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Summary
Background The identification of baseline host determinants that associate with robust HIV-1 vaccine-induced
immune responses could aid HIV-1 vaccine development. We aimed to assess both the collective and relative perfor-
mance of baseline characteristics in classifying individual participants in nine different Phase 1-2 HIV-1 vaccine clin-
ical trials (26 vaccine regimens, conducted in Africa and in the Americas) as High HIV-1 vaccine responders.

Methods This was a meta-analysis of individual participant data, with studies chosen based on participant-level (vs.
study-level summary) data availability within the HIV-1 Vaccine Trials Network. We assessed the performance of 25
baseline characteristics (demographics, safety haematological measurements, vital signs, assay background
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measurements) and estimated the relative importance of each characteristic in classifying 831 participants as High
(defined as within the top 25th percentile among positive responders or above the assay upper limit of quantification)
versus Non-High responders. Immune response outcomes included HIV-1-specific serum IgG binding antibodies
and Env-specific CD4+ T-cell responses assessed two weeks post-last dose, all measured at central HVTN laborato-
ries. Three variable importance approaches based on SuperLearner ensemble machine learning were considered.

Findings Overall, 30.1%, 50.5%, 36.2%, and 13.9% of participants were categorized as High responders for gp120
IgG, gp140 IgG, gp41 IgG, and Env-specific CD4+ T-cell vaccine-induced responses, respectively. When including
all baseline characteristics, moderate performance was achieved for the classification of High responder status for
the binding antibody responses, with cross-validated areas under the ROC curve (CV-AUC) of 0.72 (95% CI: 0.68,
0.76) for gp120 IgG, 0.73 (0.69, 0.76) for gp140 IgG, and 0.67 (95% CI: 0.63, 0.72) for gp41 IgG. In contrast, the
collection of all baseline characteristics yielded little improvement over chance for predicting High Env-specific CD4
+ T-cell responses [CV-AUC: 0.53 (0.48, 0.58)]. While estimated variable importance patterns differed across the
three approaches, female sex assigned at birth, lower height, and higher total white blood cell count emerged as sig-
nificant predictors of High responder status across multiple immune response outcomes using Approach 1. Of these
three baseline variables, total white blood cell count ranked highly across all three approaches for predicting vaccine-
induced gp41 and gp140 High responder status.

Interpretation The identified features should be studied further in pursuit of intervention strategies to improve vac-
cine responses and may be adjusted for in analyses of immune response data to enhance statistical power.
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Research in Context

Evidence before this study

For many licensed vaccines, baseline immune signa-
tures and/or other participant characteristics have been
found to associate with vaccine immunogenicity and/or
efficacy. However, for HIV-1 vaccines, little is known
about whether such “baseline predictors” exist. We que-
ried PubMed on Oct 26, 2021 using various combina-
tions of the search terms “baseline”, “demographic”,
“haematological”, “safety”, “predict”, “predictor”, “HIV-1
vaccine”, “response”, “immune response”, “vaccine-
induced”, “immunogenicity”, “adaptive response”, and
“high response”. Our search yielded one study investi-
gating whether and how baseline demographic varia-
bles and immune responses measured two weeks post
vaccination predicted response rate and/or magnitude
of HIV-1 vaccine-induced cellular and humoral
responses measured at six months post last vaccination.
In that study, baseline demographic variables contrib-
uted little to no predictive information. We also found a
study reporting that certain baseline variables (sex, BMI,
and heavy drinking) each significantly predicted HIV-1
specific cellular responses induced by a recombinant
adenovirus HIV-1 vaccine, and another reporting that
sex and BMI were each associated with Env-specific cel-
lular responses induced by DNA plasmid HIV-1 vaccines.

Added value of this study

To our knowledge, this is the largest meta-analysis of
HIV-1 vaccine trials to evaluate the relationship of a
comprehensive set of baseline features with antibody
and cellular vaccine-induced immune responses. In
addition, this study contributes to the additional assess-
ment of commonly measured demographic, metabolic,
and haematological parameters to enable resolution of
their broad value in understanding vaccine response
heterogeneity, and identifies sex, body height, and total
white blood cell count as worthy of additional investiga-
tion in future research. Lastly, because the absolute
magnitudes of immune responses are often vaccine
regimen-dependent, this study identified host determi-
nants of robust immune responses irrespective of the
vaccine regimen, by first defining High responder status
www.thelancet.com Vol 84 October, 2022
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within each vaccine regimen before combining data
across regimens.

Implications of all the available evidence

Variations in immune responses to vaccines among
individuals including those considered healthy are fre-
quently observed but poorly understood. This study
resolves the association of baseline parameters with
exceptionally high responses to HIV vaccines, providing
justification to further study these parameters including
sex, body height, and total white blood cell count in the
context of HIV and other vaccines, and dissect the
underlying mechanisms whereby they may promote
enhanced vaccine responses.
Introduction
Vaccine-induced immune responses are generally hetero-
geneous across individuals and across populations.1�4 For
instance, the immune response continuum induced by a
given vaccine may range from no response (“non-
responders”) all the way to “high-responders” � individu-
als with exceptional cellular and humoral responses. This
large degree of inter-individual immune response hetero-
geneity, even among immunocompetent individuals, has
been observed with many licensed vaccines, including
Covid-19,5 influenza,6 dengue,7 and hepatitis B, as well as
in HIV-1 vaccine trials.8 Understanding the basis of this
heterogeneity is important in the context of vaccine devel-
opment because once protective immune responses are
identified through immune correlates analyses,9�11 devis-
ing approaches for enhancing the response rates or mag-
nitudes of these responses in low- or non-responders
could help improve vaccine efficacy. Moreover, under-
standing of the baseline characteristics associated with
high response could help identify targets that could be
modulated before vaccination to improve vaccine
response,3,12 where possible, or alternatively to customize
vaccination strategies via, for example, using different
adjuvants,13,14 reducing intervals between boosts or includ-
ing additional boosts.15

There are many categories of both vaccine- and host-
specific factors that can influence the immune response
to vaccination. Zimmermann and Curtis1 provide com-
prehensive references and outline a number of host-spe-
cific categories, including intrinsic (e.g. genetics, age),
perinatal (e.g. gestational age, birth weight), extrinsic (e.
g. pre-existing immunity, gut microbiota), environmen-
tal (e.g. geographic location), behavioural (e.g. smoking
status, exercise), and nutritional (e.g. body mass index).
Vaccine nonresponse as measured by antibody levels
has also been estimated to occur in 2-10% of all healthy
individuals16; this phenomenon is particularly well
documented for the hepatitis B vaccine.17 There is also a
growing body of evidence to support that baseline
immune state, i.e. transcriptomic and/or cellular
w.thelancet.com Vol 84 October, 2022
signatures, can predict vaccine-induced antibody and/or
cellular immune responses,3 with some molecular sig-
natures associated with antibody response potentially
shared across different vaccines.18

