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Background: Programmed death ligand-1 (PD-L1) is a biomarker for assessing the
immune microenvironment, prognosis, and response to immune checkpoint inhibitors in
the clinical treatment of lung adenocarcinoma (LUAD), but it does not work for all patients.
This study aims to discover alternative biomarkers.

Methods: Public data were obtained from The Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO). Weighted gene co-expression network analysis (WGCNA)
and gene ontology (GO) were used to determine the gene modules relevant to tumor
immunity. Protein–protein interaction (PPI) network and GO semantic similarity analyses
were applied to identify the module hub genes with functional similarities to PD-L1, and we
assessed their correlations with immune infiltration, patient prognosis, and immunotherapy
response. Immunohistochemistry (IHC) and hematoxylin and eosin (H&E) staining were
used to validate the outcome at the protein level.

Results: We identified an immune response–related module, and two hub genes
(PSTPIP1 and PILRA) were selected as potential biomarkers with functional similarities
to PD-L1. High expression levels of PSTPIP1 and PILRA were associated with longer
overall survival and rich immune infiltration in LUAD patients, and both were significantly
high in patients who responded to anti–PD-L1 treatment. Compared to PD-L1–negative
LUAD tissues, the protein levels of PSTPIP1 and PILRA were relatively increased in the PD-
L1–positive tissues, and the expression of PSTPIP1 and PILRA positively correlated with
the tumor-infiltrating lymphocytes.

Conclusion: We identified PSTPIP1 and PILRA as prognostic biomarkers relevant to
immune infiltration in LUAD, and both are associated with the response to anti–PD-L1
treatment.
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INTRODUCTION

Lung cancer remains the leading cause of cancer death (Travis,
2011). Lung adenocarcinoma (LUAD) is a predominant subtype
of lung cancer, and the majority of LUAD patients are diagnosed
at an advanced stage, losing the opportunity for surgery (Siegel
et al., 2017). Although chemotherapy and targeted therapy can
bring survival benefits to advanced patients, drug resistance is
inevitable (Molina et al., 2008). With the rapid development of
immunotherapy, programmed cell death 1 (PD1) and its ligand
(PD-L1) checkpoint inhibitors have become alternative options
for advanced patients, enhancing the anticancer immune
response by relaunching T-cell–mediated tumor cell death
programs through blocking the interaction between PD1 and
PD-L1 (Reck, 2018; Dhillon and Syed, 2019). Both the protein
and mRNA of PD-L1 can be used to evaluate the tumor
immunophenotype, and a high expression of PD-L1 generally
predicts benefits from anti–PD1/PD-L1 therapy, resulting in a
better prognosis (Conroy et al., 2019).

Although PD-L1 is a well-validated biomarker for
immunotherapy response (Shukuya and Carbone, 2016), its
positivity does not indicate a certain response to immune
checkpoint inhibitors (ICIs), with the objective response rates
(ORRs) fluctuating widely (20%–40%) in PD-L1–positive
patients. Meanwhile, a subset of PD-L1–negative patients can
acquire a good response (Topalian et al., 2012; Brahmer et al.,
2015; Garon et al., 2015; Rizvi et al., 2015; Brahmer et al., 2017;
Zhang et al., 2020), suggesting the unstable predictive efficiency of
PD-L1. Heterogeneity originating from distinct sub-clonal
populations of cells could be an important reason for this,
with LUAD showing high heterogeneity in immune molecules.
PD-L1 expression is diverse among different tumoral regions,
such as primary tumors and metastases, so it is likely that
immunohistochemistry fails to assess the true PD-L1 status
(Ilie et al., 2016; McLaughlin et al., 2016), thus leading to
suboptimal decision-making in clinical treatment. Therefore,
calculating the immunophenotype from PD-L1 is oversimple,
and several studies have confirmed that the signatures related to
intra-tumor immune infiltration can effectively predict the
response to immunotherapy (Teng et al., 2015; Ock et al.,
2016). The aim of this study was to discover the additional
immune response–related biomarkers.

