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ABSTRACT
Infertility, defined as the inability to establish a clinical pregnancy after a year of regular, unprotected sexual intercourse, impacts
8%–12% of couples worldwide. Many of these couples turn to in vitro fertilization (IVF) to build their families. The success rate
of IVF procedures is variable, with estimates of up to 40% of embryo transfers being unsuccessful. Herein we review the existing
literature on the role of the female and male urogenital microbiomes and genital inflammation on fertility and IVF outcomes. We
discuss the microbiome across the female reproductive tract (FRT) and identify associations with female infertility, female genital
tract inflammation, and success of IVF procedures. We also discuss the male urogenital microbiome and the associations between
microbial taxa, genital inflammation, and male fertility parameters. Finally, we consider microbial transfer within couples and
the impact this may have on fertility and the success of IVF procedures.

1 Introduction

Infertility, or the failure to establish a clinical pregnancy after
a year of regular, unprotected sexual intercourse, is estimated
to affect one in eight couples (between 8% and 12%) worldwide.
Approximately one-third of couples receive a diagnosis of female
factor infertility, one-third of male factor infertility, and the
remaining one-third either have both female and male factor
infertility or an unknown cause [1, 2]. Multiple factors can
contribute to infertility including endocrine disorders, structural
abnormalities, genetic defects, urogenital tract infections, and
lifestyle [2]. Treatment options are typically based on the specific
diagnosis of the couple and can involve lifestyle changes, surgical
procedures, or the use of hormones [3]. According to a report

released in 2024 by the US Department of Health and Human
Services, 2.3% of all infants born in the US in 2021 were conceived
through the use of ART [4].

1.1 Female Factor Infertility

Many factors can contribute to female factor infertility, including
ovulatory disorders, pelvic or tubal adhesions, endometriosis,
and uterine abnormalities [2, 5]. Ovulatory disorders, including
polycystic ovary syndrome or premature ovarian insufficiency,
can result in anovulation (a failure of the ovary to release an egg)
[2, 5]. Endometriosis, where endometrial tissue grows outside of
the uterine cavity, impacts 10%–15% of reproductive-aged women
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[2, 5]. Of these women, approximately half experience infertility
through increased inflammation and pelvic adhesions that can
distort pelvic anatomy [2, 5]. Pelvic and tubal adhesions can
also be caused by infectious processes, the most common of
which is pelvic inflammatory disease (PID), with Chlamydia
trachomatis infection carrying the greatest risk of infertility
associated with PID [2, 5]. Acute and chronic inflammation can
damage the structural integrity of the fallopian tube, leading to
hydrosalpinxes (or blocked fallopian tubes), which can obstruct
the tube and impair endometrial receptivity, thereby creating
a hostile environment for implantation [2, 5]. Uterine-specific
causes of infertility can include uterine lesions, fibroids, reduced
endometrial receptivity, and congenital uterine abnormalities
such as septum [2, 5].

1.2 Male Factor Infertility

Male infertility can be affected by testicular deficiency, post-
testicular impairment (due to ejaculatory dysfunction or obstruc-
tion to sperm delivery), and low sperm quality (determined by
sperm count, motility, and mobility) [6]. The testes contribute to
male fertility by producing germ cells (spermatozoa), the main
sex cells that carry genetic material needed to fertilize the female
ovum. Sertoli cells and Leydig cells, also found in the testes, work
with accessory glands (prostate, seminal vesicles, bulbourethral
glands) to secrete proteins, growth factors, metabolites, mucins,
and other factors that make up the seminal plasma. Semen is
made up of 2%–5% spermatozoa with the rest of the ejaculate
composed of seminal plasma. Male fertility is regulated by
the prostate through prostatic fluid secreted by the prostate
epithelium and is influenced by aging and cellular senescence
[7]. The gold standard for assessing male infertility is to analyze
semen for different parameters, such as volume, concentration,
spermatozoamotility, andmorphology. Sperm abnormalitiesmay
be classified as oligozoospermia (with concentrations below 15
million/mL), asthenozoospermia (low motility), teratozoosper-
mia (> 96% of sperm cells aremisshapen), azoospermia (no sperm
cells found in the ejaculate), or a combination of these conditions
[6, 8].