Clinical laboratory measurements [e.g., alanine ami-
notransferase (ALT), creatinine, platelets, white blood
cell count, mean corpuscular volume, haematocrit, and
haemoglobin] are often obtained at enrolment in vac-
cine trials to verify that individuals fulfil the trial’s inclu-
sion criteria related to being in good general health.
These measurements provide an overall picture at gross
resolution of metabolic, inflammatory, and haematolog-
ical processes and may thus be associated with vaccine
response � as populations with co-morbidities, who
often show reduced vaccine response,1 often have clini-
cal laboratory measurements different from an average
healthy individual. It is unknown whether these clinical
laboratory measurements that are in the normal range
could be used to predict low or high HIV vaccine
response in healthy individuals, akin to simple clinical
risk scores that have been used to identify non-respond-
ers in the context of other vaccines.19

Despite significant recent advances in HIV-1 basic
research,20�22 a safe and effective vaccine to protect
against HIV-1 acquisition remains lacking. Of the seven
phase 3 HIV-1 vaccine efficacy trials that have been con-
ducted to date,23�29 only the RV144 trial of a pox-protein
clade AE/B alum-adjuvanted regimen demonstrated pro-
tection, albeit modest, against HIV-1 acquisition.28 Vacci-
nations in HVTN 702 (a Phase 2b/3 trial that tested a
clade C-adapted version of the RV144 regimen in South
Africa) were stopped early for non-efficacy29 and HVTN
705 (a Phase 2b trial that tested a “mosaic” regimen in
Sub-Saharan Africa) did not meet predefined efficacy crite-
ria for longer follow-up and was recently stopped.30 How-
ever, even in the face of these disappointing results,
progress has been made towards identifying immune cor-
relates31: Initially, IgG antibodies against the HIV-1 enve-
lope (Env) V1V2 region were found to be inversely
correlated with HIV-1 infection risk and plasma IgA anti-
bodies against HIV-1 envelope were found to be positively
correlated with HIV-1 infection risk32; subsequent studies
expanded on these findings and provided potential mecha-
nistic insights.33�35 Later analyses also identified Env-spe-
cific CD4+ T-cell polyfunctionality36 and IgG3 antibodies
against the HIV-1 envelope V1V2 region37 as inverse corre-
lates of risk. Substantial heterogeneity was seen across trial
participants with respect to immune responses linked to
protection, with Zhao and Fiore-Gartland et al.8 identify-
ing distinct participant subgroups with 1) high responses
across all variables, 2) nonresponse across all variables, 3)
a broad anti-V1V2 antibody response but no CD4+ T-cell
response, and 4) a broad anti-V1V2 antibody response as
well as a robust CD4+ T-cell response. As potential explan-
ations underlying this heterogeneity, we and others have
reported that host factors such as immunogenetics,38�41

body mass index (BMI),42,43 and sex42,43 influence
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immune responses to HIV-1 vaccination and/or vaccine
efficacy. However, it is unknown whether there is a base-
line characteristic that predicts immunogenicity generally
across HIV-1 vaccines, as we found in another study of
seven preventive HIV-1 vaccine regimens that baseline
demographic information had little to no capacity to
improve prediction of immune responses measured six
months post last vaccination.44

In this meta-analysis of nine clinical trials of 26 HIV-1
vaccine regimens, we assessed the collective performance
of 25 baseline characteristics, as well as the relative impor-
tance of each characteristic to classify individual vaccine
recipients as a “high responder” in terms of serum HIV-1
Env-specific IgG binding antibodies or Env-specific CD4+
T-cells as assessed two weeks post-last dose to a given
HIV-1 vaccine regimen. This knowledge is expected to
inform strategies to maximize response rates to future
candidate HIV-1 vaccines; perhaps a priori knowledge of
expected response rate for an individual or population
may allow customization of vaccination strategy or pre-vac-
cination interventions to promote robust responses. This
knowledge may also be used to improve statistical power
in the analyses of immune responses by controlling for
the identified host determinants.
Methods

Study cohorts and vaccine regimens
This one-stage meta-analysis included individual partici-
pant data of 26 HIV-1 vaccine regimens from nine Phase
1-2 clinical trials conducted by the HIV-1 Vaccine Trials
Network (HVTN) in 2008-2018, at study sites in Peru,
Tanzania, the United States, South Africa, and Zambia. A
total of 1,111 participants were enrolled in these trials, with
838 per-protocol participants who received all scheduled
vaccinations and had immune response data available for
the analyses (Figure 1; Supplementary Methods). All trial
participants were HIV-1-negative, healthy adults not con-
sidered to be at high risk for HIV-1 acquisition. Details of
each trial have been previously described: HVTN 073/
SAAVI 102 (NCT00574600),45 HVTN 086/SAAVI 103
(NCT01418235),46 HVTN 094 (NCT01571960),47 HVTN
097 (NCT02109354),48 HVTN 098 (NCT02431767),49

HVTN 100 (NCT02404311),50 HVTN 105
(NCT02207920),51 HVTN 111 (NCT02997969),52 and
HVTN 205 (NCT00820846).53 These trials were selected
based on their stimulation of HIV-1 Env specific antibody
responses and data availability, and represent a variety of
immunogen platforms, including DNA plasmid, viral vec-
tor [Modified Vaccinia virus Ankara (MVA), canarypox
(ALVAC)], and HIV-1 Env protein.
Laboratory methods

Binding antibody multiplex assay (BAMA). Serum
HIV-1-specific IgG responses (serum at a 1:50 dilution;
primary detection: Mouse Anti-Human IgG Fc-Biot,
SouthernBiotech, catalog number 9042-08; followed by
Streptavidin-PE, BDPharmingen, catalog number
554061) against 3 antigens: Con 6 gp120/B (Duke
Human Vaccine Institute Protein Production Facility,
Plasmid ID: HV1300454), ConS gp140 CFI (Duke
Human Vaccine Institute Protein Production Facility,
Plasmid ID: HV1300111_avi) and gp41 (ImmunoDx,
Catalog number 1091) were measured on a Bio-Plex
instrument (Bio-Rad) using a standardized custom
HIV-1 Luminex assay54 in serum samples collected at
baseline (pre-vaccination) and 2 weeks after the last
dose of each vaccine regimen. The readout was back-
ground-subtracted mean fluorescence intensity (MFI),
where background refers to a plate level control (i.e., a
blank well run on each plate). The positive control was
purified polyclonal IgG from people living with HIV-1
(HIVIG, NIH AIDS Reagent Program, Catalog number
3957) using a 10-point standard curve (4PL fit). The neg-
ative controls were NHS (HIV-1 seronegative human
sera) and blank beads.