Similar to LUAD, skin cutaneous melanoma (SKCM) has a
high ORR in first-line immunotherapy (Brahmer et al., 2015;
Garon et al., 2015; Larkin et al., 2015), and a systematic review
revealed that both PD-L1–negative and PD-L1–positive patients
can benefit from the ICIs (Teng et al., 2018), implying the strong
immunogenicity of SKCM. Many publications have indicated
shared immune characteristics between LUAD and SKCM, which
could effectively influence the immune response. A certain
proportion of SKCM and LUAD patients possess a similar
immune microenvironment, characterized by a high number
of mutations or neoantigens, which benefits the patients in
anti–PD-L1/PD1 treatment (Chen et al., 2017). In addition,
similar intra-tumor heterogeneity and a high leukocyte
fraction between SKCM and LUAD have been confirmed.
Heterogeneity is associated with the level of tumor-infiltrating

immune cells, while tumor types with high leukocyte fractions are
generally the most responsive to ICIs (Morris et al., 2016;
Thorsson et al., 2018). These transcriptome-based studies
provide evidence for the common immunophenotypic basis
between LUAD and SKCM, which indicates that they probably
have a wide universality in immune-related biomarkers and
clinical evaluation. Given that the preserved pattern of the
gene module can convey a similar phenotype (Gustafsson
et al., 2014), we presume that there could be core modules
related to tumor immunity in SKCM and LUAD, and module
hub genes, with functional similarities to PD-L1, might be used as
biomarkers to evaluate the immunophenotype. Therefore, the
introduction of SKCM to identify the common gene module
would enable us to reduce thousands of candidate genes to a small
number in specific modules, and we can also verify the prognostic
or diagnostic value of the potential genes in both SKCM and
LUAD based on their common immunophenotypic basis.

The pipeline is illustrated in Figure 1. With RNA expression
profiles from The Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO), the present study identified that
proline–serine–threonine phosphatase–interacting protein 1
(PSTPIP1) and paired Ig-like type 2 receptor alpha (PILRA)
have functional similarities to PD-L1, and both are prognostic
biomarkers relevant to immune infiltration and the anti–PD-L1
treatment response.

MATERIALS AND METHODS

Data and Clinical Sample Acquisition
The RNA-sequencing (RNA-seq) data [by expectation
maximization (Li and Dewey, 2011), RSEM] were obtained
from the TCGA (http://cancergenome.nih.gov) by utilizing
cBioPortal (Cerami et al., 2012), namely, SKCM (104 samples
of primary solid tumors and 368 samples of metastatic tumors)
and LUAD (515 samples of primary solid tumors). Two
validation data sets were downloaded from GEO (https://www.
ncbi.nlm.nih.gov/geo/), meeting the following criteria: 1) data
sets with whole transcriptome data, including RNAmicroarray or
sequence data; 2) data sets with human specimens or tissue
samples from animal models; 3) data sets with complete
information about the technology, platform, and data
processing; 4) data sets with available information about the
response to anti–PD-L1/PD1 treatment; and 5) the data sets
published within 10 years. We used GSE111414 (the RNA-seq
data of CD8+ peripheral blood lymphocytes (PBLs) from LUAD
patients treated with nivolumab) and GSE172320 (the RNA
microarray data of samples from SKCM mice treated with
anti–PD-L1) to determine the implications of PSTPIP1 and
PILRA in the anti–PD-L1 treatment response. In addition,
GSE68571 (the RNA microarray data of 436 LUAD samples
with available differentiation information) was downloaded to
explore the association between PSTPIP1/PILRA and LUAD
differentiation. Data normalization was performed using the R
package “limma.”

