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Understanding Heterogeneity in Clinical Cohorts
Using Normative Models: Beyond Case-Control
Studies
Andre F. Marquand, Iead Rezek, Jan Buitelaar, and Christian F. Beckmann
ABSTRACT
BACKGROUND: Despite many successes, the case-control approach is problematic in biomedical science. It
introduces an artificial symmetry whereby all clinical groups (e.g., patients and control subjects) are assumed to be
well defined, when biologically they are often highly heterogeneous. By definition, it also precludes inference over the
validity of the diagnostic labels. In response, the National Institute of Mental Health Research Domain Criteria
proposes to map relationships between symptom dimensions and broad behavioral and biological domains, cutting
across diagnostic categories. However, to date, Research Domain Criteria have prompted few methods to
meaningfully stratify clinical cohorts.
METHODS: We introduce normative modeling for parsing heterogeneity in clinical cohorts, while allowing
predictions at an individual subject level. This approach aims to map variation within the cohort and is distinct
from, and complementary to, existing approaches that address heterogeneity by employing clustering techniques to
fractionate cohorts. To demonstrate this approach, we mapped the relationship between trait impulsivity and reward-
related brain activity in a large healthy cohort (N 5 491).
RESULTS: We identify participants who are outliers within this distribution and show that the degree of deviation
(outlier magnitude) relates to specific attention-deficit/hyperactivity disorder symptoms (hyperactivity, but not
inattention) on the basis of individualized patterns of abnormality.
CONCLUSIONS: Normative modeling provides a natural framework to study disorders at the individual participant
level without dichotomizing the cohort. Instead, disease can be considered as an extreme of the normal range or as
—possibly idiosyncratic—deviation from normal functioning. It also enables inferences over the degree to which
behavioral variables, including diagnostic labels, map onto biology.
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The case-control approach to studying brain disorders has
been successful for detecting group effects, for example,
between patients and control subjects. However, it becomes
problematic in domains such as psychiatry where disorders
are diagnosed on the basis of symptoms that overlap between
disorders, often yielding clinical groups that are heterogene-
ous and overlapping. This problem is particularly acute in
psychiatry because biological tests to assist diagnosis or
predict outcome have not been developed (1). Moreover, the
case-control paradigm induces an artificial symmetry such
that both cases and controls are assumed to be well-defined
entities (Figure 1). This does not match the clinical view of
disease, where disorders in individual patients manifest as
deviations from a normal pattern of functioning.

In response to this problem, the National Institute of Mental
Health launched the Research Domain Criteria (RDoC) initia-
tive (2), which encourages researchers to link symptom
dimensions with biological systems, cutting across diagnostic
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classifications. The ultimate aim of RDoC is to find “new ways
of classifying psychiatric diseases based on multiple dimen-
sions of biology and behavior” (http://www.nimh.nih.gov/
research-priorities/rdoc/index.shtml)—reducing heterogeneity
in clinical cohorts; improving the neurobiological validity of
disease classifications; and enabling more effective, person-
alized treatments. These objectives are also consistent with
the European roadmap for mental health research (3). These
objectives are difficult to achieve within the case-control
paradigm, which, by definition, entails partitioning cohorts
according to predefined labels, precluding later inferences
about their validity.

The RDoC initiative has prompted considerable discussion
(4,5) but to date has led to few methods to study heterogeneity
within clinical cohorts. Of the reports published, nearly all have
employed data-driven clustering methods aiming to fraction-
ate clinical groups mostly on the basis of neuropsychological
measures. For example, clustering methods have been applied
rticle under the
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Figure 1. The classical case-con-
trol approach assumes that cases and
controls each form a well-defined
group (A). This may often be a rea-
sonable assumption, but in practice
many other scenarios are possible.
The clinical population may be com-
posed of multiple groups, each having
distinct pathology (B); disease-related
variation may be nested within healthy
variation (C); or the clinical group may
be diffuse and heterogeneous as a
result of misdiagnosis, comorbidities,
or an aggregation of different pathol-
ogies (D).
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to subtype attention-deficit/hyperactivity disorder (ADHD)
(6–9), mood disorders (10,11), and schizophrenia (12,13). Clus-
tering is useful for identifying subgroups of participants at a
particular time point but also has problems: 1) there are many
different ways to partition clinical populations depending on the
measures and clustering algorithm used; 2) some participants
may not clearly belong to any class, or some classes may
become unmanageably small (8); 3) patient subgroups may not
be stable over time (14); 4) it may be difficult to choose a unique
optimal number of clusters (e.g., different metrics may yield
different optimal numbers of clusters or may not identify a
unique maximum); 5) finally, it is unclear whether healthy
participants should be clustered separately or in combination
with patients. Some reports have suggested that disease
variation may be nested within normal variation (7).