1.3 Assisted Reproductive Technologies for
Infertility Treatment

There is a range of ART available that vary in cost, invasiveness,
and treatment success, defined by both the establishment of
pregnancy and live birth rate [4, 9]. The course of treatment can be
based on both specific diagnosis and preferences of the couple [9].
Ovarian stimulation, which can be combined with intrauterine
insemination, is a low-cost, less invasive option, but the success
rate is relatively low at 10%–20% per cycle [9]. In vitro fertilization
(IVF) involves ovarian stimulation, retrieval of mature oocytes,
oocyte fertilization, and culture of blastocysts (fertilized eggs) in
an embryology laboratory, prior to the transfer of a 3- or 5-day
embryo into the uterus [9, 10]. The per embryo transfer success
rate of IVF ranges from approximately 35%–50% [11, 12]. Although
the use of IVF has provided hope to many couples facing a
diagnosis of infertility, the success rate for IVF on a per-couple
basis cannot be predicted and in many cases it is unknown why
IVF fails, indicating a critical need to improve IVF success rates.

2 Mucosal Inflammation and Fertility

2.1 Inflammation and Embryo Implantation

Embryo implantation is a physiologic inflammatory process and
requires immunological tolerance to foreign antigens expressed
by the embryo [13]. Embryo implantation begins with blastocyst
apposition to the uterine endometrium, followed by attachment
to the endometrial surface epithelium and can only occur in
a receptive uterus [14]. Uterine receptivity occurs during the
mid-luteal phase of the menstrual cycle and is regulated by the
ovarian hormones 17-β-estradiol and progesterone [14]. Receptiv-
ity requires a variety of changes to occur including transformation
of endometrial stromal cells into decidual cells, expression of
inflammatory mediators and adhesion molecules and infiltration
of immune cells.Most leukocytes in the uterus are uterine specific
natural killer cells (uNK, 65%–70%) and antigen presenting cells
(APCs, 10%–20%) including macrophages and dendritic cells
(DCs) [14, 15]. In contrast to circulating NK cells, which are
cytotoxic, uNK cells have lost their cytotoxic activity, which is
mediated by interleukin (IL)-15 secreted byDCs and transforming
growth factor beta-1 (TGF-β1) secreted by macrophages [14].
uNK cells have roles in regulating trophoblast invasion by the
production of IL-8 and interferon gamma-induced protein 10 (IP-
10), dampening T cell responses and producing angiogenic factors
that induce vascular growth essential for the establishment of an
adequate decidua [13, 14].

High levels of pro-inflammatory cytokines including IL-6, IL-8,
tumor necrosis factor (TNF-α), and macrophage inflammatory
protein (MIP-1β) characterize early implantation and act by
recruiting and activating immune cells while also attracting
the trophoblast for implantation [14–18]. APCs coordinate the
immune response in the endometrium, which is critical for
successful embryo implantation [18, 19]. This includes cytokine
production and polarization of CD4+ T cells to T helper (Th1)
and regulatory T cell (Treg) phenotypes, thereby inducing embryo
tolerance. Indeed, a lack of APCs or aberrant macrophage
polarization can prevent implantation from occurring in mouse
models [15, 18–22]. Thus, a complex immune balance is required
for successful implantation, and disruption of this balance could
lead to implantation failure during IVF.

2.2 Male Genital Inflammation

Inflammation influences seminal quality and male fertility by
negatively impacting semen viability, motility, morphology, and
DNA integrity [23]. An increase in inflammation leads to semen
hyperviscosity (SHV), which influences sperm motility and
increases sperm coagulation [24]. Urogenital inflammation could
inhibit the production of nutrients necessary for the development
of sperm or lead to sperm damage via increased levels of reac-
tive oxygen species (ROS) and cytokines [25–27]. Inflammatory
cytokines including IL-6, IL-1, IL-8, TNFα, and IFNγ are nega-
tively correlated with sperm viability, motility, and DNA integrity
[25, 28, 29]. Seminal fluid contains the highest concentration of
molecules from the male reproductive glands, making it a logical
source of metabolites potentially diagnostic of male infertility
[30]. Bacterial-derived metabolites can induce inflammation
and play a role in health and disease for many inflammatory
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diseases, though most of these have been associated with the gut
microbiome [31]. Therefore, any pro-inflammatory metabolites
present in seminal fluid,whether bacterial or host-derived,maybe
drivers or biomarkers of subsequent IVF outcomes.

