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Abstract

Positron emission tomography (PET) is an important imaging modality in both clinical usage and research studies. We have
developed a compact high-sensitivity PET system that consisted of two large-area panel PET detector heads, which produce
more than 224 million lines of response and thus request dramatic computational demands. In this work, we employed a
state-of-the-art graphics processing unit (GPU), NVIDIA Tesla C2070, to yield an efficient reconstruction process. Our
approaches ingeniously integrate the distinguished features of the symmetry properties of the imaging system and GPU
architectures, including block/warp/thread assignments and effective memory usage, to accelerate the computations for
ordered subset expectation maximization (OSEM) image reconstruction. The OSEM reconstruction algorithms were
implemented employing both CPU-based and GPU-based codes, and their computational performance was quantitatively
analyzed and compared. The results showed that the GPU-accelerated scheme can drastically reduce the reconstruction
time and thus can largely expand the applicability of the dual-head PET system.
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Introduction

Positron emission tomography (PET) is a proven molecular-

imaging technology for a wide range of biomedical researches and

applications [1–5]. As its use widens and increases, it has been

recognized that both the resolution and sensitivity of PET imaging

need to be considerably improved, especially for small-animal

imaging applications [6–8]. Dedicated small-animal PET systems

that employ High Resolution Research Tomograph (HRRT)

detectors can reach good spatial resolution and improved

sensitivity. In addition to providing high detection sensitivity and

cost effectiveness, planar PET imaging is particularly suitable for

imaging thin and small objects like plant leaves. The growing

interest in these extended applications also inspired development

of PET detectors designed specifically for plants [9,10]. However,

this is a challenging goal due to the so-called depth-of-interaction

(DOI) blurring that leads to reduced image resolution when thick

scintillators or compact scanner geometry are used for increasing

sensitivity. To address the issue of depth-of-interaction (DOI)

blurring, thick detectors [11–18] and accurate image reconstruc-

tion methods based on physical and statistical models [19–23]

have been developed. Despite these extended applications and

improvements, however, high computation cost presents a

significant challenge for such adoptions. Fortunately, commodity

graphics processing units (GPUs) that support massive parallel

computing power at a very affordable cost have become available

over the past few years and there is astounding growth in the use of

GPUs for overcoming the computation challenges in these

accurate image reconstructions [24–28]. In this article, we develop

a fast GPU-based algorithm for a high sensitivity small-animal

PET as outlined in the following two paragraphs.

Although current dedicated small-animal PET systems have

reached good spatial resolution of *1.2 mm, their sensitivity

remains unsatisfactorily low, typically below 5% [29–31]. We have

recently developed a prototypical small-animal PET (microPET)

scanner that can yield a high sensitivity of *28% when using a

250–750 keV energy window [7]. This scanner employed two

detector heads of the HRRT in a stationary, compact geometry to

provide both a high intrinsic detection efficiency and a large

detection solid-angle. Its compact geometry, however, led to

substantial DOI blurring and hence degraded image resolution.

The resolution degradations were corrected for in image

reconstruction by accurately modeling the scanner’s system

response matrix (SRM) and incorporating it into an ordered

subset expectation maximization (OSEM) algorithm [32] to

recover the estimated intrinsic resolution of the HRRT detectors,

which is *1.2 mm. As we will discuss more clearly below, the

developed reconstruction algorithm was computationally very
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expensive. It needed to handle a linear system matrix that involved

more than 200 million measurements and more than 10 million

unknown image voxels. In our initial implementation on a CPU

system (four Athlon x64 2.0 GHz PCs), the reconstruction

generally took days to complete [33]. This long reconstruction

time has prevented the routine use of this high-sensitivity scanner

despite of our biologist collaborators’ high interest for using it.

This paper is therefore concerned with developing a GPU-based

algorithm to significantly speed up the reconstructions of our high-

sensitivity small-animal PET scanner. Our implementation

exploits the symmetry properties in our scanner to take advantage

of the parallel computing power of a GPU based on the NVIDIA

Compute Unified Device Architecture (CUDA). In particular, we

propose a shift-invariant LOR-GPU block mapping scheme and

exploit the symmetry properties on GPU warp/thread assignments

that result in efficient parallelization with reduced memory access

cost. We also take advantage of texture memory for fast random

data read, shared memory for parallel reduction summation and

data reuse, coalesced global memory access, and atomic operation

for avoiding race condition. The developed algorithm is applied to

simulated and experimental data and yields results with satisfac-

tory image quality and substantially reduced computational times.

It is mentioned that there are also efforts in speeding up

reconstruction by approximating the SRM with a simplified

model and factorizing the SRM into component blurring processes

[34,35]. Our present implementation does not exploit these

approaches but employs a non-factorized, prestored SRM that was

accurately calculated by using Monte-Carlo simulations.