Samples were declared to have positive responses if
they met three conditions: (1) the MFI minus Blank val-
ues were greater than or equal to the antigen-specific
cut-off at the 1:50 dilution level (based on the average + 3
standard deviations of at least 60 seronegative plasma
samples or at least 100 MFI), (2) the MFI minus Blank
values were greater than 3 times the baseline (day 0)
MFI minus Blank values, and (3) the MFI values were
greater than 3 times the baseline MFI values.
Intracellular cytokine staining (ICS). HIV-1-specific
CD4+ and CD8+ T-cell responses were measured by a
validated flow cytometry assay similar to what was previ-
ously described32,36,51,55�59 in PBMC samples collected
at two weeks post the last dose of each vaccine regimen.
Table S1 provides detailed information (manufacturer,
catalog number, clone) for the antibodies used in the
ICS assays. Previously cryopreserved PBMC were stim-
ulated with synthetic HIV-1 Envelope peptide pools. As
a negative control run in duplicate, cells were incubated
with DMSO, the diluent for the peptide pools. As a posi-
tive control, cells were stimulated with a polyclonal
stimulant, staphylococcal enterotoxin B (SEB).

Samples were declared to have a positive response
based on a one-sided Fisher’s exact test of whether the
frequency of IL-2 and/or IFN-g-producing cells in the
peptide-stimulated well was equal to that in the negative
control wells. A multiplicity adjustment was made to
the individual peptide-pool-specific p-values using the
discrete Bonferroni-Holm adjustment method. If the
adjusted p-value was � 10e-5, the response to the pep-
tide pool for the T-cell subset was considered positive. If
any Env peptide pool was positive for a T-cell subset,
then the overall Env-specific response for that T-cell sub-
set was considered positive. Due to the sparseness of
www.thelancet.com Vol 84 October, 2022



Figure 1. Analysis schema. The nine HIV-1 vaccine trials (covering 26 vaccine regimens) included in the analysis are shown in the
green box. Numbers are total trial participants (vaccine and placebo recipients). The 25 participant baseline characteristics used to
predict High vaccine-induced HIV-1-specific immune responses are shown in the blue box. The HIV-1-specific immune responses
measured at 2 weeks post the last vaccination are shown in the pink boxes. Numbers in the pink boxes are vaccine recipients with
available immune assay data for each immune response, after excluding participants from vaccine regimens with no responders.

Articles
responses, CD8+ T-cell data were not considered in the
analyses presented here. Further details on the response
definitions and statistical criteria for analysis are given
in Supplementary Methods.
Definitions of high responders
For each immune response measured at 2 weeks post
last vaccination, participants were categorized as either
a “High responder” or a “Non-High responder.” For
IgG binding antibody responses against HIV-1-specific
antigens (outcomes labelled as ‘gp120’, ‘gp140’ and
‘gp41’), a participant was defined as a High responder if
the participant’s background-subtracted MFI value
www.thelancet.com Vol 84 October, 2022
against the particular antigen was within the top 25th

percentile among positive responders for a given vac-
cine regimen or � 22,000 MFI (the upper limit of
quantification at 1:50 sample dilution). In addition, for
outcomes labelled as ‘gp140 and gp120’ and ‘gp140 or
gp120’, a participant was defined as a High responder if
they were a High responder to both ‘gp140’ and ‘gp120,
and to either ‘gp140’ or ‘gp120’, respectively. The first
combination outcome was included to assess whether
some baseline characteristics might predict High
responder status more broadly, i.e. across multiple anti-
gens. For HIV-1 specific CD4+ T-cell responses (‘CD4’),
a participant was defined as a High responder if the
background-subtracted percentage of CD4+ T-cells
5
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secreting IL-2 and/or IFN-g was within the top 25th per-
centile among positive responders for a given vaccine
regimen. Participants that did not meet the High
responder criterion for a given immune response vari-
able, including non-responders, were categorized as
“Non-High” for that particular immune response.

Based on a comment from a reviewer, we also
repeated the analyses using an alternative definition of
a “High responder”. For IgG binding antibody
responses against HIV-1-specific antigens, a participant
was classified as a “High Responder � 20%tile” if their
background-subtracted MFI value against the particular
antigen was within the top 20th percentile for a given
vaccine regimen or � 22,000 MFI (the upper limit of
quantification at 1:50 sample dilution). A participant
was classified as a “Low Responder � 20%tile” if their
background-subtracted MFI value against the particular
antigen was within the lowest 20th percentile for a given
vaccine regimen, or if they were not a positive response
(see definition of positive response under Binding anti-
body multiplex assay (BAMA) in Laboratory Methods).
According to this definition, more than 20% of the indi-
viduals could be in the High Responder or in the Low
Responder category if there are more than 20% with
responses � 22,000 MFI or more than 20% with a
non-positive response, respectively, The middle approxi-
mately 60% of data were removed from this analysis.
These definitions were applied similarly for CD4+ T-cell
responses, except that background-subtracted percent-
age of CD4+ T-cells secreting IL-2 and/or IFN-g was
used in place of MFI value.