The LUAD pathological section materials of 18 patients, that
is, 9 PD-L1–positive samples and 9 PD-L1–negative samples,
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were acquired from the Department of Pathology, Xiangya
Hospital of Central South University, and PD-L1 expression
was confirmed by pathologists using the PD-L1
immunohistochemistry (IHC) 22C3 pharmDx assay (Hirsch
et al., 2017). The clinicopathological characteristics of the
patients are listed in Supplementary Table S1. The present
study was approved by the ethics committee of Xiangya
Hospital of Central South University.

Weighted Gene Co-Expression Network
Analysis
WGCNA was performed using the R package “WGCNA”
(Langfelder and Horvath, 2008). Modules produced by
WGCNA, named by different colors, refer to genes that share
a similar connectivity pattern. Module membership (MM) is the

relevance of the expression profile to eachmodule eigengene. Hub
genes, the central point of the gene module architecture, were
defined as those genes with MM > 0.8. The R package “NetRep”
was used to evaluate the replication and preservation of the target
module from seven module preservation statistics (Ritchie et al.,
2016). According to the tutorial, a gene module was considered
strongly preserved if the p value was <0.01 for all preservation
statistics, weakly preserved if the p value was <0.01 for one or
more, but not all, test statistics, and no evidence if no test statistics
had a p value < 0.01.

Gene Ontology and Pathway Enrichment
Analysis
GlueGO (Bindea et al., 2009) and the R package “Clusterprofiler”
(Yu et al., 2012) were applied to the Gene Ontology (GO) and

FIGURE 1 | The workflow of this study. First, the shared gene module related to immune regulation of LUAD and SKCMwas identified. Next, the PPI network of the
gene module was constructed by utilizing the STRING database, and the PD-L1 association network was applied as the PD-L1 interactome, which was used to evaluate
the potential biomarkers from the hub genes with functional similarities to PD-L1. Finally, biomarker correlations with patient prognosis, immune biomarkers, immune
infiltration, and anti–PD-L1 treatment response were investigated using various approaches.
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Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis and outcome visualization. Based on similarly associated
genes, GO parent–child terms construct a hierarchy from the
global to the specific level. Significant GO terms are summarized
into representative terms by the fusion of the GO
parent–child terms.

Protein–Protein Interaction Network
Construction
The PPI information of the core module was obtained from the
STRING database (https://string-db.org/), which offers the most
confident interactions among module genes. We constructed a
PPI network by using the Cytoscape 3.4.0 software (Shannon
et al., 2003). Subsequently, the plug-in Molecular Complex
Detection (Bader and Hogue, 2003) and GO analysis were
applied to determine the central submodule related to tumor
immunity, which helps to identify the core of the immune-related
network in the target module (with the parameters: degree cutoff
= 2, K-core = 2, and node score cutoff = 0.2).

Gene Ontology Semantic Similarity Analysis
The assessment of GO semantic similarity between genes can
predict their relevant functions (Tedder et al., 2010). Based on the
PPI information, the protein-coding genes having a connection
with PD-L1 were incorporated into the PD-L1 interactome. Using
the function “mgeneSim” in the R package “GOSemSim” (Yu
et al., 2010), the semantic similarities between each hub gene and
the PD-L1 interactome were calculated by taking the molecular
function (MF) and cellular component (CC) of the GO
topological structure into account. The Wang method was
used in this process, which can accurately determine the
semantic similarities of genes via a graph-based strategy
(Wang et al., 2007). We used the geometric mean of semantic
similarities in MF and CC to score the functional correlations
between each hub gene and the PD-L1 interaction partners. A
hub gene with a high score was generally considered to have a
high probability of functional similarity to PD-L1, meaning it
could be implicated in tumor immune regulation and relevant to
the PD-L1 association network. We ranked hub genes by their
average functional similarity score, providing an initial evaluation
for their functional similarities to PD-L1.