In this article, we propose an alternative conceptual
advance for parsing heterogeneity in clinical and healthy
cohorts. In contrast to clustering approaches, we propose a
normative modeling approach that models biological variation
across either 1) the entire study population (including all
clinical groups) or 2) a large healthy sample. The intuition is
that by mapping the full range of population variation, we can
consider symptoms in individual patients as an extreme value
within this distribution. This is analogous to the use of growth
charts to map child development in terms of height and weight
as a function of age, where deviations from a normal growth
trajectory manifest as outliers within the normative range at
each age. This approach is fundamentally different from, and
complementary to, clustering (Figure 1). More concretely, we
predict biological measures of brain function (e.g., neuro-
imaging) on the basis of clinically relevant covariates (e.g.,
trait measures). We build on preliminary work by ourselves and
others (15–18) to introduce an analytical framework that allows
us to 1) use data from large cohorts to learn a normative
distribution that characterizes the study population; 2) make
probabilistic statements about which participants deviate from
the normative pattern; and 3) statistically map the brain
Biological Ps
regions underlying these deviations on a case-by-case basis,
while permitting 4) diagnostic labels to be used as predictor
variables, enabling inferences over the labels just as any other
variable.

To illustrate, we map the relationship between trait impul-
sivity and reward-related brain activity in a large, healthy
sample. This relationship is of high clinical relevance because
impulsivity and impairments in reward processing are core
features of many disorders, including ADHD (19,20) and
addiction (21). We use delay discounting to quantify impulsiv-
ity, which measures the degree to which individuals devalue
future rewards relative to immediate rewards (22) and is a
stable measure of trait impulsivity (23). We then relate the
model predictions to ADHD symptom dimensions to highlight
specificity for particular symptom domains. Our approach is
predicated on the assertions that 1) understanding healthy
variation is a prerequisite to understanding disease variation
and that this requires 2) the ability to determine where each
subject lies within the population range because variation
associated with most disorders overlaps with normal variation.
We show that normative modeling provides a flexible and
powerful means to operationalize these desiderata, to study
variation in individual participants, and to highlight axes of
variation relevant to clinical symptoms.
METHODS AND MATERIALS

Overview of Normative Modeling

Figure 2 shows an overview of the approach. First, we
estimate a normative model that links clinical and biological
variables. Specifically, we use Gaussian process regression
(24) to predict a set of biological response variables (e.g.,
neuroimaging) from a set of clinically relevant covariates (e.g.,
trait scores), while estimating predictive confidence for every
prediction. Measures of predictive confidence are important
because they quantify the fit of each point to the normative
ychiatry October 1, 2016; 80:552–561 www.sobp.org/journal 553
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Figure 2. Overview of the proposed normative modeling approach showing the steps in the pipeline. (A) Estimate the normative model with Gaussian
processes. This provides the ability to predict brain activity for any (observed or unobserved) value of the clinical covariates along with measures of predictive
confidence (blue contour lines). The contours of predictive confidence can be interpreted as centiles of predictive confidence for the cohort (blue numerals,
right). (B) For each subject, compute a normative probability map that quantifies the deviation from the normative model at each brain region. (C) Generate a
summary measure of abnormality for each subject using extreme value statistics, which can be related to clinically relevant variables. (D) The imaging
phenotype can be examined more closely, for example, by thresholding the normative probability maps using established techniques. This can provide insight
into the brain mechanisms for subjects that do not fit the normative model. See text for full details. EVD, extreme value distribution; FDR, false discovery rate;
NPM, normative probability map.