Baseline host characteristics
Twenty-five baseline characteristics measured prior to
initiating the HIV-1 vaccine regimen were considered as
potential predictors of the immune responses. Each
characteristic was classified into one of four overall cate-
gories: demographics (m=8) [age (years), sex assigned at
birth (female or male), ethnicity (Hispanic or Other),
race (Black, White, or Other), body mass index (BMI,
kg/m2), height (cm), body weight (kg), country (Africa
or Americas)]; vital signs (m=3) [systolic blood pressure
(mm Hg), diastolic blood pressure (mm Hg), pulse
(beats/min)]; safety haematologicallab (m=10) [alanine
aminotransferase (ALT, U/L), haematocrit (%), haemo-
globin (g/dL), lymphocytes (/µL), neutrophils (/µL), pla-
telets (/nL), total white blood cell (/nL), mean
corpuscular volume (MCV, fL/red cell), creatinine (mg/
dL), creatinine clearance (mL/min)]; and background
binding antibody (m=4) [baseline HIV-1-specific anti-
body responses measured in pre-vaccination serum
samples, capturing the background levels in the BAMA
assays and possible non-specific reactivity,60 as an indi-
cation of the participant’s general immune state (back-
ground gp120, background gp140, background gp41):
difference in MFI between the HIV-1-specific gp120,
gp140 or gp41 antigen beads-added wells with and
without the tested serum sample and baseline non-spe-
cific binding antibody responses (background blank):
difference in MFI between the blank-bead wells (no
HIV-1 antigens) with and without the tested serum sam-
ples] (Figure 1). Missing values (<18%) in baseline pre-
dictors were imputed by median within each region
(Americas vs. Africa).
Statistical methods

Machine learning models. All 25 baseline host charac-
teristics were assessed as predictors of High responder
status by building convex ensemble models using
regression stacking,61,62 also known as Super Learn-
ing,63 with the SuperLearner R package.63,64 Super-
Learner is an algorithm that uses cross-validation to
estimate the performance of multiple machine learning
models, or the same model with different parameter set-
tings. It then creates an optimal weighted average of
those models, aka an “ensemble” that may use all or
only a subset of the models, using the test data perfor-
mance. This approach has been proven to be asymptoti-
cally as accurate as the best possible prediction
algorithm that is tested.65,66 We used SuperLearner to
estimate the optimal convex weights to combine candi-
date learning algorithms with the aim of minimizing
the negative log-likelihood loss (for dichotomous out-
comes) via an internal 10-fold cross-validation. The can-
didate learning algorithms included a benchmark
learner using the frequency of the outcome (SL.mean,
R base function), as well as random forests67 (SL.ran-
domForest, Version 4.6-14), lasso68 with logistic link
(SL.glmnet, Version 4.1-2), stepwise-selected general-
ized linear models with logistic link (SL.step, R base
function) and generalized additive models69 (SL.gam,
Version 1.20). The candidate learners and the Super
Learner were evaluated via an external 10-fold cross-vali-
dation (CV) to guard against overfitting. The cross-vali-
dated area under the receiver operating characteristics
curve (CV-AUC) and the cross-validated prediction accu-
racy (CV-Accuracy) were used as prediction metrics.
Wald-type 95% confidence intervals about CV-AUC
were computed using influence function-based stan-
dard error estimates.70

Identification of important baseline predictors. For
each immune response outcome, the heterogeneity
index I2 was calculated for each baseline predictor in
terms of the proportion of the variance in their associa-
tion with the High responder status that is due to het-
erogeneity across the 9 clinical trials.71 Because no
vaccine regimens were tested in more than one country,
Country was included as a confounding variable to
adjust for in all analyses but not considered in the rank-
ing of predictors. Three approaches were used to obtain
variable importance estimates for each baseline predic-
tor. Approach 1 used causal inference statistics and was
www.thelancet.com Vol 84 October, 2022
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based on the average “treatment effect” (ATE) as imple-
mented in the varimpact R package (Version 1.3.0-
9005).72 Each predictor was analysed using targeted
minimum loss-based estimation (TMLE)73 as though it
were a treatment, with all other variables serving as
adjustment variables via SuperLearner (Version 2.0-28).
This involves determining the two levels of a given vari-
able (discretized into 6 levels for continuous variables)
that result in the largest estimated absolute risk differ-
ence when that variable is set to “treatment” (high level)
or “control” (low level). For binary variables, this is a
true average treatment effect, where treatment corre-
sponds to presence of the variable of interest. Then the
statistical significance of the estimated ATE in terms of
a marginal, adjusted risk difference in the probability of
being a High responder comparing universal applica-
tion of one treatment vs. the other determined the vari-
able importance ranking. The results provide raw p-
values as well as p-values adjusted for false discovery
rate using the Benjamini-Hochberg74 procedure. For
continuous variables, the risk difference represents the
estimated increase in the probability of High responder
status when moving from a lower quantile level to a
higher quantile level of the variable that resulted in the
largest difference in the estimated probability of being a
High responder. For each immune response outcome,
risk difference estimates and associated p-values were
only reported for baseline predictors that exhibited con-
sistent directionality of effects across the 10-fold cross-
validation datasets.

Approaches 2 and 3 focused on identification of asso-
ciation and were based on differential prediction perfor-
mance as implemented in the vimp R package (Version
2.2.5).75 The variable importance of each baseline pre-
dictor was defined as the increase in CV-AUC
(Approach 2) or CV-accuracy (Approach 3) when adding
each specific baseline predictor to the other baseline
predictors relative to considering only the other baseline
predictors in the SuperLearner estimation procedure. A
10-fold cross-validation procedure was used in all three
Approaches. Specifically, the dataset was first split into
10 folds. Using each fold in turn as held-out test set, we
applied the three approaches to determine the variable
importance measures based on the appropriate Super-
Learner for each baseline predictor. For Approach 1, a
new SuperLearner using the “treatment variable” was
fit on the training data and the treatment effect was eval-
uated on the held-out data; for both Approaches 2 and 3,
two SuperLearners were fit, one using all variables and
another using all variables except the predictor of inter-
est and the difference in AUC (Approach 2) and predic-
tion accuracy (Approach 3) was evaluated on the held-
out data. The variable importance measurements from
the 10 folds were then averaged, resulting in a 10-fold
cross-validated estimates of variable importance meas-
urements for each baseline predictor. All analyses were
performed using R 4.1.0.
www.thelancet.com Vol 84 October, 2022
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Results