Survival Analysis
Survival analysis was performed using the R packages
“survminer” and “survival.” Based on the mRNA expression of
biomarkers, the samples were divided into two groups to plot
Kaplan–Meier survival curves. A high expression was defined as
samples with biomarker expression values above the median
value, whereas a low expression was defined as samples with
biomarker expression values below the median value.

Immune Infiltration Characterization
The R package “ESTIMATE” was used to quantify the total levels of
tumor-infiltrating immune cells. Based on the unique properties of
the transcriptional profiles, “ESTIMATE” performs a single sample
gene set enrichment algorithm, which calculates the strength of the

concerted behavior of the immune-related gene sets in each tumor
sample (Yoshihara et al., 2013). We further utilized the R package
“GSVA” to calculate the enrichment score of each infiltrating
lymphocyte. By implementing a nonparametric unsupervised
method to score the gene set enrichment in the gene microarray
and RNA-seq data, “GSVA” transforms the data from a gene to a
gene set by the sample matrix, allowing for the calculation of an
enrichment score for each sample without information about
explicitly modeling phenotypes (Hänzelmann et al., 2013).
According to the median expression value of biomarkers, samples
were separated into high expression and low expression groups, and
we explored the status of tumor-infiltrating lymphocytes (TILs) in
each tissue sample. A list of immune metagenes whose expressions
have been shown to accurately predict the infiltration of immune cell
populations was utilized as an input object for the “GSVA”
(Angelova et al., 2015).

Assay Methods
IHC was used to determine the protein levels of PSTPIP1 and
PILRA. LUAD tissue samples were sectioned into 4-mm-thick
slices, deparaffinized in xylene and rehydrated in a series of
graded alcohols. Antigen retrieval was performed by
immersing the slides in sodium citrate. Endogenous peroxidase
was blocked by a 10-min incubation with 3% H2O2. Next, the
slices were incubated with the primary antibodies anti-PSTPIP1
(11951-1-AP, rabbit, polyclonal, dilution 1:50, Proteintech,
Wuhan, China), anti-PILRA (orb38981, rabbit, polyclonal,
dilution 1:200, Biorbyt, Cambridge, United Kingdom), and
PBS (blank control) overnight at 4°C, washed three times with
PBS, and incubated with a horseradish peroxidase
(HRP)–conjugated secondary antibody (ab205718, Abcam,
Cambridge, United Kingdom) for 30 min. Finally,
immunostaining was performed with a diaminobenzidine
substrate kit (ab64238, Abcam, Cambridge, United Kingdom).
According to the outcome of IHC, we equally separated LUAD
samples into high- and low-expression groups, and TILs were
calculated in hematoxylin and eosin (H&E)–stained sections
according to the standardized evaluation of TILs in breast
cancer (Salgado et al., 2015). The IHC and H&E staining
results were evaluated using the ImageJ software. Three to five
typical fields of view per image were measured, and we obtained
the mean value. The average optical density (AOD) or stromal
TILs were calculated by counting the average of three pathological
sections from each sample. The median values of the AOD
expressed in each sample were used as the cutoff value, and
the samples were divided into the high- or low-expression group.

Statistical Analysis
R statistical software (v.3.6.1) was used for statistical analyses and
graphical visualization. The analysis was performed on log2-
transformed values. Spearman’s correlation test was applied to
assess the relationships among biomarkers. The Wilcoxon test was
used to compare the distributions of two sets of any continuous
variable. The Kruskal–Wallis test was used to compare the
distributions of three or more sets of any continuous variable.
Null hypotheses were rejected at a two-sided p value lower than
0.05, unless otherwise indicated.
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RESULTS

Identification of the GeneModule Related to
Tumor Immunity
To identify the core module, we first performed WGCNA on 104
SKCM samples from primary lesions. The weighted gene co-
expression network identified 21 modules (Figure 2A).
According to the results of the GO and KEGG analyses, we
identified the brown module, which consists of 743 protein-
coding genes such as PD-L1, involved in tumor immune
regulation. The bubble diagram shows the enriched GO terms
implicated in the functional regulation of multiple lymphocytes
and immune-related processes (Figure 2B). KEGG analysis
revealed that immune cell–mediated and PD-L1–related pathways
were enriched, including the “B-cell receptor signaling pathway,”
“T-cell receptor signaling pathway,” and “PD-L1 expression and PD-