1We follow the naming convention introduced by the Human
Connectome Project, which refers to different brain locations
as “brainordinates.” These can reference either vertices on the
cortical sheet or subcortical voxels.
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model in that centiles of predictive confidence can be inter-
preted as centiles within the normal range (Figure 2A). A
normative (expected) trajectory is provided along with expected
modes of variation, linking the trait variable to the biological
response variable. This model can provide predictions for any
value of the clinical covariates, whether observed or not, and by
evaluating the entire range of all covariates, we can derive
disease spectra that describe the full range of normal variation
(17). Our focus in this study is on charting variation across
clinical predictor variables, but related multivariate regression
approaches have been used to predict subject age with respect
to a normal developmental trajectory (18,25–28).

Estimating the Normative Model

Gaussian process regression is described in Supplement 1,
but briefly, a Gaussian process is a distribution over functions
554 Biological Psychiatry October 1, 2016; 80:552–561 www.sobp.org
that can be used for Bayesian interpolation. In this study, we
model the relationship between delay discounting and reward-
related brain activity independently for each brain region
(“brainordinate”).1 That is, we specify a functional relationship
between a vector of covariates (x, here “delay discounting”)
and responses (y, here “brain activity”):

y 5 f x; hð Þ12

The residuals are denoted by A, and h is a vector of
parameters. The parameters control the scale of the function
used to interpolate the data and the relevance of each
/journal
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covariate for predicting the response variable. Thus, irrelevant
covariates can be down-weighted, and relevant covariates can
be emphasized. We place a Gaussian process prior over the
set of interpolating functions and compute their posterior
distribution by Bayes’ rule. This approach provides three
advantages: 1) it is highly flexible and can accommodate
nonlinear relationships; 2) it provides coherent estimates of
predictive uncertainty; and 3) it delivers state-of-the-art pre-
diction performance in many domains, including neuroimaging
(29,30). This approach is applicable to most types of neuro-
imaging data (e.g., structural magnetic resonance imaging
[MRI], functional MRI) both at the voxel/vertex level and using
regional summary measures (e.g., average activity within
anatomically defined masks or maximum cluster volume).

Next (Figure 2B), we use the normative distribution to make
a prediction for each subject, either from a new cohort or from
the same cohort but excluded from the model (e.g., under
cross-validation). For each subject (i), the prediction at each
brain location (j) consists of an expected response (mean, ŷij )
and expected level of variation (variance, σij). This can be
combined with the true response (yij) and variance learned
from the normative distribution (σnj) to provide a Z score
quantifying the deviation from the normative model:

zij 5
yij2 ŷijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ij 1σ2nj

q

This is known as a normative probability map (NPM) (16)
and combines three sources of information: 1) the error
(difference between true and predicted responses); 2) the
predictive variance of the test point; and 3) the variance of
the normative data. The model accommodates the distribution
of the data such that predictions made in regions of the input
space with a low density or high spread of points will have
appropriately low predictive precision (high variance). This
feature is important in many clinical contexts; for example, it
may be difficult to obtain a cohort that covers the complete
range of the covariates of interest. Ideally, it is desirable to
have a large sample with good coverage of the full range, but
this may not be possible (e.g., because it may require
recruiting many low-functioning patients). Our approach guar-
antees that uncertainty is handled coherently, regardless of
the context (31). Thus, the model automatically reduces
predictive confidence when extrapolating away from the data
points or in regions where variability within the normative
cohort is high. Finally, because the NPM Z scores are
estimated independently for each brain region, conventional
statistical machinery can be used to control the type I
error rate.