In the following sections, we will briefly review the background

materials and discuss how to employ GPU computing to accelerate

our reconstruction algorithm. A computer-simulation study was

carried out to investigate and evaluate the CUDA reconstruction

method. The numerical results of which, together with a real-data

result, are presented. Finally we conclude the article with a

discussion and summary.

Background Review and System Description

We review the GPU technology as well as the design of our

dual-head small-animal PET (DHAPET) scanner as follows.

GPU architecture
Our reviews first focus on the GPU architecture related to our

implementations. In particular, we use NVIDIA Tesla C2070,

code named ‘‘Fermi’’, in conjunction with CUDA, which is an

extension of the standard C/C++ programming languages with

single instruction multiple threads (SIMT) execution model.

Readers who wish to learn more about this subject are referred

Figure 1. A schematic of the architecture of an NVIDIA Fermi GPU.
doi:10.1371/journal.pone.0050540.g001

Figure 2. Conceptual illustration of the dual-head PET system
with the definition of the coordinate system. The origin is at the
center of the active imaging volume, the x-axis is perpendicular to the
detectors, and the y- and z-axes are along the length and width of the
detectors, respectively.
doi:10.1371/journal.pone.0050540.g002

Fast Dual-Head PET Imaging via GPU and Symmetry
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Figure 3. A shift-invariant LOR-block mapping schema. Each shift-invariant LOR shown in (a) is associated with a GPU block shown in (b). Note
that only partial LORs are shown in subfigure (a) to avoid cluttering the plot.
doi:10.1371/journal.pone.0050540.g003

Figure 4. The proposed GPU strategies. (a) The active imaging volume stored in the global memory is bound with the texture memory. The LOR
of a particular direction (red) and its symmetric equivalents corresponding to reflection symmetries in y-axis (yellow) and z-axis (blue) and
interchanged y- and z-coordinates (green) are shown in the right panel. (b) Each CUDA block contains 128 threads (four warps). These threads
multiply the sensitivity functions with the corresponding voxels and store the values in their shared memory for each LOR sequentially. The
accumulative summations in the forward projection is performed on the shared memory with parallel reduction summations.
doi:10.1371/journal.pone.0050540.g004
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to many monographs, such as [24,36], which cover the subject in-

depth.

A Fermi GPU, illustrated in Figure 1 for its processor and

memory schema, contains 14 Streaming Multiprocessors (SMs)

and Global Memory that can be accessed by all SMs. Globally

accessible but read-only Constant Memory and Texture Memory,

can be used to accelerate data accesses. The use of Constant and

Texture memory can be further accelerated when all threads of a

warp (to be explained below) access the same address (i.e.,

broadcasting) and when memory access patterns exhibit a large

degree of spatial locality. Each SM features 32 Scalar Processors

(SPs) and a Shared Memory that can be accessed by all 32 SPs.

Each SP also has its own Registers to provide the fastest access to a

small amount of data and Instruction Units to increase arithmetic

density.

In CUDA programming, the data to be processed on GPU will

be transferred from CPU memory to the global memory of GPU

first. A CUDA kernel containing a grid of threads is then

launched. These threads in the grid are further divided into blocks

that are assigned to execute resources of a Fermi GPU. These

blocks are implemented independently and each of which is

assigned to one SM for execution. Each block is executed as 32-

thread warps. At any given time, the SM concurrently executes the

32 threads in only one warp while holding other warps on wait.

Those warps that have operands ready for the next instruction are

qualified for execution. The switches among warps are fast. When

data sharing is necessary, the threads within a block can

communicate with one another via the shared memory of the

SM to which that the block is assigned.

Another issue that needs be considered in a multi-threaded

program is the race condition, which occurs when multiple threads

attempt to access the same piece of memory simultaneously and

thereby impact the correctness of the result. To avoid race

condition, the Fermi GPU provides atomic operation to guarantee

that at any given time only a single thread has access to a given

memory. Invoking atomic operation however can slow down the

operations.

Figure 5. The schema of the backward projection. A block of 128 threads read gi=
X

j’
Hij’q

(k{1)
j’ from their shared memory, multiply it with

sensitivity functions and then backproject to the corresponding voxels intersected by each LOR sequentially.
doi:10.1371/journal.pone.0050540.g005

Figure 6. A sample coronal slice of the reconstructed image of a real dataset acquired for a healthy adult rat injected with 18-FDG
by the DHAPET scanner, by using either (a) the CPU- or (b) the GPU-based OSEM algorithm. The head of the rat was placed at
approximately the center of the scanner. The images generated by the two algorithms show negligible differences.
doi:10.1371/journal.pone.0050540.g006

Fast Dual-Head PET Imaging via GPU and Symmetry
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Generally, to maximally utilize the parallel computing power of

GPU, one should try to maximize independent task/data/thread

parallelism, to maximize arithmetic intensity, to perform more

parallelizable computations on the GPU rather on the CPU and to

avoid data transfer between CPU and GPU. When data accesses

are necessary, we should optimize for coalescing in global

memory, for spatial locality in texture memory, and for avoiding

bank conflicts in shared memory. However, for a specific

algorithm implementations of the general rules are not necessarily

a trivial task.