1 checkpoint pathway in cancer,” which are closely related to tumor
immunity and immunotherapy response (Figure 2C). Compared to
other modules, GO terms associated with immune-related
regulation and biological processes were almost concentrated in
the brownmodule, meaning that the module is likely to be in charge
of tumor immunity, and thus it is a candidate for the subsequent
analysis. Then, we calculated the module’s preservation pattern,
showing its strong preservation in LUAD and metastatic SKCM,
which means that this gene module could be related to the common
immunophenotype in SKCM and LUAD (Figure 2D).

Construction of the Protein–Protein
Interaction Network
A total of 199 hub genes were identified in the brown module.
Then, we screened the central submodule in the brownmodule by

FIGURE 2 | Identification of a gene module associated with tumor immunity. (A) Dendrogram of 104 skin cutaneous melanoma (SKCM) samples. The results of (B)
GO and (C) KEGG pathway analyses for the genes belonging to the brown module. (D) Assessment of the preservation pattern of the brown module in SKCM and lung
adenocarcinomas (LUAD) from seven module preservation statistics, and the bar plots showing the observed value of each module preservation statistic. cor.cor: the
concordance of the correlation structure; avg.cor: the average magnitude of the correlation coefficients of the module; avg.weight: the average magnitude of edge
weights; cor.degree: the concordance of the weighted degree of nodes; cor.contrib: the concordance of the node contribution; avg.contrib: the average magnitude of
the node contribution; coherence: the proportion of variance in the module data explained by the module’s summary profile vector.
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constructing the PPI network, and a submodule composed of 119
genes was significantly associated with tumor immunity
(Figure 3A). In addition to regulating the functions of
multiple lymphocytes, most protein-coding genes in the
submodule are involved in “T-cell activation” and “response to
interferon-gamma (IFN-γ)” (Figure 3B). Based on the
connections among protein-coding genes provided by the
STRING database, we applied the PD-L1 association network
as the PD-L1 interactome, which is composed of 83 protein-
coding genes, including PD-L1 and its regulators. We utilized the
R package “GOSemSim” to score functional similarities between
the PD-L1 interactome and 199 hub genes. Genes with high

scores are likely to have similar molecular functions to PD-L1.
According to the results, we ranked the hub genes by the average
functional similarity scores (Figure 3C) and found that PD-L1
(namely, CD274, a hub gene of the brown module) had the 10th
highest average score among the hub genes, and the average score
of the first was significantly higher than that of PD-L1 (p =
0.0019). No significant differences were found between the
average scores of PD-L1 and the genes ranked second to 19th
(p > 0.05), while the average score of the genes ranked below the
19th was significantly lower than that of PD-L1 (p < 0.05),
meaning that the genes ranked second to 19th are most likely
to play a similar role to PD-L1 inMF and CC. Except for PSTPIP1

FIGURE 3 | Identification of the potential biomarkers relevant to tumor immunity. (A) The submodule of the PPI network involved in immune regulation. (B) GO
analysis for the genes in the submodule. Each section of the pie chart shows the representative GO global terms. The size of each section is associated with the percent
of genes within the submodule. (C) Summary of the functional similarities for the top 20 protein-coding genes in the PD-L1 (CD274) interactome. The distribution of
functional similarity scores was summarized as boxplots. The lines and rhombuses in the boxes indicate the mean and median of the functional similarity scores,
respectively. The dashed line represents the median value of PD-L1. **p < 0.01.
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FIGURE 4 | The correlations between PSTPIP1/PILRA and immune biomarkers in LUAD. Scatter plots showing the correlation between (A) PSTPIP1 and PD-L1,
(B) PSTPIP1 and IFN-γ, (C) PILRA and PD-L1, and (D) PILRA and IFN-γ in the LUAD samples (n = 515). Violin plots showing the expression of (E)PSTPIP1 and (F) PILRA
in the LUAD samples with different degrees of differentiation (including 167 with poor differentiation, 209 with moderate differentiation, and 60 with well differentiation). ns
indicates p ≥ 0.05, *p < 0.05.
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and PILRA, the other genes with high scores have been identified
to have functionally relevant roles in the immune checkpoint,
tumoral immune cells, and immune infiltration, while few studies
have reported the role of PSTPIP1 and PILRA in tumor
immunity.