Inflammation resulting from infections, including E. coli and
Chlamydia trachomatis, has been linked to male fertility issues
[32]. The enzyme granulocyte elastase, a quantitative marker of
genital tract inflammation, is associatedwithmotility, progressive
motility, morphology, and low levels of intact DNA [28]. DNA
fragmentation is significantly higher when bacterial infection
is present [29]. Inflammatory signatures have also been linked
to urogenital infections such as prostatitis, which may cause
fertility issues through direct or secondary immune-mediated
damage [32, 33]. Sperm DNA damage is associated with IVF
outcomes, adversely impacting embryo quality and resulting in
reduced implantation rates and clinical pregnancy [34, 35]. Lower
sperm concentration and progressive motility are related to lower
fertilization rates and fewer embryos produced [36–38]. Overall,
inflammation in the male reproductive system may impact
IVF success including oocyte fertilization, embryo generation,
implantation, or ongoing clinical pregnancy [26, 39, 40].

3 Microbiome and Fertility

Urogenital microbiome dysbiosis can lead to significant changes
in the genital microenvironment, including increased or aberrant
inflammation, which could impact fertility and the success of IVF
procedures. Recent studies have investigated the impact of both
the female and male urogenital microbiomes on fertility and IVF
outcomes.

3.1 Microbiome in the Female Reproductive
Tract (FRT)

3.1.1 Vaginal Microbiome

The microbiome of the FRT has been well-studied, particularly
that of the lower reproductive tract. The vaginal microbiome
is commonly composed of species of Lactobacillus, including L.
crispatus, L. gasseri, L. iners, and L. jensenii [41]. Although het-
erogeneity exists, a Lactobacillus-dominant (LD) vaginal profile
is considered optimal because of protective characteristics asso-
ciated with these communities including bacteriocins, hydrogen
peroxide, and lactic acid, which lowers the vaginal pH maintain-
ing an acidic environment unfavorable for invading pathogens
[42–44]. However, Lactobacillus species vary considerably in
their ability to produce lactic acid, antimicrobial factors, and
cause inflammation [45, 46]. Vaginal dysbiosis, defined by a
loss of Lactobacillus and an overgrowth of obligate and faculta-
tive anaerobes such as Gardnerella, Prevotella, Atopobium, and
Mobiluncus, is frequently accompanied by a clinical diagnosis of
bacterial vaginosis (BV) [47, 48]. BV is associated with numerous
adverse reproductive health outcomes including infertility and
preterm birth as well as increased risk of acquisition of sexually
transmitted infections (STIs), including HIV [49–58]. Molecular
classifications of the vaginal microbiome, using techniques such
as 16S ribosomal RNA (rRNA) sequencing, metagenomics or
metaproteomics have been able to provide more detailed classi-
fications of microbial communities, including community state

types (CST), defined by the predominant bacterium, and could
have different clinical implications [48].

Many studies investigated the impact of the FRT microbiome
on fertility and on IVF outcomes, with somewhat conflicting
results, perhaps due to sampling site, timing of sample collection
in relation to IVF procedures, and differing outcome measures
defining treatment success. In studies that compared the micro-
biome between fertile women, typically defined as those with at
least one uncomplicated pregnancy with live birth, compared to
womenwith reproductive failure, including those with infertility,
repeated implantation failure, or recurrent miscarriage, factors
including vaginal pH, Nugent score and/or clinical diagnosis
with BV were elevated in women with reproductive failure [59,
60]. Studies that specifically sequenced the microbiome found
that species of Ureaplasma, Gardnerella, and Atopobium were
typically increased in the vagina or cervix of infertile women,
while Lactobacillus was typically decreased [61, 60].