Dual-head small-animal PET scanner
Our DHAPET scanner, illustrated in Figure 2, consists of two

HRRT detectors that have a detection-active area of 25|17 cm2.

The detectors are placed at only *6 cm apart, thereby creating a

large detection solid-angle for small animals placed in between

[37,38]. Each HRRT detector is comprised of a 104|72 array of

20|2:1|2:1 mm3 double-layered LSO/LYSO crystals having a

crystal thickness and a pitch equal to 20 mm and 2.4 mm,

respectively. The scanner remains stationary during imaging.

Every pair of two crystals, one from each detector, defines one

line-of-response (LOR) and one measurement. Let

~gg~½g1, � � � ,gM �T denote the measured data, where M is the total

number of LORs of the scanner, and ~ff ~½f1, � � � ,fN �T the

unknown source image, where N is the total number of image

voxels. Let H~fHijg denote the SRM, where Hij is the

probability of an annihilation occurring inside the jth voxel to

be detected at the ith LOR. The PET imaging model is then given

by

Ef~ggD~ff g~H~ff z~rrz~ss, ð1Þ

where~rr and~ss are the mean values of the random and scattered

events. In addition, the measurement contains noise and is

governed by the Poisson distribution, given by

p(~gg)~PM
i~1e{�ggi �gg

gi
i =gi!, �ggi~Efgi D~ff g: ð2Þ

The imaging model given above by Eqs. (1) and (2) can be solved

by a number of iterative algorithms. The focus of the present work

is to correct for the DOI blurring; therefore, we will ignore

random and scattered events and consider solving the imaging

model by using the popular OSEM algorithm. By dividing the

LORs of the scanner into a number of disjoint subsets, say Sk,
k~1, � � � ,K , where K is the number of subsets, and given an

initial estimate for~ff , say~ff (0), the OSEM algorithm is given by: for

n~1,2, � � � ,

~qq(0)~~ff (n{1), ð3Þ

Figure 7. Reconstructed images obtained from simulated data for the numerical micro Deluxe Derenzo phantom by use of CPU- or
GPU-based OSEM algorithm after 1 or 24 iterations. The phantom contains 6 groups of rods of different diameters, including 2.4 mm, 2.0 mm,
1.7 mm, 1.35 mm, 1.0 mm, and 0.75 mm. The spacing between the rods in the same group is twice their diameter. The phantom is placed at the
center of the scanner with the length of the rods oriented along the x-axis. As shown, the images generated by the two algorithms have negligible
differences.
doi:10.1371/journal.pone.0050540.g007
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q
(k)
j ~

q
(k{1)
jP

i[Sk
Hij

X

i[Sk

Hij
giP

j0
Hij0q

(k{1)

j0
,

j~1, � � � ,N, k~1, � � � ,K ,

ð4Þ

~ff (n)~~qq(K), ð5Þ

where n is the iteration number. Unless mentioned otherwise, we

will use~ff (0)~~11, i.e., all voxels of~ff (0) are set to a constant value of

1. By modeling the DOI blurring in the SRM, the reconstruction

algorithm can correct for DOI blurring to yield image of good

resolution. Readers are referred to [7] for detailed discussion of the

design considerations, image reconstruction, and performance

evaluations of the DHAPET scanner.

A particular challenge in implementing the above OSEM

reconstruction algorithm arises from the extraordinary dimensions

of the SRM. The DHAPET scanner contains more than

224 million LORs and more than 14 million voxels when

employing a 6 cm detector spacing and approximately 0.5 mm3

image voxel. As a result, the SRM has more than

Figure 8. Intensity profiles of the reconstructed images of the numerical micro Deluxe Derenzo phantom at three selected
horizontal positions as identified on the image obtained with 24 iterations. Evidently, small rods of the phantom are much better resolved
and show much higher contrast, with 24 iterations.
doi:10.1371/journal.pone.0050540.g008
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(2:2|108)|(1:4|107) elements and, by brute force, its calcula-