Distribution of baseline predictors
Twenty-five baseline characteristics including demo-
graphics, vital signs, safety haematological measure-
ments and immune assay background measurements
were considered as potential predictors of High
responder status of six immune response outcomes.
Table S2 provides the baseline predictor distributions
separately for each outcome. The median age was
24 years old in this analysis cohort, with near equal
representation of females and males as well as of indi-
viduals in Africa and the Americas. All other baseline
characteristics possess a reasonable dynamic range,
including the four background binding antibody varia-
bles.
Distribution of High responders within each vaccine
regimen
It is anticipated that an effective HIV vaccine will
require optimal induction of HIV Envelope-antibody
and T cell responses. To enable analysis across the
trials, consistently assessed vaccine-induced HIV-1 spe-
cific immune responses were considered, including
plasma binding IgG specific for consensus gp120,
gp140, and gp41 components of HIV Env, as well as
CD4+ T cell response to HIV Env peptide pools. For
each of these four immune responses, the distribu-
tions of the observed immune marker measurements
according to High/Non-High responder status are
shown in Figure 2 and according to the positive
response status, based on which the High responder
status is defined, are shown in Figure S1. Table S3
additionally provides High/Non-High responder
counts and percentages within each vaccine regimen,
along with geographical information for the sites in
which each trial was conducted. While the High HIV-1
specific CD4+ T-cell responses were generally uni-
formly distributed across vaccine regimens (ranging
from 3�26% High responses within each vaccine regi-
men), greater variability was seen in the distribution of
High antibody IgG response magnitudes across vac-
cine regimens. For gp140 IgG responses, for instance,
the percentages of High responders ranged from
7�100% across regimens, with particularly percen-
tages of High responders in all regimens in the HVTN
111 trial (96�100%) and in some regimens in the
HVTN 086 trial (T1: 97% High responders, T4: 87%
High responders). For gp120 IgG responses, the per-
centages of High responders in each regimen ranged
from 8�76%; the range was widest for gp41 IgG
responses, with percentages of High responders within
each regimen ranging from 1�100%. This variation
can be explained by differences in vaccine platforms
and gp41-containing immunogens across regimens
(Supplementary Methods) and was intentionally
embraced so that findings from our analyses would
potentially be applicable to diverse vaccine regimens
inducing a wide range of immune responses. Such var-
iation potentially also increased the statistical power to
identify predictors of High responder status.

Relationship of response status between immune
response parameters
The treatment-pooled frequencies of High and Non-
High responders (of those with available baseline pre-
dictor data) are shown in Figure 3a. Overall, 30.1%,
50.5%, 36.2%, and 13.9% of participants were catego-
rized as High for gp120 IgG, gp140 IgG, gp41 IgG, and
Env-specific CD4+ responses, respectively. While 54.2%
of participants were categorized as High for either
gp140 IgG or gp120 IgG, only 27.6% were categorized
as High for both gp140 IgG and gp120 IgG.

When including all participants, only slight agree-
ment was seen in High responder status for a given
individual across pairs of immune response variables,
with six of the seven kappa values ranging from 0.06 to
0.20 (Table S4). This finding implies that a given partic-
ipant with e.g. a High Env-specific CD4+ T-cell
www.thelancet.com Vol 84 October, 2022



Figure 2. Distributions of observed immune marker measurements by High/Non-High responder status, for each of the four
assessed HIV-1 specific adaptive responses. a) Serum IgG BAMA responses to Con6 gp120/B (n = 752), b) Serum IgG BAMA
responses to Con S gp140 CFI (n = 772), c) Serum IgG BAMA responses to gp41 (n = 628), and d) IFN-g and/or IL-2 CD4+ T-cell
responses to ANY ENV (n = 808). The top and bottom of each boxplot indicate the interquartile range; whiskers extend along the
range among the positive responders. Red dots indicate High responders. Blue filled triangles and blue open triangles both indicate
Non-High responders. Blue open triangles indicate the Non-Responder subset of the Non-High responders. Definitions of High vs.
Non-High, Responder vs. Non-Responder are provided in Methods.
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response likely did not also have a High IgG binding
antibody response against any of the antigens exam-
ined. The pair of gp120 IgG and gp140 IgG was an
exception, with moderate agreement in High responder
status (kappa = 0.47).

When restricting to High responders, the magnitude
of responses showed a significant (p < 0.05) correlation
between the four immune outcomes (Figure 3b). Mod-
erate-to-high correlation was observed between gp120
and gp140 IgG binding antibody response magnitude
(rho = 0.76, p < 0.001, t-distribution) and between
gp140 and gp41 response magnitude (rho = 0.68,
p < 0.001, t-distribution). Env-specific CD4+ T-cell
response magnitude showed moderate correlation with
gp120 IgG binding antibody response magnitude
(rho = 0.54, p < 0.001, t-distribution) and lower correla-
tion with gp41 IgG binding antibody response magni-
tude (rho = 0.42, p < 0.05, t-distribution). When BAMA
responses were truncated at 22,000 (the upper limit of
quantification of the assay), each correlation decreased
www.thelancet.com Vol 84 October, 2022
somewhat, with gp41 IgG binding antibody response
magnitude not correlating significantly with any of the
other immune responses assessed yet all other correla-
tions remaining significant (Figure S2).

Identification of baseline predictors of High responder
status using machine learning supervised analysis
Using SuperLearner, all 25 baseline characteristics were
assessed as predictors of High responder status. The
median heterogeneity index I2 across all 25 baseline
characteristics was generally low with 0.17 for gp120
IgG, 0 for both gp140 and gp41 with the maximum
I2 being less than 0.7, suggesting supportive evidence
for proceeding with the meta-analysis. Based on the col-
lection of all 25 covariates, moderately successful predic-
tion of whether a participant was a gp120 IgG High
responder was achieved, with a CV-AUC (95% CI) of
0.72 (0.68, 0.76). Results were similar for gp140 IgG,
with a CV-AUC of 0.73 (0.69, 0.76); prediction of gp41
IgG High responder status was slightly less successful,
9



Figure 3. a) Total High/Non-High responder counts for the different immune responses assessed; b) Spearman correlation
matrix of log-transformed immune responses among High responders (n = 831). BAMA IgG responses above the upper limit of
quantification of the assay (22,000) were not truncated at 22,000. The correlation coefficient and the significance level (based on
the t-distribution) are shown in the upper diagonal: ***: p-value < 0.001; **: 0.001 � p-value < 0.01; *: 0.01 � p-value < 0.05. In (a),
participants who have missing values for any of the covariates used in the superlearner analysis were excluded.
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with a CV-AUC (95% CI) of 0.67 (0.63, 0.72). In con-
trast, even when using all 25 baseline characteristics,
prediction of High Env-specific CD4+ T-cell responder
status was essentially no better than that achieved by
random chance, with CV-AUC (95% CI) of 0.53 (0.48,
0.58). This finding suggests that a low-to-moderate level
of information is contained in the baseline characteris-
tics in predicting High responder status of each
immune response variable, with the exception of Env-
specific CD4+ T-cell response.