Summarizing Deviations Into a Subject-Level
Abnormality Index

The above-described approach quantifies an individual partic-
ipant’s response pattern, given their behavioral covariates. In
the case of a multivariate response (e.g., having thousands of
brain locations), this results in a multivariate measure of
deviation. For subject-specific decision making, it is essential
to summarize the degree of abnormality by estimating the total
magnitude of deviation for each subject with respect to the
Biological Ps
normative model. To achieve this, we employ extreme value
statistics, which model the behavior of random variables in the
tail of their distribution; extreme value statistics have been
applied, for example, to predicting unusually large floods or
stock market crashes (32,33). In this study, we consider that
disease may—but may not necessarily—occur as an extreme
deviation from a normal pattern. We adopt a “block maxima”
approach (33) to modeling deviations that involves summariz-
ing each block of data, or each participant, by his or her
maximum value. To ensure that this approach is reliable, we
compute a robust (90% trimmed) mean of the top 1% of NPM
Z statistics, summarizing the deviation across all brain regions
(Figure 2C). To make probabilistic subject-level inferences
about these deviations, we fit an extreme value distribution
(Supplement). It is also possible to consider signed deviations
from the normative model, depending on whether the top 1%,
bottom 1%, or top 1% absolute value of the distribution is
taken (positive, negative, or absolute deviation). These devia-
tions convey different information, and their interpretation in
the context of an actual analysis depends on whether an
underactivation or overactivation is expected to be related to
clinical symptoms. In this study, we use the absolute deviation
to quantify the total deviation from the normative model and
signed deviations to examine correlations with clinical varia-
bles because to understand mechanisms underlying the
deviation, it is necessary to differentiate cases having over-
activation from cases having underactivation, relative to the
normative model.

Data Sample

Normative modeling aims to chart variation within the pop-
ulation distribution so that deviations can be reliably assessed.
Therefore, we employ a large healthy sample for whom high-
quality data are available. For this study, we use data from 491
participants (288 females; mean age 27 years [range 22–36
years]) from the Human Connectome Project (http://www.
humanconnectome.org) (34–36). See the Supplement for
details of the sample characteristics, task design, data acquis-
ition, and processing. Briefly, all participants completed the
following: 1) a functional MRI incentive processing (gambling)
task (37); 2) the Achenbach Adult Self-Report instrument (38),
used to measure clinical symptoms on the basis of DSM-IV
criteria; and 3) a delay discounting task (39) that quantifies the
extent to which future rewards are devalued relative to
immediate rewards at two delayed reward magnitudes:
$40,000 and $200. The area under the curve (AUC) (40) was
used to summarize delay discounting across all delays
evaluated for each magnitude (AUC40K, mean 0.46 [range
0–0.98], and AUC200, mean 0.24 [range 0–0.98]). The means
for ADHD symptom scales were 3.03 (range 0–11) for inatten-
tion, 2.37 (range 0–14) for hyperactivity, and 5.40 (range 0–25)
for total scores.

We use delay discounting to quantify trait impulsivity, which
serves as a covariate to predict the biological response
variables (functional MRI contrast images between reward
and baseline). We then relate images to the Adult Self-
Report scales for inattention and hyperactivity. To ensure
unbiased estimates of generalizability, model estimation was
performed under 10-fold cross-validation, where data were
ychiatry October 1, 2016; 80:552–561 www.sobp.org/journal 555
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repeatedly partitioned into training and test sets across
subjects, in a way that accommodated the family structure
of the data (Supplement).
RESULTS

Overview of Normative Model

Measures of delay discounting are presented in Figure 3. No
delay discounting measures were correlated with either hyper-
activity (AUC200, r 5 2.047; AUC40K, r 5 2.040, both p . .2)
or inattention (AUC200, r 5 .079; AUC40K, r 5 .045, both
p . .2). For illustrative purposes, the principal direction of
variance in Figure 3 is indicated by an arrow. Several reference
points along this direction (numerals) provide anchors for an
exemplar spatial representation of the normative model
(Figure 4), defined with respect to a theoretical baseline
participant that does not discount reward at all (the point
marked “B” in Figure 3).

The normative model predicts that participants who dis-
count rewards more strongly also more strongly engage a
network of cortical and subcortical regions (described in the
Supplement). This network overlaps with, but is not identical
to, the network activated by the gambling task [Figure 6 in
Barch et al. (39); see also Figure 6A later on]. It is also
consistent with the network engaged by delay discounting
(41) and, as expected, corresponds to the regions that the
normative model predicted accurately under cross-validation
(Figure 4C).
Figure 3. Area under the delay discounting curve (AUC) for the partici-
pants included in the normative model for low ($200) and high ($40,000)
reward. For both reward levels, lower values are associated with steeper
discounting of future reward. Participants discounted small rewards
more than large rewards (t491 5 224.97, p , .001), and many participants
strongly discounted both large and small rewards, depicted by a skew of
the point cloud toward the y axis and an increasing density of points toward
the bottom left corner, respectively. The arrow indicates an increase in
overall delay discounting along the axis of maximum variance (i.e., principal
eigenvector). The numbered circles indicate the positions selected for the
spatial representation of the normative model relative to the baseline model
labeled “B” (see text for details).
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Clinical Correlates of Abnormality Index