tion is extremely challenging, if not impossible. In addition, the

forward projector (i.e., the operation
X

j
Hijqj ) and backward

projector (i.e., the operation
X

i[Sk
Hijwi and

wi~gi=
X

j’
Hij’q

(k{1)
j’ ) in Eq. (4), and hence the OSEM

algorithm, are also computationally very intensive. In [7], we

were able to exploit the symmetry properties of the DHAPET to

make it feasible to employ Monte-Carlo (MC) calculations to

estimate the SRM including the DOI blurring. However, even

with the prestored SRM and exploiting the scanner symmetries to

speed up the matrix operations that represent the forward and

backward projections, the resulting OSEM algorithm still requires

more than 20 hours to run one iteration [33]; consequently, it is

difficult to employ the DHAPET scanner for routine small-animal

imaging studies. The objective of this work is therefore to exploit

GPU computing to massively parallelize, and hence drastically

accelerate, the reconstruction algorithm.

Methods for Accelerating the Reconstruction
Algorithm by GPU

This section describes our implementation of an OSEM

algorithm for the DHAPET scanner on a Fermi GPU. The

implementation matches the GPU architecture to the symmetry

properties of the scanner and carefully considers the execution

order to minimize the slower memory copy operations.

Symmetry properties
The symmetry properties of the DHAPET scanner, which have

been previously described in [39], are summarily reviewed below

for completeness.

Refer to Figure 2 for the definition of the coordinate system.

Although the HRRT detector contains double-layered crystals, we

will consider only single-layered crystals for simplicity. A crystal in

an HRRT detector can be identified by~cc~(cy,cz), where cy and

cz are the row and column numbers of the crystal, respectively. An

LOR, or a crystal pair, can then be identified as (~ccu,~ccl), where~ccu

and~ccl identify a crystal on the upper and lower HRRT detectors,

respectively. Similarly, an image voxel can be identified by

~vv~(vx,vy,vz), where vx, vy and vz are the slice, row, and column

numbers of the voxel, respectively. The detector response function

(DRF) h(~ccu,~ccl ;~vv) is defined as the probability for an annihilation

taking place in voxel~vv to be detected at the LOR (~ccu,~ccl): Clearly,

h(~ccu,~ccl ;~vv) is an element of the SRM H given above in Eqs. (1)-(5).

Without loss of generality, we can assume the detector to have a

crystal pitch equal to D. When choosing the voxel size to be

t|(D=D)|(D=D), where t is the voxel thickness in the x direction

and D is a positive integer, we have the following symmetry

properties:

1. Shift invariance: Ignoring boundary condition due to the finite

size of the detector, we have

h(~ccu,~ccl ;~vv)~h(~ccuz~mm,~cclz~mm;~vvz~mm0), ð6Þ

where ~mm~(my,mz) and ~mm0~(0,my,mz) with my,mz[Z.

2. Reflection symmetry: Let Rx, Ry, and Rz denote the operators

that negate the x, y, and z components of its operand,

respectively, e.g., Rx~vv~({vx,vy,vz): The invariance of the

system under reflection with respect to the coordinate axes then

implies

Figure 9. The transverse slices of the reconstructed images of the numerical micro Deluxe Derenzo phantom at (a) y~11:7 mm and
(b) y~{2:7 mm as the horizontal lines identified in Figures 8(c) and 8(e), respectively.
doi:10.1371/journal.pone.0050540.g009

Table 1. Computational time for the forward projections in the OSEM algorithm (in seconds) using different GPU algorithms.

Algorithm 1 Algorithm 2 Algorithm 3

Acceleration strategies No symmetry properties,
no shared memory

Use symmetry properties Use symmetry properties and memory
allocation

Time (s) ,2,417 171.36 111.38

doi:10.1371/journal.pone.0050540.t001

Fast Dual-Head PET Imaging via GPU and Symmetry
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h(~ccl ,~ccu;~vv)~h(~ccu,~ccl ;Rx~vv), ð7Þ

and

h(~ccu,~ccl ;~vv)~h(Ra~ccu,Ra~ccl ;Ra~vv), ð8Þ

with a~y,z.

3. Axis interchangeability: Similarly, the system response is invariant

when the y- and z-axes are exchanged. Let the operator Syz

swap the y- and z- components of its operand, e.g.

Syz~vv~(vx,vz,vy). Then,

h(~ccu,~ccl ;~vv)~h(Syz~ccu,Syz~ccl ;Syz~vv): ð9Þ

Computation of the system matrix
To obtain the best reconstruction results, it is of great interest to

eliminate any pre-reconstruction data interpolation or rebinning.

We employed the GATE package [40] to accurately model the

detection characteristics of the HRRT detector heads for the dual-

head configuration [41]. The GATE package is a public-domain

MC simulation package that can accurately model the physical

processes and geometric effects [42,43].