For the antibody outcomes, we next drilled down
using the three approaches detailed in Methods to inves-
tigate which individual baseline characteristics contrib-
uted the most information towards predicting High
responder status. We first present the results for each
approach separately, and then describe the similarities
and differences across the three approaches. Using
Approach 1, the absolute risk difference estimates
obtained for each baseline characteristic are shown in
Figure 4a, risk difference estimates are given in Table
S5 and Table S6. In general, more baseline characteris-
tics were significant predictors (adjusted p-value < 0.05,
TMLE) of High gp140 IgG responder status and of
High gp41 IgG responder status (7 and 5 predictors,
respectively) than of High gp120 IgG responder status
(2 predictors). The most significant predictor of any
immune response using Approach 1 was total white
blood cell count, where the estimated risk difference
was 0.36 (95% CI: 0.31, 0.41; adjusted p-value < 0.001,
TMLE) for gp41, with higher total white blood cell count
corresponding to greater probability of being a High
responder. This result can be interpreted as an increase
of 0.36 in the probability of being a High gp41 IgG
responder when moving from a lower quantile level to a
higher quantile level of the six-quantized baseline total
white blood cell count that resulted in the largest proba-
bility difference of being a High gp41 IgG responder.
Total white blood cell count was also a significant pre-
dictor of High gp140 IgG responder status, with an esti-
mated risk difference of 0.14 (0.08, 0.19; adjusted
p-value < 0.001, TMLE). Other notable predictors of
High gp41 IgG responder status were haemoglobin and
creatinine clearance, with estimated risk differences of
�0.22 (�0.32, �0.13; adjusted p-value < 0.001, TMLE)
and �0.22 (�0.34, �0.10; adjusted p-value < 0.001,
TMLE), respectively. For gp120 IgG, the most significant
predictor of High responder status was height, with an
estimated risk difference of �0.20 (�0.30, �0.10;
adjusted p-value < 0.001, TMLE); for gp140 IgG, the
most significant predictor of High responder status was
systolic blood pressure, with an estimated risk difference
of 0.21 (0.12, 0.29; adjusted p-value < 0.001, TMLE).
Based on the inability of the cumulative baseline charac-
teristics to achieve any measurable improvement in pre-
diction of High CD4+ T-cell responder status above
random chance, we do not report the contributions of
individual baseline characteristics to CD4+ T-cell predic-
tion in this or any of the subsequent analyses.
www.thelancet.com Vol 84 October, 2022



Figure 4. Study-pooled prediction of High responder status by baseline variable. a-c) Heatmaps of estimated a) absolute risk
difference (Approach 1), b) cross-validated (CV)-AUC difference (Approach 2), and c) CV-accuracy difference (Approach 3) for each
baseline variable, where darker red cell color indicates greater variable importance. ***: adjusted p-value <0.001; **: adjusted
p-value < 0.01; *: adjusted p-value < 0.05 with Wald-test p-values calculated based on TMLE standard errors and adjusted by the
false discovery rate method. In B and C, the difference estimates represent the difference achieved by additionally including each
individual baseline characteristic, as compared to including the full set of baseline characteristics minus the baseline characteristic
under consideration, in the SuperLearner estimation procedure. Based on the inability of the cumulative baseline characteristics to
achieve any measurable improvement in prediction of High CD4+ T-cell responder status above random chance, the individual char-
acteristic results are not shown for CD4+ T cells. d) Summary variable importance measurements across Approaches 1, 2, and 3 of
baseline variable prediction of High responder status for each of the immune response outcomes. For each Approach, the baseline
predictors were ordered in terms of most to least predictive pooling over all outcomes in rank 1-125, with most predictive given the
smallest rank number. Each cell in this heatmap is color-coded according to the average of each baseline predictor’s rank across
each of the Approaches, i.e. Cell color determined by: [rank by Approach 1 for predicting High responder status of immune response
X + rank by Approach 2 for predicting High responder status of immune response X + rank by Approach 3 for predicting High
responder status of immune response X]/3. Darker red cell color indicates a higher rank across the three approaches. gp120 IgG:
n = 752; gp140 IgG: n = 772; gp41 IgG: n = 628; CD4: n = 808; gp140 IgG + gp120 IgG: n = 751; gp140 IgG or gp120 IgG: n = 751.
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Using Approach 2, the improvements in CV-AUC
achieved by additionally including each individual
baseline characteristic, as compared to including the
full set of baseline characteristics minus the baseline
characteristic under consideration, in the Super-
Learner estimation procedure are shown in
Figure 4b, Table S7, and Table S8. Similar to the
Approach 1 results, individual baseline characteristics
had the best ability to predict High gp41 IgG
responder status. The most predictive baseline char-
acteristic was background blank, with an estimated
CV-AUC difference of 0.02 (95% CI: 0.01, 0.04). As
background blank is the extent of background binding
of the participant’s plasma IgG to uncoated assay
beads it may represent the presence of low-affinity
poly-reactive IgG. No individual baseline variable
appeared to have utility in predicting High gp120
responder status, and performance was also poor for
prediction of High gp140 responder status (top base-
line variable: background gp120, with an estimated
CV-AUC difference of 0.01 (0.00, 0.02).
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Using Approach 3, the improvements in CV-accu-
racy achieved by additionally including each individual
baseline characteristic, as compared to including the
full set of baseline characteristics minus the baseline
characteristic under consideration, in the SuperLearner
estimation procedure are shown in Figure 4c, Table S9,
and Table S10. The results largely mirrored those of
Approach 2 in that individual baseline characteristics
had the best ability to predict High gp41 IgG responder
status, with few or no baseline variables appearing to
have utility in predicting High gp120 IgG responder sta-
tus. Consistent with the Approach 2 results, background
blank was a top predictor of High gp41 IgG responder
status (estimated CV-accuracy difference 0.03; 95% CI:
0.01, 0.05); in Approach 3, background blank was addi-
tionally the top predictor of High gp140 IgG responder
status (estimated CV-accuracy difference 0.01; 95% CI:
0.00, 0.03). Female sex assigned at birth was also a top
predictor of High gp41 IgG responder status (estimated
CV-accuracy difference 0.03; 95% CI: 0.01, 0.05) in
Approach 3.
11



