2%). We repeated
this calculation separately for each of the six rRNAs
(Fig. 1a red box).

Analysis
Differential abundances were calculated using the Sig-
nificance Analysis of Microarrays (SAM) package in R
using a stringent false discovery rate (FDR) cutoff of
0.01. Partial least squares-discriminant analysis (PLS-
DA) was carried out in R using the default settings and a
VIP cutoff of 1.5. Pearson correlations were calculated
using R.

RNA isolation
For total RNA preparation, cells were grown in suspen-
sion using RPMI 1640 media with 30% non-heat inacti-
vated FBS + glutamate (Sigma-Aldrich). After seeding,
cells were grown for 3–5 days and harvested. RNA was
isolated using TRIzol extraction (Invitrogen).

Northern blotting
We purchased commercially available lymphoblastoid cell
lines (Coriell Institute) derived from 18 total people from
the CEU, GBR, and YRI populations. For each population,
we purchased three male samples and three female sam-
ples. The cell lines are the following: CEU females
(GM12769, GM12807, GM12837) CEU males (GM12884,
GM12905, GM12919), YRI females (GM18487, GM18523,
GM18870), YRI males (GM18907, GM19203, GM19239),
GBR females (HG00122, HG00134, HG00137), and GBR
males (HG00243, HG00264, HG01789). As per Coriell’s
policy, all cell lines were tested and found to be
mycoplasma-free. 5μg of RNA from each cell line was run
on a 15% acrylamide/8M urea gel at 250 V for 45min. 100
nmol of RNA target cDNA (5.8S 24-mer, GGGCTACGCC
TGTCTGAGCGTCGC; 5.8S 21-mer, TACGCCTGTC
TGAGCGTCGCT; 5S 18-mer, ACCGGGTGCTGTAG
GCTT; 28S 20-mer, CGCGACCTCAGATCAGACGT)
served as positive control. Gel was transferred to Hybond™-
N+ membrane (Amersham Biosciences, catalog number:
RPN303B) and transferred at 400mA for 10min. Mem-
brane was dried and then cross-linked twice at 120,000 μJ/
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cm2. All membranes were cut so that the top portion could
be probed with the 5S rRNA probe (ACGTCTGATC
TGAGGTCGCGT)—the loading control, and the bottom
portion was probed with the 5.8S 24-mer (GCGACGCTCA
GACAGGCGTAGCCC), 5.8S 21-mer (AGCGACGCTC
AGACAGGCGTA), 5S 18-mer (ACCGGGTGCTGTAG
GCTT), and 28S 20-mer (ACGTCTGATCTGAGGTCG
CG). Membranes were pre-hybridized in hybridization buf-
fer (PerfectHyb™ Plus Hybridization Buffer: H7033-1 L) for
30min rotating at 37 °C. Northern probes were made using
the DIG labeling kit (DIG Oligonucleotide 3′-End Labeling
Kit, 2nd Gen: 3353575910). For Fig. 5, the 9 LCL female
and 9 LCL male RNAs were run on two different gels and
the top portions of each membranes were incubated with
2.5 μl of 5S probe and the lower portions of the mem-
branes were incubated with 5 μl of 5.8S 24-mer probe for
16 h rotating at 37 °C. For Additional file 6: Figure S5, fe-
male CEU (GM12769), GBR (HG0112), and YRI
(GBM18523) RNA was used and uncut membranes were
incubated with 5 μl of the corresponding probes. Detection
of membranes was done using the DIG detection kit (DIG
Wash and Block Buffer Set: 11585762001, Anti-
Digoxigenin-AP, Fab fragments: 11093274910, CDP-Star
Chemiluminescent Substrate: C0712-100ML) following the
manufacturer’s instructions.

Secondary structures
Secondary structures were generated using the Vienna
RNAFold Web Server http://rna.tbi.univie.ac.at/cgi-bin/
RNAWebSuite/RNAfold.cgi [62] with default settings.
The sequences for which we predicted secondary struc-
tures are listed in the “Reference rRNAs” section.

Deep sequencing of independently obtained commercial
cell lines
We purchased commercially available lymphoblastoid
cell lines (Coriell Institute) derived from two individuals:
one who was a 63-year-old African American male
(ND02672) and one who was a 66-year-old Caucasian
American male (ND07114). As per Coriell’s policy, all
cell lines were tested and found to be mycoplasma-free.
Two different libraries were created for each sample:
Illumina’s TruSeq Small RNA Library Prep Kit Set (#RS-
200) and NEB’s NEBNext Small RNA Prep Set for Illu-
mina (#E7330) at the Jefferson Genomics Core Facility
according to the standard kit protocols, which size select
for small RNAs. The Illumina NextSeq 3′-adapter is
TGGAATTCTCGGGTGCCAAGG, and the NEBNext
3′-adapter is AGATCGGAAGAGCACACGTCT. The
samples were all sequenced using the Illumina NextSeq
500 sequencing platform at 75 cycles and 30 million
reads.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12915-020-0763-0.

Additional file 1: Figure S1. rRFs are also differentially abundant by
sex. S1A. SAM identified the differentially abundant rRFs shown in yellow,
at an FDR threshold of 0.01. PLS-DA identified rRFs with VIP score ≥ 1.5,
shown in green. The intersection of the two circles show how many rRFs
were identified by both methods. For each rRNA, we calculated a Jaccard
index for the rRFs found by the two methods. S1B. The Jaccard index of
the rRFs from each rRNA is plotted against the median RPM of the iDARs.
S1C. The table shows the number of iDARs for each population, and sep-
arately for males and females.