Implications in Tumor Immunity
We calculated the relationship between PSTPIP1/PILRA and the
immune biomarkers, namely, PD-L1 and IFN-γ. We observed a

significantly positive correlation between PSTPIP1/PILRA and
PD-L1/IFN-γ in the LUAD samples (Figures 4A–D), and similar
outcomes were observed in SKCM (Supplementary Figure S1).
Given that LUAD differentiation can influence the expression of
PD-L1 (Takada et al., 2016), we further explored the correlation
between PSTPIP1/PILRA and tumor differentiation. The results
revealed that LUAD tissue samples with distinct differentiation
had similar levels of PSTPIP1. Compared with poorly
differentiated samples, PILRA decreased in well-differentiated

FIGURE 5 | The influence of PSTPIP1 and PILRA on immune infiltration and prognosis in LUAD. Violin plots showing (A) the immune score in samples with low or
high expression of PSTPIP1 and PILRA. GSVA-derived clustering heat maps of differentially infiltrated immune cell populations between the high and low expression
groups of (B) PSTPIP1 and (C) PILRA. Only lymphocytes with log(fold change) > 0.2 are shown. The influence of (D) PSTPIP1 and (E)PILRA on the overall survival time of
LUAD patients. The yellow line indicates samples with highly expressed genes and the blue line indicates samples with lowly expressed genes. Violin plots showing
(F) the expression of PSTPIP1 and PILRA in the LUAD patients with different responses to nivolumab (including five responders and five nonresponders) and (G) the
expression of PSTPIP1 in SKCM mice with different responses to anti–PD-L1 treatment (including 27 responders and 23 nonresponders). ns indicates p ≥ 0.05, **p <
0.01, ****p < 0.0001.
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FIGURE 6 | Histopathological examples of PSTPIP1/PILRA expression and tumor-infiltrating lymphocytes (TILs) in LUAD. (A) PSTPIP1 and PILRA expression is
demonstrated by brown staining, and the bar plot shows the average optical density of PSTPIP1 and PILRA in the PD-L1–positive or PD-L1–negative LUAD tissue
samples. (B) The TILs are displayed as purple spots in hematoxylin and eosin staining, and bar plots show the stromal TILs in tissue samples with high and low PSTPIP1/
PILRA expressions. *p < 0.05.
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LUAD, but no significant difference was observed between the
moderately and well-differentiated samples or between the poorly
and moderately differentiated samples (Figures 4E,F).

Immune Infiltration and Survival Analysis
We explored the correlation between PSTPIP1/PILRA and TILs.
The ESTIMATE immune scores revealed that the LUAD samples
with a high expression of PSTPIP1 and PILRA had significantly
richer immune infiltration (Figure 5A). GSVA confirmed that
the high expression of PSTPIP1 and PILRA led to an increased
enrichment of multiple lymphocytes (Figures 5B,C). We next
investigated the prognostic value of PSTPIP1 and PILRA and
found that the high expression of PSTPIP1 and PILRA
contributed to longer overall survival (OS) (Figures 5D,E).
Similar results were confirmed in SKCM (Supplementary
Figure S2A–E). We investigated the correlations between
PSTPIP1/PILRA and the anti–PD-L1 treatment response in
LUAD patients and found that PILRA mRNA was
significantly high in CD8+ PBLs from the patients who
responded to nivolumab, but the expression of PSTPIP1 was
not different between the responders and nonresponders
(Figure 5F). However, the significantly increased expression of
the PSTPIP1 homologous gene was confirmed in tumor tissues
from the SKCM mice that responded to the anti–PD-L1
treatment (Figure 5G).