Figure 5 shows the absolute deviance of each participant
plotted against hyperactivity. This figure reveals structure in
the data that is not apparent considering only symptoms
(Supplemental Figure S1). First, most participants fit the
normative model well, including many participants having high
hyperactivity. To illustrate, we consider participants having
hyperactivity .8 (Figure 5, blue circles). The normative model
provided a good fit for these participants because none
showed brainordinates deviating from the norm (p , .05, false
discovery rate corrected), and none would be considered an
outlier under the extreme value distributions fit to the positive,
negative, or absolute deviations (all p . .05). Therefore, the
normative model captures variation across the full range of
hyperactivity symptoms.

Second, not all participants fit this pattern; other subjects
have high hyperactivity but deviate from the normative model
(Figure 5, red circles). These participants score in the 99th and
97th percentiles for hyperactivity within the cohort. Further-
more, a strong positive correlation (r 5 .91, p 5 .03) was found
between the negative deviance and hyperactivity for the 1% of
participants showing maximal deviation (n 5 5). The degree of
deviation was not only informative about the most extreme
subjects because the correlation persisted into the bulk of the
population, remaining significant for the participants having
negative deviance in the top 5% (r 5 .53, p 5 .007, n 5 25),
10% (r 5 .31, p 5 .03, n 5 50), 15% (r 5 .36, p 5 .002, n 5 74),
and 20% (r 5 .22, p 5 .03, n 5 99) of the cohort. None of the
corresponding positive deviance scores correlated with hyper-
activity (all p . .4).

In contrast, deviance was not associated with inattention.
Subjects with the highest absolute deviance did not show high
inattention (Supplemental Figure S2), and neither the positive
nor negative deviance correlated with inattention (all p . .2).
Therefore, normative modeling allows us to tease apart
symptom domains that are highly correlated.

Deviating Subjects

The NPMs for 22 participants contained brain regions deviat-
ing from the normative model (p , .05, false discovery rate
corrected). To illustrate, the NPMs for the 10 most extreme
outliers are shown (Figure 6 and Supplemental Figure S3). The
patterns of abnormality were highly individualized with low
overlap between subjects; no brain region deviated in more
than three participants (Supplemental Figure S4), pointing
toward significant heterogeneity of the imaging phenotype
within this cohort. The extreme value distribution provides a
mechanism to understand how these deviations relate to
clinical symptoms. To illustrate, Supplemental Figure S5
shows one possible interpretation of the deviations plotted in
Figure 5, where symptoms may arise through 1) mechanisms
that are well captured by the normative model or 2) idiosyn-
cratic deviations from the normative model.
DISCUSSION

In this article, we present a principled method to study
associations between brain function and behavior. We used
normative models constructed from spectra of clinically
/journal
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Figure 4. Spatial representation of the normative model. These maps show the predictions made by the normative model for the (fictitous) data points
described in Figure 3, obtained after retraining the model using all available data. (A) The expected response. This shows increasing engagement of a network
of brain regions with increasing overall delay discounting (rows). The numeral indexing in each row corresponds to the points in covariate space described in
Figure 3. To assist visualization, these images have been rescaled such that the maximum across all images is equal to one. (B) An example of the expected
variation, which was relatively constant for these points. This image has been rescaled such that the maximum variance in the image is equal to 1. (C) The
standardized mean squared error for the normative model under cross-validation (averaged across all cross-validation folds). Comparison with (A) shows that
the regions that could be accurately predicted (cool colors) correspond to regions that exhibit variation under different degrees of delay discounting.
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Figure 5. The relationship between the overall deviance from the
normative model and hyperactivity scores (center), along with the histo-
grams of the component measures (left and bottom). This figure allows us
to determine whether subjects that have high clinical symptoms show a
good or a poor fit to the normative model. For illustrative purposes, contour
lines show the density of points in the figure. Most points fit the normative
model well, but some of these subjects also score highly on hyperactivity
(blue arrow). Other subjects who score highly on hyperactivity do not fit the
normative model (red arrow). Circled subjects are discussed further in the
text. NPM, normative probability map.
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relevant variables (delay discounting) to predict reward-related
brain activity in a large, healthy cohort. This approach allowed
us to 1) map the range of normal variation in reward-related
brain responses, 2) perform statistical inferences at the level of
the individual participant, and 3) identify participants deviating
from the normative model. We related the degree of deviance
to ADHD symptoms and showed that participants scoring
highly for hyperactivity were either at the extreme of a normal
spectrum of functioning or had reward-related brain responses
that differed from the normal pattern. In the latter case, the
degree of deviation correlated with hyperactivity, but not
inattention, well into the middle of the population distribution
on the basis of idiosyncratic patterns of abnormality.