Additional file 2: Figure S2. rRF pileup along the full-length transcript.
This figure shows which part of the 5.8S rRNA the rRFs are produced
from. The heatmap is scaled by row (sample). The dark magenta indicates
high relative abundance while the dark green indicates low relative abun-
dance. Border arrows indicate the boundaries of the 5.8S rRNA transcript
of 157 nts. The leftmost arrow points to where rRFs land outside of the
canonical rRNA boundary. The arrows pointing to positions 132 and 156
show where within the full-length rRNA the 5.8S 24-mer rRF is located.
The rows are grouped by population.

Additional file 3: Figure S3. Specific rRFs are also differentially
abundant by sex at varying levels. S3A-B. Boxplots show the differential
abundance of the 5.8S 19-mer UAAUGUGAAUUGCAGGACA and the 5.8S
21-mer UAAUGUGAAUUGCAGGACACA (underlined region is common to
both i-rRFs) between males (grey, n=207) and females (orange, n=227).
S3A. The 19-mer has a p-value of 0.03, Welch’s t-test. S3B. The 21-mer
has a p-value of 0.007, Welch’s t-test.

Additional file 4. : Excel sheet containing supporting data showing:
1) the 16,279 rRF sequences that pass Threshold-seq, 10 RPM, and Length
Cutoff thresholds, 2) the normalized abundance (RPM) of the i-, 3´-, and
x-rRFs from the 3´-end of 5S, and 3) the 5´-rRFs from the 28S rRFs, for the
293T cells and 293T derived EV.

Additional file 5: Figure S4. Persistence of rRF profiles across
laboratories and different library preparation methods. S4A. Pairwise
Pearson correlations of the top 1,000 rRFs across 35 samples (five LCL
samples sequenced at seven sequencing centers). Color bar labeling:
CEU—purple; FIN—orange; GBR—cyan; TSI—gray; and YRI—yellow. S4B.
Pairwise Pearson correlations of the top 1,000 rRFs across two
commercially-available LCLs that we sequenced using two different cDNA
library preparation kits (Illumina’s TruSeq and NEB’s NEBNext kits). Color
bar labeling: 63 years old African American male (ND02672) is green and
66 years old Caucasian American male (ND07114) is purple.

Additional file 6: Figure S5. Presence of rRFs in the context of parental
rRNAs and structures S5A-D (top). Northern blots probing for the 24-mer
5.8S i-rRF (GGGCUACGCCUGUCUGAGCGUCGC), 21-mer 5.8S i-rRF
(UACGCCUGUCUGAGCGUCGCU), 18-mer 5S i-rRF (ACCGGGUGCUGUAG
GCUU), and 20-mer 28S 5´-rRF (CGCGACCUCAGAUCAGACGU) in three fe-
male LCLs: CEU (GM12769), GBR (HG0112), and YRI (GBM18523). 5 μg of
RNA was used along with 5 pmol of 5.8S or target cDNA and uncut
membranes were labeled with 5 μl of the corresponding probes. S5A-D
(bottom). Predicted secondary structures with minimum free energy
scores for each rRF.

Additional file 7: Figure S6. rRF sequences aligned to the secondary
structure of the full-length rRNA. S6A-C. Blue lines highlight the location
of the 24-mer 5.8S i-rRF (GGGCUACGCCUGUCUGAGCGUCGC), 21-mer
5.8S i-rRF (UACGCCUGUCUGAGCGUCGCU), 18-mer 5S i-rRF (ACCGGG
UGCUGUAGGCUU), and 20-mer 28S 5´-rRF (CGCGACCUCAGAUCAGACGU)
on the predicted secondary structures of 5.8S, 5S, and 28S rRNAs, respect-
ively. Minimum free energy scores are also shown for each rRNA. Red ar-
rows indicate the position within the full-length rRNAs from which the
rRFs arise.

Abbreviations
miRNA: MicroRNA; isomiR: MicroRNA isoform; tRNA: Transfer RNA;
tRF: Transfer RNA-derived fragment; rRNA: Ribosomal RNA; rRF: Ribosomal
RNA-derived fragment; mRNA: Messenger RNA; ncRNA: Non-coding RNA;
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LCL: Lymphoblastoid cell line; 1KG: 1000 Genomes; LSU: Large ribosomal
subunit; SSU: Small ribosomal subunit; MT: Mitochondrion/Mitochondria/
Mitochondrial; S/N: “Signal-to-noise” ratio; CEU: Utah Residents with Northern
and Western European Ancestry (1000 Genomes Project); FIN: Finnish in
Finland (1000 Genomes Project); GBR: British from England and Scotland
(1000 Genomes Project); TSI: Toscani in Italia (1000 Genomes Project);
YRI: Yoruba in Ibadan, Nigeria (1000 Genomes Project); SAM: Significance
Analysis of Microarrays; PLS-DA: Partial least squares-discriminant analysis;
DA: Differential abundance; iDARs: rRFs belonging to the intersection of
differentially abundant rRFs that are identified by both SAM and PLS-DA;
NGS: Next generation sequencing; GEO: Gene Expression Omnibus;
EV: Extracellular vesicle; UVM: Uveal melanoma; TCGA: The Cancer Genome
Atlas; nts: Nucleotides; RPM: Reads-per-million; FDR: False discovery rate;
MFE: Minimum free energy; RT: Reverse transcription; 5′-rRFs: rRFs whose
sequences begin at position 1 of the rRNA transcript; 3′-rRFs: rRFs whose
sequences end at the last position of the rRNA transcript; i-tRFs: rRFs whose
start and end positions are internal to the rRNA transcript; x-rRFs: rRFs whose
sequences straddle the 5′ or 3′ terminus of the rRNA transcript
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