In this work, we consider the following settings. Two detector

heads with the crystal pitch size of 2.4 mm were positioned at

6 cm apart. We chose D~4 and t~0:5 mm to obtain a voxel size

of 0:5|0:6|0:6 mm3. We also chose to have 119 p-planes and

positioned the central plane at exactly the midway between the

detectors, thereby making p-planes symmetric with respect to the

reflection about the y-z plane (see Symmetry properties section).

GATE package generated the point spread function (PSF) for

every three seed voxels at each p-plane. In our MC simulation,

these seed voxels were filled with a uniform activity of a pair of

back-to-back 511 keV c-photons, and a 350–750 keV energy

window and a 6 ns coincidence time were assumed. By using the

high symmetry properties of the dual-head PET, we can specify

‘‘one’’ LOR or the DRF to compute its response to the uniform

activity distribution in the whole imaging space. As a result, to

construct the SRM, we only need to compute the detector

response functions for 60 p-planes, whose index values are within

the range of [0 59] and 3 voxels in each p-plane [7]. The detector

head has 104|72 pixels and was extended to 208|208 to enable

the use of symmetries to be applicable to all elements in the

DHAPET system matrix. We exploited the symmetry property

and computed the system response matrices, which were stored as

sparse matrices to facilitate access in reconstruction. Note that the

subject scattering, positron range and photon linearity are not

included. Also, the random events were excluded and the scanner

dead-time was ignored.

GPU parallelizations
The OSEM algorithm for planar PET can be accelerated by

taking advantage of the abundant GPU threads. The computation

of forward or backward projection involves multiplication of SRM

with a large number of voxels or LORs; therefore, it is natural to

assign one thread for each voxel or each LOR. However, such a

straightforward GPU parallelization is not optimal as it will yield

extremely long reconstruction times. To demonstrate the impact of

parallelization schemes, we developed three GPU algorithms using

different acceleration strategies. The ideas of the three strategies

are presented below.

N Algorithm 1. Forward projection using one thread
block for one LOR. In this straightforward GPU parallelization,

we do not exploit the symmetry properties of DHAPET nor do we

use particular memory usage schemes in GPU. The step-by-step

procedure is shown below.

1: allocate a (128|1) thread block to handle mth LOR

2: thread[i] reads the corresponding f[i][m] in the mth LOR

from the global memory simultaneously

3: thread[i] computes s½i�~s½i�zf ½i�½m� � h½i�½m� simultaneously

and stores it in its register

4: for i~1, . . . 128 do

5: proj = proj+s[i] thread[0] sums over 128 threads to obtain

forward projection value

Table 2. Computation time of the OSEM algorithm (in seconds) and speedup by the GPU implementation based on the simulated
data of the micro Deluxe Derenzo phantom.

Forward projection per
subset

Forward projection per
iteration Backprojection per subset Backprojection per iteration

CPU 198.78 (1X) 14,312.00 (1X) 331.57 (1X) 23,873.00 (1X)

GPU 1.55 (128.24X) 111.38 (128.50X) 9.42 (35.20X) 678.27 (35.20X)

doi:10.1371/journal.pone.0050540.t002

Table 3. Computation time of the OSEM algorithm (in seconds) and speedup by the GPU implementation based on the rat
dataset.

Forward projection per
subset

Forward projection per
iteration Backprojection per subset Backprojection per iteration

CPU 246.68 (1X) 17,761.00 (1X) 376.96 (1X) 27,141 (1X)

GPU 2.06 (119.82X) 148.23 (119.82X) 10.55 (35.72X) 759.80 (35.72X)

doi:10.1371/journal.pone.0050540.t003
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PLOS ONE | www.plosone.org 8 December 2012 | Volume 7 | Issue 12 | e50540



6: end for

N Algorithm 2. Forward projection using one thread
block for multiple reflection and axis symmetric LORs.
As shown in the previous ‘‘Symmetry properties’’ section, the

geometric symmetries in the dual-head PET setting include shift

invariance, reflection symmetry, and axis interchangeability. This

algorithm integrates these symmetry properties with GPU

architecture to expedite the image reconstruction. The step-by-

step procedure is shown below.

1: allocate N (128|1) thread blocks to handle the N shift-

invariant LORs

2: for m~1, . . . 4 do

3: thread[i] reads the corresponding f[i][m] in the mth

symmetric LOR from the texture memory simultaneously

4: thread[i] computes s½i�½m�~s½i�½m�zf ½i�½m� � h½i�½m� simulta-

neously

5: thread[i] stores s[i][m] in the global memory simultaneously

6: end for

N Algorithm 3. Forward projection using one thread
block for multiple reflection and axis symmetric LORs,
as well as shared memory for fast data read and write.
Because the memory hierarchy in GPU is notably different from

that in CPU, this algorithm carefully considers GPU memory

structure and suitably uses faster accessing memory like texture

memory, shared memory, and parallel reduction scheme. The

step-by-step procedure is shown below.