A key feature of our approach that differentiates it from
other approaches to studying heterogeneity in clinical pop-
ulations (7,8) is the primary focus on mapping variation across
the cohort. This mapping breaks the symmetry inherent in the
case-control approach in that the primary interest is in how
each individual differs from the population. There are four
advantages to this mapping: 1) it allows differential effects
from normal functioning to be studied in individual subjects, 2)
it does not entail making strong assumptions about the clinical
group (e.g., existence or number of subgroups), 3) it provides
an intuitive match to the clinical conception of disease, and 4)
it provides a principled bridge between “big data” analytics
and “precision medicine” (42) in that large healthy cohorts can
be used to progressively refine estimates of normal variation.
In the present study, we aimed to examine variation within a
single healthy cohort, quantifying where each individual lies
within the population. Normative models are also useful for
558 Biological Psychiatry October 1, 2016; 80:552–561 www.sobp.org
fractionating heterogeneous clinical groups, where the norma-
tive distribution can be fit to a large sample of healthy
participants to learn a healthy normative pattern and then
applied to a clinical cohort to determine where patients lie on
the healthy continuum. Alternatively, the normative model can
be fit directly to the heterogeneous cohort to find outliers
within the cohort.

Normative modeling is compatible with the objectives of
RDoC because it allows different axes of variation to be
studied independently of the diagnostic labels. A particular
strength is its flexibility; it can integrate multiple measures
characterizing different cognitive domains, quantifying the
relationship between each domain with biology and symp-
toms. This is of high clinical relevance for three reasons. First,
many clinical categories are based on clinical algorithms,
combining self-report with clinician and parent/teacher
assessment. There is no consistent way to deal with these
multiple measures other than to add them up. The abnormality
indices we propose provide a way to assess this information
quantitatively in relation to biology. Second, we can begin to
make statements about the quality of different measures,
which can be compared in terms of predictive power. Third,
existing diagnostic labels can be included as covariates just as
any other variable. This inclusion permits inference over the
proportion of biological variance the labels explain and there-
fore how appropriate a case-control analysis is for the chosen
measures. Normative models can also be targeted specifically
to detect abnormalities in multivariate phenotypes by making
different choices for variables used for the covariates or
responses. For example, measures derived from brain regions
or networks can be employed if prior information about
disease pathology is available. In the absence of such
information in the present study, we employed a spatially
unbiased, whole-brain approach. Alternatively, Gaussian proc-
ess regression can be extended to directly predict multivariate
phenotypes, as we demonstrated previously (43,44).

Normative modeling provides the ability to make statistical
inferences at the level of the individual. It shares similarities
with pattern recognition methods commonly used for predict-
ing clinical variables from neuroimaging data (45). Most of
these applications have employed supervised learning, which
requires the diagnostic labels to be specified in advance.
Although unsupervised methods do not require the labels to
be specified in advance, they do entail making assumptions
(e.g., orthogonality, independence, or similarity by some
measure) that lead to different ways to partition groups.
Therefore, it can be difficult to constrain unsupervised meth-
ods to identify clinically relevant variation instead of nuisance
variation, especially in high dimensions. Normative modeling
provides an appealing middle ground. Moreover, our approach
has advantages over existing approaches to normative mod-
eling based on multivariate regression (18) and the one-class
support vector machine (15). Most importantly, our approach
provides probabilistic predictions and the ability to make
statistical inferences about the manner in which individual
subjects differ from the normative model.