Correlation Between Tumor-Infiltrating
Lymphocytes and Biomarkers at the Protein
Level
We validated the protein expression of PSTPIP1 and PILRA in
the PD-L1–positive and PD-L1–negative LUAD tissue samples.
In contrast to the PD-L1–negative samples, we observed that the
protein level of PILRA was higher in the PD-L1–positive samples
(p = 0.0174) (Figure 6A). Although PSTPIP1 showed a relatively
higher expression in the PD-L1–positive tissues, there was no
statistical significance when compared to the PD-L1–negative
samples (p = 0.3355) (Figure 6A). At the same time, both
PSTPIP1 and PILRA high expression samples possessed
relatively richer TILs, while relatively lower TILs were prone
to exist in samples with low PSTPIP1 and PILRA expressions (p <
0.05), and stromal TILs tended to exceed 10% in the LUAD
samples with a high expression of PSTPIP1 and PILRA
(Figure 6B).

DISCUSSION

This study applied network analysis methods to transcriptome
data to explore the immune basis of LUAD and identified that
it shares a strongly preserved immune response–related
module with SKCM. The hub genes PSTPIP1 and PILRA
are novel prognostic biomarkers positively correlated with
TILs, and both could be used to predict immunotherapy
response.

TILs are well-validated factors influencing the ICI response
(Gibney et al., 2016), and PD-L1–positive SKCM accompanied

by high TILs accounts for 40% of cases, which is the favorable
immunophenotype for immunotherapy response (Teng et al.,
2015). This provides the basis for SKCM patients with an ideal
clinical efficacy in various immunotherapeutic approaches
(Tsai et al., 2014). Researchers found that some LUAD cases
have an immunophenotype similar to that of SKCM (Morris
et al., 2016; Chen et al., 2017; Thorsson et al., 2018), which
could be explained by the existence of a shared gene module
related to tumor immunity. In the present study, we identified
this sharing module, and two hub genes were considered to
have functional similarities to PD-L1. The PSTPIP1 hub gene
was related to T-cell activation, differentiation, and migration,
modulating the function of innate immune cells and the innate
immune response, and its mutation was confirmed as a crucial
driver of immunodeficiency and auto-inflammatory diseases
(Holzinger and Roth, 2016; Janssen et al., 2018). The PILRA
hub gene was primarily expressed on multiple immune cells
(Kogure et al., 2011; Sun et al., 2012), which can trigger
increased natural killer cell–mediated IFN-γ secretion by
binding to o-glycosylated receptors (Ophir et al., 2016).
However, few studies have reported the correlation between
these two protein-coding genes and the tumor-related immune
response, and we confirmed that they have a relationship with
multiple infiltrating lymphocytes and tumor immune
regulation.

The majority of module genes are involved in the response to
IFN-γ, a well-established biomarker for tumor immunity (Dong
et al., 2016). IFN-γ is secreted from the TILs, which compromises
antitumor immunity by promoting PD-L1 expression on the
surface of tumor and immune cells (Bald et al., 2014; Remon et al.,
2016; Ayers et al., 2017). Previous studies have reported a positive
association between IFN-γ and PD-L1 at the mRNA level
(Hayano et al., 2017), and a high expression of tumoral IFN-γ
mRNA was associated with a good response to the PD-L1
inhibitor durvalumab in non–small-cell lung cancer (NSCLC)
patients; the ORR in IFN-γ–positive patients reached 33%, while
it was 8% in IFN-γ–negative patients, and the highest ORR (46%)
was observed in cases with a coexisting positive expression of
IFN-γ and PD-L1 (Higgs et al., 2015). Both PSTPIP1 and PILRA
were positively associated with PD-L1 and IFN-γ, supporting
their influence on the immune response. PILRA was lower in
well-differentiated LUAD, which contradicts the widely validated
correlations between the high PD-L1 expression and good
differentiation. Therefore, to some extent, we can exclude the
possibility that PSTPIP1 and PILRA levels are correlated with
tumor differentiation rather than immune biomarkers. However,
the protein expression of PSTPIP1 was not significantly increased
in the PD-L1–positive LUAD tissues, implying that its correlation
with PD-L1 might be indirect.