1: allocate N (128|1) thread blocks to handle the N shift-

invariant LORs

2: allocate 128|4 block shared memory for storing partial

sums

3: allocate 4|1 block shared memory for storing histograms of

4 symmetric LORs

4: for m~1, . . . 4 do

5: thread[i] reads the corresponding f[i][m] in the mth

symmetric LOR from the texture memory simultaneously

6: thread[i] computes s½i�½m�~s½i�½m�zf ½i�½m� � h½i�½m� simulta-

neously

7: thread[i] stores s[i][m] in the blocked shared memory

simultaneously

8: end for

In the next two sub-sections, we discuss how the symmetry

properties can be integrated with GPU and how the GPU memory

hierarchy can be efficiently used.

Integration of symmetry properties with GPU
architecture

We have reviewed GPU architectures, OSEM algorithm for

PET image reconstruction, and symmetry properties in our

system. In this section, we will describe our strategies to accelerate

image reconstruction: (i) efficient arrangements of blocks, warps,

and threads toward algorithmic structure of the OSEM algorithm

and the symmetry properties of the DHAPET scanner, (ii) efficient

GPU memory usages, and (iii) other efficient implementation

considerations. Note that as mentioned above, the SRM is pre-

calculated. Even so, the OSEM algorithm is still computationally

very expensive due to the large numbers of LORs and image

voxels involved. The planar geometry of two 104|72 detector

arrays yields LORs with a total of 104|72 different directions,

which are randomly divided into 72 subsets. Each subset,

containing 104 LOR orientations, is accompanied by a seed-

DRF pool file that specifies the memory addresses of sensitivity

functions associated with voxels intersected by these LORs.

First, we highlight how the parallel computations of shift-

invariant LORs can be performed efficiently via the abundant

CUDA blocks, warps, and threads and how the cost to access

SRM can be reduced.

N A shift-invariant LOR-block mapping yields 1 to 104|72 independent

tasks being executed simultaneously.

In both forward and backward projections, multiple CUDA

blocks were assigned to compute the same number of shift-

invariant LORs for a given orientation, as their computations are

independent of one another. For example, as conceptually shown

in Figure 3, these LORs are shifted from the perpendicular

direction by 2 elements in both y- and z- axes in the upper

detector so that there are 102|70 LORs of such an orientation

and thus their forward projections will be determined by the same

number of CUDA blocks.

N Exploiting the reflection symmetry and axis interchangeability on warp/

thread assignments leads to a 4 to (103|71|4)-fold saving for one LOR

orientation in the SRM accessing times.

Four-fold and 103|71|4-fold speedups arise from the fact

there are 4 most oblique LORs and 103|71|4 LORs that are

shifted from perpendicular direction by 1 element in both y- and

z- axes, respectively. Within each block, the reflection symmetries

in y- and z- axes and axis interchangeability between y- and z-

coordinates were further exploited to yield additional 4 symmetric

LORs, which were computed using 128 threads. Figure 4

illustrates the LOR of a particular direction in red and its

symmetric equivalents corresponding to reflection symmetries in

y- and z-axes and interchanged y- and z-coordinates are depicted

in yellow, blue and green, respectively. The application of these

symmetry and the shift-invariant properties accounts for a

102|70|4-fold saving in the SRM accessing times for the

orientation shown in Figure 4 by using the sensitivity functions

common to these LORs of the given orientation.

The exploitation of shift-invariant and reflection symmetry and

axis interchangeability for all LORs of orientations amount to

104|72-fold saving in the SRM accessing times.

Efficient memory hierarchy for forward/backward
projections

Second, as the bottleneck of the OSEM in the planar PET

geometry is the memory bandwidth rather than the floating point

arithmetic operations, we emphasize how we can utilize the

various GPU memory efficiently in the OSEM algorithm.

N Texture memory binding for fast random data read. In forward

projection, the volume estimate f (n), which is stored in the global

memory was bound with texture memory to facilitate random data

access for forward projections, as shown in the left panel of

Figure 4. Taking advantage of the high efficiency in memory

access, the data could be read from texture memory swiftly.

N Shared memory coalescing for parallel reduction summation. The data

related to Hij’q
(k{1)
j’ in forward projection is stored in the shared

memory, as shown in Figure 4(b). Subsequently, memory

coalescing can be achieved by the parallel reduction summation

[44], which was applied to accelerate the accumulative summa-
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tions in the forward projection. Our implementation was modified

from the CUBLAS isamin function.