Figure 5. Baseline variables with consistent directionality of effect on High responder status across multiple antibody out-
comes. a) Risk difference, P value (Wald-test based on TMLE standard errors), and false-discovery-rate-adjusted P values for the eight
baseline variables with consistent effect directionality across at least two immune response outcomes. Blank cells indicate inconsis-
tency of effect directionality across the 10 folds of cross-validation datasets for a given antibody outcome. b) Cross-classification of
gp140 High responder status (High, Non-High) x (Assigned female sex at birth, Assigned male sex at birth). c, d) Violin plots of
study-pooled distributions of c) height (cm) and d) total white blood cell count (/nl) displayed according to gp140 IgG binding anti-
body High or Non-High responder status. The top and bottom of each boxplot within the violins indicate the interquartile range;
the horizontal line is the median. gp120 IgG: n = 752; gp140 IgG: n = 772; gp41 IgG: n = 628; CD4: n = 808; gp140 IgG + gp120 IgG:
n = 751; gp140 IgG or gp120 IgG: n = 751. MCV, mean corpuscular volume. WBC, white blood cell.
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Comparing across approaches, visual inspection of
the heatmaps in Figure 4a-4c (Approaches 1, 2, and 3,
respectively) revealed that more individual baseline fea-
tures were identified as important for predicting High
gp41 IgG response (vs. the other antibody responses),
with several haematological features having at least
modest variable importance across the three
approaches. As an alternative to visual inspection, we
ranked the prediction performance measurements of all
125 combinations across the 25 baseline characteristics
and five antibody outcomes and computed the sum of
the average rank across the three approaches (“rank-
based” method). The results are shown in Figure 4d.
Both total white blood cell count and sex assigned at
birth were ranked highly across the three approaches
for predicting High gp41 responder status.

We also repeated the same analyses using an alterna-
tive definition of High Responder status, detailed in
Methods. Figure S3 shows an analogous version of
Figure 4, except based on predicting “High Responder
� 20%tile” vs. “Low Responder � 20%tile” status.
Results were generally similar to those obtained above
and are further discussed in the Supplementary Text.

We next sought baseline variables with consistent
effect directionality across multiple antibody outcomes.
Figure 5a shows the risk differences (from Approach 1),
p-values, and adjusted p-values for the eight baseline
variables (sex, height, haemoglobin, mean corpuscular
volume, total white blood cell count, background blank,
background gp140, and background gp41) that had con-
sistent directionality of effect within all the cross-valida-
tion folds of a given antibody outcome, as well as across
at least two of the antibody outcomes. Of these, three
(sex, height, and total white blood cell count) also had a
significant association with at least two of the outcomes
(unadjusted p-value < 0.05). Specifically, female sex,
shorter height, and higher total white blood cell count
were each associated with High responder status across
multiple antibody outcomes (female sex: gp140 IgG,
gp41 IgG, gp140 IgG + gp120 IgG; shorter height:
gp120 IgG, gp140 IgG, gp140 IgG + gp120 IgG, gp140
or gp120 IgG; higher total white blood cell count: gp140
IgG, gp41 IgG).

For female sex predicting High responder status,
only the gp140 IgG outcome had a significant associa-
tion after multiplicity adjustment (adjusted p-value=
0.029, TMLE). For total white blood cell count, the
gp140 IgG and gp41 IgG outcomes had a significant
association after multiplicity adjustment (adjusted p-
value < 0.001, TMLE). For shorter height predicting
High responder status, significant associations were
seen for the gp120, gp140, ‘gp140 and gp120’, and
‘gp140 or gp120’ outcomes after multiplicity adjust-
ment (all adjusted p-values < 0.01, TMLE). Figure 5b
shows a cross-tabulation of gp140 High responder sta-
tus by sex assigned at birth, where a greater percentage
of High responders (55.7%) was female compared to
male (46.2%). Figure 5c and 5d show the study-pooled
www.thelancet.com Vol 84 October, 2022
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distributions of observed height and total white blood
cell count, respectively, according to gp140 IgG binding
antibody High or Non-High responder status, without
adjusting for other covariates.
Discussion
Access to individual-level data in the HIV Vaccine Trials
Network affords the opportunity to investigate host
determinants of vaccine-induced immune responses in
this meta-analysis of 26 vaccine regimens. In order to
gain a comprehensive understanding of the predictive
value of the baseline characteristics, three different
approaches were applied to identify and rank 25 poten-
tial predictors. These approaches identified differing
lists of significant predictors, with a relatively small
overlap. Such a variation in patterns of estimated vari-
able importance across the three approaches was evi-
dent and can be explained by several factors. The first is
that the target of inference � in other words, the under-
lying statistical parameter of interest � is different
across the three approaches. Approach 1 considers an
analogue of the average treatment effect comparing
high versus low levels of a variable, while Approaches 2
and 3 consider the difference in population prediction
potential when including vs excluding a variable.
Though Approaches 2 and 3 are conceptually similar,
AUC and accuracy provide different summaries of pre-
diction performance. These differences in the target of
inference are similar to those encountered when using
linear versus logistic regression for binary outcomes,
where an effect may be deemed statistically significant
on the scale of the risk difference but not the odds ratio
(or vice versa). Thus, in this context the three
approaches provide complementary information about
the importance of the baseline predictors. A second fac-
tor that might explain the differing variable importance
patterns is that the estimated prediction performance of
all variables is modest. This constrains the impact that
any one variable can have over the others.

Specifically, we found that body height was inversely
associated with the High responder status of both
gp140 and gp41 responses. As the gp140 subunit of Env
includes much of the gp41 subunit, commonalities in
their associations are not unexpected. There are limited
studies describing an association of body height and
vaccine response. Krams et al. reported a non-linear
relationship in the magnitude of Hepatitis B vaccine-
induced antibody responses in young men, with a posi-
tive relationship up to a height of 185 cm, but an inverse
association in those men taller than 185 cm.76 Based on
their data, body weight could be inversely associated
with a dichotomized High responder status of the anti-
body responses, consistent with our finding for HIV
vaccine-induced immune responses. In addition, in
young children, an inverse association of body height
for age z-scores and immune parameters including B
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cells has been reported.77 Pawlowski et al. reported
there was no association between body height and influ-
enza vaccine response in a study of 96 males and 97
female young adults; however, the study was likely
underpowered to observe this relationship given its
small effect.78 Note that our analysis does not aim to
identify causal relationships between baseline character-
istics and High responder status; rather, our results
indicate body height should be further studied as it may
reflect genetic or environmental influences that impact
immune response.