The TILs (mainly CD8+ T cells) are important biomarkers for
assessing the immune microenvironment, and both the tumor
cell surface PD-L1 and intratumoral IFN-γ are associated with the
level of the TILs (Dong et al., 2016; Tang et al., 2016). TIL-derived
IFN-γ induces the expression of PD-L1, which in turn suppresses
TIL-mediated antitumor immunity (Gowrishankar et al., 2015).
We confirmed that TILs were significant in samples with high
PSTPIP1 and PILRA levels. Tumors positive for PD-L1 and TILs
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are adaptively resistant to elimination by TILs, and this
immunophenotype is most likely to respond to anti–PD-L1
therapy (Zhang and Chen, 2016). We found that the LUAD
patients who responded to PD-1/PD-L1 blockade treatment
tended to have a high expression of PILRA mRNA in CD8+

PBLs. Although PSTPIP1 expression showed no significant
difference, we confirmed that significantly increased PSTPIP1
expression was observed in tumor tissues from SKCM mice that
responded to anti–PD-L1 treatment. This difference might be
derived from a distinctive gene repertoire between CD8+ TILs
and PBLs (Mohme et al., 2018). The high expression of PSTPIP1
inhibits CD3-dependent T-cell activation, which is significantly
higher in TILs rather than in PBLs (Marcos et al., 2014; Lukesova
et al., 2015), leading to adaptive resistance. Therefore, high
expression of PSTPIP1 in the TILs could indicate a clinical
response after immunotherapy of relaunching T-cell–mediated
actions. We presumed that the differential expression of PSTPIP1
between the responders and non-responders might be observed
in TILs rather than PBLs. Previous studies have confirmed that
subpopulations of TILs, such as effector memory and central
memory CD8+ cells, effector memory CD4+ cells, natural killer
cells, and activated dendritic cells, are associated with good
prognosis (Angelova et al., 2015), leading to an improved
survival time in NSCLC patients (Thomas et al., 2013; Teng
et al., 2015; Teng et al., 2016). The survival analysis is consistent
with these conclusions, and the survival benefits of high PSTPIP1
and PILRA expressions are possibly due to rich TILs, and their
influence is also in accord with their positive correlations with
PD-L1, which confirms that both the protein and mRNA levels of
PD-L1 are associated with increased TILs and OS in NSCLC
patients (Velcheti et al., 2014; Ma et al., 2020). In general,
PSTPIP1 and PILRA act as biomarkers for TILs and thus have
positive correlations with PD-L1 and IFN-γ.

In the present study, we confirmed that PSTPIP1 and
PILRA have a relationship with the TILs at both the protein
and gene levels. However, selection bias was inevitable because
of the small sample sizes, which is the main limitation of this
study. Moreover, there was a lack of sufficient available data to
firmly validate the conclusions made from the TCGA. Further
study is needed to verify the clinical value of PSTPIP1 and
PILRA in the additional samples and to explore their
molecular functions in tumor immune regulation.

CONCLUSION

In conclusion, the present study demonstrated that PSTPIP1 and
PILRA can reflect the status of TILs and work as prognostic
biomarkers, and they could act as biomarkers relevant to the
anti–PD-L1 treatment response.
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