N Shared memory for data reuse. In the forward and backward

projections, we employed the first threads of 4 warps (threads 0,

32, 64, 96) within each one-dimensional CUDA block (128

threads) to allocate the histogram data of 4 symmetric LORs to the

shared memory. In lieu of assigning a single thread to execute the

instruction sequentially or invoking 4 threads in the same warp to

access 4 elements that reside on non-contiguous addresses,

executing other warps can hide latencies and keep the hardware

busy. As indicated by Figure 5, these 4 threads belonging to 4

different warps also allocate the ratios of measured LORs to the

projected ones (i.e., gi=
X

j’
Hij’q

(k{1)
j’ ) at the k-th subset to their

shared memory for backward projections. Subsequently, these

ratios are retrieved and multiplied with the sensitivity functions

before backprojecting to the corresponding voxels.

N Global memory without race condition. When writing the forward

results to the global memory, the atomic operator atomicAdd was

applied to avoid race condition. Similarly, before the operand of

each thread was backprojected to the global memory, atomicAdd

operator was also applied to ensure that no race condition occurs.

Third, some other acceleration techniques are remarked.

N Before the forward or backward projections along each LOR was

carried out, all threads in the block will determine whether the

measured histogram data stored in shared memory contain

nonzero values. If the data value is zero (i.e., no signal), we assign

zero to the corresponding value without further computation.

N We can avoid memory access by recomputing indices on the fly,

as memory access can take more time than recomputing.

In summary, our GPU acceleration schemes utilized the LOR-

based DRF and exploited the abundant threads, spatial locality

and other features of the GPU architecture to significantly

accelerate both the forward and backward projections. As shown

in the next section, the GPU codes achieve significant speedups

and thereby largely improve the applicability.

Reconstruction Results

Image reconstruction
A simulated and real datasets were used for evaluation. For the

simulated dataset, we implemented a numerical version of the

micro Deluxe Derenzo phantom. The phantom was placed at the

center of the scanner with the rods positioned along the x-

direction (i.e., vertical to the detectors). We first applied the pre-

calculated SRM for the scanner to this numerical phantom to

generate noise-free measurements. Then, Poisson noise is intro-

duced to obtain a simulated dataset containing a total of

1:72|108 true events.

The real dataset was obtained by imaging a healthy adult rat

(*270 g) by the DHAPET scanner. The rat was placed with its

head approximately at the center of the scanner. A bolus injection

of *500 mCi of 18-FDG via the tail vein was administrated and

the rat was scanned immediately after the injection for 30 minutes.

Random correction was performed by subtracting the delayed

coincidence and removing any resulting negative measurements.

The resulting dataset contained about 4:6|108 counts. It was

then normalized for the variation in sensitivity across LORs using

measured normalization factors. No correction for subject

attenuation or scatter was performed. Figure 6 shows a sample

coronal slice of the reconstructed image of the rat dataset by the

DHAPET scanner using (a) CPU- and (b) GPU-based OSEM

algorithms, respectively. Both datasets contained coincidence

events that only involved the front-layer crystals.

Image reconstruction by use of CPU code was performed on a

workstation equipped with an Intel Intel Xeon-E5620 quad-core

CPU at 2.40 GHz and 96 GB main memory. An NVIDIA Tesla

C2070 GPU with 1:15 GHz cores and 3GB on-board memory is

installed in the workstation. The CPU code was compiled by using

the Intel C compiler icc. The GPU code was compiled by using

Intel icc version and NVIDIA CUDA compiler [45]. In all

compilations, we use optimization level -O3. The same extended

matrix and symmetry properties are used for both CPU- and

GPU-based approaches.

Both the CPU- and GPU-based OSEM codes have successfully

reconstructed the testing images. Visually, and confirmed numer-

ically, differences between the images produced by the CPU- and

GPU-based OSEM algorithms are negligible, validating our GPU

implementation. Figure 7 shows the reconstructed images

obtained from simulated data for the numerical micro Deluxe

Derenzo phantom by use of CPU- or GPU-based OSEM

algorithm after 1 or 24 iterations. As shown, the images generated

by the two algorithms have negligible differences. Figure 8

compares the intensity profiles of the micro Deluxe Derenzo

phantom after 1 and 24 iterations. As shown, the small rods of the

phantom are much better resolved with 24 iterations. However,

with the CPU-based algorithm one iteration requires about

20 hours of computation; in routine use, one therefore would be

constrained to perform no more than a few iterations and to

accept sub-optimal imaging results. To show homogeneity and

resolution of the reconstructed images along x-axis, the transverse

slices at y~11:7 mm and y~{2:7 mm are plotted in Figures 9(a)

and 9(b), which correspond to the horizontal lines identified in

Figures 8(c) and 8(e), respectively.