Normative modeling complements clustering approaches; it
can accommodate all scenarios in Figure 1 and can indicate
whether clustering is appropriate (Figure 1B). If clustering is
appropriate, normative models could be used to generate
/journal
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Figure 6. (A) An unthresholded t-statistic image of the main task effect, estimated using a classical general linear model (reward-baseline). Warm colors
indicate greater activation during reward, and blue colors indicate reduced activation during reward. We have shown an unthresholded map because this
sample has very high power (being estimated from nearly 500 subjects). Thus, nearly all brain regions survive conventional statistical thresholding.
(B) Normative probability maps that describe the brain regions that deviate from the normative model in the 10 subjects having the most extreme deviations
(p , .05, false discovery rate corrected) (also see Figure S3 in Supplement 1). Warm colors indicate greater activity than would be predicted by the normative
model, and cool colors indicate reduced activity relative to the normative model. Subjects are ranked by hyperactivity symptom scores with the rank indicated
by the numerals (1 5 highest hyperactivity). The two most extreme deviations circled in Figure 5 are indicated by red boxes.
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features for clustering. The benefit is that referencing samples
to a common normative distribution may yield more interpret-
able clusters than clustering the data directly. Alternatively,
normative modeling might indicate that disease is nested
within the healthy range (Figure 1C). We propose one structure
that could explain our data that combines these interpretations
(Supplemental Figure S5). We also note that we did not find
evidence for clearly defined clusters on the basis of symptoms
alone (Supplemental Figure S1).

We identified two distinct mechanisms through which
participants have high hyperactivity: participants either fit the
normative model well, suggesting they are at the extreme of a
normal axis of variation, or showed patterns of abnormality
that were highly individualized but still meaningfully related to
Biological Ps
symptoms. These reflect a convergence of different biological
mechanisms on the same symptoms. In other words, the
extreme clinical phenotype is characterized by mechanistic
heterogeneity, which is a key feature of many psychiatric
disorders, including ADHD (46). We also showed domain
specificity because the degree of abnormality correlated with
hyperactivity but not inattention.

It is important to differentiate outliers resulting from clinically
meaningful activity from outliers secondary to artifacts. There-
fore, it is crucial to demonstrate a relationship between devia-
tions and clinical symptoms or behavior to ensure that deviations
from the normative model are driven by clinically relevant
abnormalities rather than artifacts. One important source
of artifactual variation in functional MRI is head motion (47).
ychiatry October 1, 2016; 80:552–561 www.sobp.org/journal 559
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It is thus significant that normative modeling provides a way to
characterize the deviation statistically, enabling clinically relevant
deviations to be distinguished from artifactual deviations based
on the individualized pattern of abnormality. Head motion is
unlikely to underlie the effects we report because we excluded
subjects having a high degree of head motion and repeated the
analysis after regressing out motion-related components using a
similar approach to Pruim et al. (48). All conclusions remained
valid, and our subjects that were outliers remained outliers.

We identify three areas for future work. First is to evaluate
the stability of the abnormality indices over time. It will be
particularly interesting to relate the stability to symptom
domains that change with time [e.g., ADHD subtypes (14)].
Second, although we employed a relatively large sample in
this study, in the future it will be necessary to handle extremely
large data sets.2 A limitation for Gaussian process models is a
poor computational scaling to large numbers of data points.
However, the cost for this data set was acceptable (a few
seconds per brain location). For larger data sets, there are
many solutions; in preliminary work, we found that an alter-
native approach [Bayesian polynomial regression (49)] scales
well at a small cost to accuracy. There are also many more
recent innovations in machine learning for scaling Gaussian
process regression to very large data sets (50–52). Third, it is
likely that model accuracy can be improved by modeling
spatial correlations using spatial statistics (53).

In conclusion, we demonstrated a normative modeling
approach for mapping 1) associations between brain function
and behavior and 2) the overall deviation of each subject from
the normative model. This approach provides a natural and
elegant framework to study clinical conditions in relation to
normal functioning without requiring categorical partitioning
of the cohort. Instead, disease can be considered as an
extremum of the normal range or as—possibly idiosyncratic
—deviation from normal functioning. We anticipate that nor-
mative modeling will have broad applicability to parsing
heterogeneity in many clinical conditions.
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