It is important to consider that these HIV vaccine
trial participants were generally healthy individuals that
met pre-defined inclusion and exclusion criteria to par-
ticipate in the trials, including baseline measures such
as total white blood cells, haemoglobin, creatine clear-
ance, and blood pressure that were within normal
ranges. Haemoglobin emerged from Approach 1 with
an inverse association with gp41 IgG and gp120 IgG
High response statuses, although the association was
only statistically significant for gp41 response. While
clinically defined low haemoglobin is indicative of anae-
mia and iron deficiency, which has been associated with
lower vaccine responses,79�81 it is not yet known
whether haemoglobin levels in lower-normal ranges
have implications on vaccine responses. The high and
consistent ranking of white blood cell (WBC) across the
three approaches (“rank-based” method) as important
for predicting High gp41 IgG response and High gp140
response is notable. We are not aware of baseline WBC
count in healthy individuals being previously reported
to correlate with vaccine-induced antibody response. In
this study increased WBC count, although still within
normal range, may be an indicator of generally healthy
individuals that have a minor subclinical infection and/
or modestly increased systemic immune activation.
Increased immune activation such as in patients with
autoimmune diseases that are not receiving substan-
tially immunosuppressive medications has been associ-
ated with increased IgG responses to other
vaccines.82�84 The association observed in this study
may be a subtler manifestation of this. Female sex
assigned at birth was also highly ranked across the three
approaches as an important predictor for High
responder status of the antibody outcomes, except for
gp120 response. Consistent with our findings, increased
antibody responses to various vaccines in females have
been previously reported.85�88

Increased HIV Env specific plasma IgG in HIV nega-
tive individuals has been previously reported, particu-
larly in some individuals with frequent HIV
exposure.89�92 Though not statistically significant
based on Approach 1, similar trends are seen across the
three approaches. One potential explanation is that ele-
vated baseline HIV-specific plasma IgG may also be the
consequence of antibodies that are developed in
response to microbiome exposure and cross-react with
13
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HIV Env and can further expand following HIV vaccina-
tion or HIV infection, as has been described for
gp41.93,94 Further, gp41 reactivity is well described
among pre-existing poly-reactive low-affinity antibodies
in HIV negative individuals93,95 and is consistent with
increased background blank IgG being predictive of
gp41 IgG response in Approach 2 and 3. It can be specu-
lated that increased baseline gp140 plasma IgG is a sur-
rogate for increased frequency of memory B cells that
may be able to respond to the HIV vaccination, contrib-
uting to the pool of antibody producing cells that
develop following the vaccination. Given the cross-reac-
tive nature of some gp41 antibodies and the finding that
more individual baseline features were identified for
prediction of High gp41 response compared to gp120
and gp140 High response, more in-depth assessment of
the gp41 antibodies is warranted.

As no baseline characteristic was found to strongly
associate with High responder status across all the
approaches used, baseline characteristics may have rela-
tively weak universal (i.e. across many platforms) pre-
dictive power for HIV-1 vaccines. A previous analysis of
10 HVTN trials of candidate HIV-1 plasmid DNA vac-
cines reported that female sex and low BMI were each
associated with a higher HIV-specific CD4+ T-cell
response rate,43 and a study of the phase 2b Phambili
(HVTN 503) HIV-1 vaccine efficacy trial in South Africa
of the Merck (MRK)-Adenovirus type-5 (Ad5) HIV-1
clade B trivalent HIV vaccine reported that female sex
significantly predicted a positive clade C-specific IFN-g
T-cell response, whereas having an overweight/obese
BMI or being a heavy drinker significantly predicted
clade C-specific IFN-g T-cell nonresponse.42 Given that
the entire collection of baseline characteristics provided
little to no improvement over random chance for pre-
dicting High Env-specific CD4+ T-cell response in the
current study, we were unable to investigate the relative
importance of each characteristic to such prediction; it
is possible that the previously identified findings are
vaccine regimen-specific.

It would be of high scientific interest to determine
whether the findings described here also hold for other
non-HIV vaccines, for example, the COVID-19 vaccines
that have been found efficacious against symptomatic
SARS-CoV-2 infection. Immune marker data that could
be used to answer this question are still being generated
in the COVID-19 vaccine trials using validated and con-
sistent assays. In the meantime, our group is planning
such an investigation for the COVID-19 vaccines, with
the analyses described in the current manuscript serv-
ing as an important basis and reference. A further inter-
esting scientific question is whether there exists a
“universal” baseline signature (or variables) that are
associated with high vaccine response. However, to
answer this question, data from many more vaccines
would need to be included in the analysis. (As an exam-
ple, Fourati et al. integrated data from 28 studies of 13
different vaccines to investigate the generalizability of
whether a pre-vaccination immune state is associated
with vaccine-induced antibody response96).

A limitation of our study is that due to the lack of
availability on individual-level data from other sources
and the availability of relatively large amount of data on
a diverse set of HIV vaccine regimens from the HVTN,
we restricted our scope to the trials conducted within
the HVTN, i.e. we did not perform a systematic review.
Thus, it is possible that some HIV-1 vaccine trials were
excluded from our analysis. Another limitation of our
study is that discrepant vaccine regimens were included;
however, this diversity may also be considered a
strength as it allows identification of universal baseline
predictors. Other strengths of our study include the
large number of HIV-1 vaccine regimens (26) and trials
(nine); the use of validated and consistent immune
assays (performed at HVTN centralized laboratories),
thus minimizing cross-laboratory variation; and the
application of three different approaches, one based on
a causal inference framework and two focused on identi-
fication of association, to obtain variable importance
estimates for each baseline predictor. The results of our
study suggest that baseline features including those
obtained from routine metabolic and haematological
measures that are frequently monitored in clinical trials
and as part of standard of care may be informative in
evaluating vaccine response disparity. They also suggest
that concerns about “population heterogeneity” are mis-
guided and that trials should seek to enroll as diverse a
population as possible. These identified features may be
considered in different types of analyses of immune
responses to improve statistical power or efficiency,
including 1) as confounding factors to adjust for in the
comparisons of immune responses between vaccine
regimens or study populations, and 2) as baseline
immune predictors in the analysis of immune
responses as correlates of risk of HIV-1 acquisition or
correlates of protection (e.g.,97). Findings of our study
warrant additional evaluation of these identified fea-
tures for prediction of response to additional vaccines
either in the setting of clinical trials or retrospective
analysis of standard of care vaccine responses. Further
resolution of vaccine response disparity, including those
individuals that have exceptional antibody and T cell
responses, is likely to identify mechanisms that can be
targeted by novel adjuvants or interventions to improve
vaccine responses for all.
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