Performance evaluations
The choice of algorithms has significant impact on the resulting

computational times. To demonstrate such effects, we have

performed numerical experiments by using all three algorithms

introduced in the sub-section ‘‘GPU parallelizations’’. Table 1

listed the estimated computation times for forward projection

corresponding to Algorithms 1, 2 and 3. Algorithm 1 took around

2,417 seconds to implement one iteration by computing 1 LOR

with one 128|1 thread block. Although the use of symmetry

properties in Algorithm 2 can significantly reduce the reconstruc-

tion times to 171:36 seconds, it is still much longer than the

111:38 seconds achieved by Algorithm 3. Further, we implement-

ed Algorithm 3 by using both 1 and 128 threads to investigate the

impact of thread number. The GPU forward projection time per

iteration was found to increase from 111:38 to 3,802:58 seconds

when the thread number reduced from 128 to 1.

Tables 2 and 3 summarize the timing results obtained for the

CPU- and GPU-based algorithms. When applied to the simulated

dataset, the CPU and GPU codes take, respectively, 14,312 sec-

onds and 111.38 seconds to compute the forward projection per

iteration, or 198.78 seconds and 1.55 seconds per subset on

average. This represents a factor of *128 in speedup. In

comparison, the CPU and GPU codes take respectively

23,873 seconds and 678.27 seconds to compute one iteration of

the backprojection, or 331.57 seconds and 9.42 seconds per subset

on average. In this case, about a factor of 35 in speedup is realized.

Note that for both CPU and GPU codes the backprojection is

computationally more expensive than the forward projection. This

difference is related to the different memory-access patterns of our

implementations of the forward and backward projections. When

applied to the real rat data (see Table 2), both the forward and
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backward projections require slightly longer computation time.

The speedup factor for forward projection is also slightly reduced

to *120, but the speedup for the backward projection remains

essentially identical at *36.

We have also evaluated our GPU codes by using the CUDA

Visual Profiler version 4.0.17 and the results indicate that the

implementation is efficient. First, we look at the occupancy metric

that is computed by taking the ratio of the active thread numbers

to the maximum thread numbers per processor. While the

theoretical occupancy equals 0:67, the forward and backward

projections can achieve occupancy that are as high as 0:61 and

0:53, respectively. The backward projection has lower occupancy

as it takes more time on writing data to global memory. Second,

we focus on the GPU utilization percentages. The kernel time

occupies 84:30% out of the total GPU time, while memory copy

time occupies only 4:9% of the total GPU time. This observation

suggests that our codes can successfully avoid relatively expensive

(compared with data accesses on GPU) data transfer between the

CPU and GPU and devote most of it resources in the computation

part.

Discussion and Summary

We applied similar acceleration strategies to both forward and

backward projections; however, the computation of the latter is

considerably longer than the former due to the fact that the data

structure of the SRM permits only the LOR-based projections.

The excessive computational time results from the random writing

to the memory in the backprojection for both CPU- and GPU-

based codes. The CPU computational times was, in fact, already

shortened because there exist a great deal of LORs in the

DHAPET system that are shift-invariant or symmetric in some

direction. This unique feature in the panel PET system allows for

the direct mapping of parallel LORs to the CUDA block and

thread units in GPU to facilitate parallel computing. In addition,

the multi-threaded program can be further parallelized by

employing multiple GPUs. We have demonstrated that the

parallel computing units and GPU memory can be integrated

with the data structure of the DHAPET system to deliver the

image reconstruction in a timely manner. Recently, the hardware

advancement driven by the demands for a better imaging

performance leads to dedicated animal PET systems with good

spatial resolution and finds new PET applications in the fields of

food science and plant imaging. The quantitative information of

physiological effects and translocation of bioactive ingredients

provides new insights on food chemistry and mechanisms of

reactions like photosynthesis and photo-assimilation [46–48]. In

addition to providing high detection sensitivity and cost effective-

ness, planar PET imaging is particularly suitable for imaging thin

and small objects like plant leaves. The growing interest in these

extended applications also inspired development of PET detectors

designed specifically for plants [9,10]. Our algorithm can facilitate

a wider range of applications for dual-head PET systems, and can

be generalized to accommodate more scanning geometries.

We have applied GPU architecture in our GPU-based

algorithm to remarkably accelerate the OSEM reconstruction in

our dual-head PET system. Numerical studies of the developed

algorithm were conducted to demonstrate the achievable speedup

employing the currently available GPU hardware. The multi-

threaded units, various memory types and other unique features of

GPU can be exploited to expedite image reconstruction drastical-

ly. With the substantial speedup by the GPU code, we would be

able to routinely employ 10 or more iterations in reconstruction to

achieve better image resolution and contrast.
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