The vaginal microbiome composition is associated with IVF
outcomes in some studies, with definitions of success including
implantation, clinical pregnancy, ongoing pregnancy, or live
birth. Women with a low percentage of vaginal Lactobacillus
species (< 20%) are less likely to have successful embryo implan-
tation or achieve pregnancy [62, 63]. The type of Lactobacillus
detected may be important, as women with vaginal L. iners or
L. gasseri predominance have lower success rates than women
with L. crispatus or mixed lactic acid bacteria [64]. Interestingly,
the degree of dominance of L. crispatus was an important factor
in predicting pregnancy. In one study, women who had less
than 60% L. crispatus abundance in the vaginal microbiome had
an increased pregnancy rate [65]. Other studies of the cervical
microbiome found that the abundance of L. crispatus increased
and the abundance of L. iners decreased successful pregnancy
outcomes [66]. There are reported increases in live birth rate
associated with recovery of H2O2-producing Lactobacillus from
the vagina and embryo transfer catheter [67]. One study showed
that microbiome alpha diversity did not differ between women
who achieved pregnancy and those who did not [63], while
another found having a CSTIV microbiome, which is a commu-
nity state type dominated by mixed anaerobes, is associated with
lower pregnancy rates [65]. Abnormal vaginal flora, defined by
either a clinical diagnosis of BV or high concentrations of G.
vaginalis and/orA. vaginae are associatedwith lower success rates
[64, 67].

3.1.2 Uterine Microbiome

In the past, the uterus was typically thought to be a sterile
environment. However, recent studies using genomic detection
techniques such as 16S rRNA sequencing have indicated that
this is not the case [68, 69]. Major bacterial genera identified in
the endometrium are similar to those detected in the vagina and
include Lactobacillus, Atopobium, Gardnerella, Streptococcus,
Bifidobacterium, Sneathia, and Prevotella, although the biomass
is lower in the upper reproductive tract [70, 71]. In studies
that compared the microbiome between the upper and lower
reproductive tract, the dominant microbial community members
are generally consistent, although the relative microbial
proportions varied [61, 72].
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The endometrial microbiome has been associated with IVF
success rates, with endometrialmicrobial dysbiosis considered an
emerging cause of implantation failure and pregnancy loss in IVF
patients [72, 73]. The presence of non-Lactobacillus microbiota
such as Atopobium, Bifidobacterium, Gardnerella, Haemophilus,
Klebsiella, Neisseria, Staphylococcus, and Streptocuccus has been
associated with significant decreases in implantation, pregnancy,
and live birth rates, while Lactobacillus is associated with
increased success in some studies [74, 75, 76, 77, 78]. However,
other studies reported that pregnancy rates and miscarriage rates
were comparable between IVF patients with eubiotic (defined as
≥ 80% Lactobacillus+Bifidibacterium spp.) compared to dysbiotic
(defined as < 80% Lactobacillus + Bifidobacterium spp. with ≥

20% other bacteria) endometrial microbiomes [71]. Indeed, some
patients in this study with no Lactobacillus detected had ongoing
pregnancies [71].

3.1.3 Microbiome, Inflammation, and Female Infertil-
ity

As described above, many studies have identified associations
between vaginal or uterine microbiome composition and the
success rates of IVF. However, few studies have investigated
potentialmechanisms responsible for these outcomes. As embryo
implantation is a physiologic inflammatory process, microbial
dysbiosis causing aberrant inflammation could influence both
fertility status and success of IVF. APCs and Th1 cells, as well
as the expression of pro-inflammatory cytokines TNFα, MIP-1β,
IL-6, and IL-8 characterize early implantation [15, 18]. Higher
levels of endometrial TNFα and lower IL-1β in IVF patients
have been linked to clinical pregnancy rates [80]. In addition,
a positive association has been identified between IP-10 and
implantation, while there is a negative association betweenMCP-
1 and implantation [80]. Amongwomenwith repeat implantation
failure those with endometrial microbial dysbiosis, defined as <
90% microbiome from lactobacilli, had higher endometrial tissue
levels of inflammatory mediators IL-6, IL-1β, HIF-1α, COX-2 [81].
Higher amounts of endometrial Lactobacillus were negatively
related to concentrations of these inflammatory molecules and
positively related to levels of IL-10/IGF-1 [81]. The presence
of a non-Lactobacillus microbiota may trigger an inflammatory
response that hinders embryo implantation [82]. Indeed, sev-
eral studies have investigated the impact of vaginal microbial
dysbiosis on cervicovaginal inflammation and identified associ-
ations between a non-Lactobacillus dominant microbiome and
increased inflammation [42, 82, 83]. This includes increasedAPCs
or altered APC transcriptional profiles exhibiting upregulation of
pro-inflammatory cytokine genes including TNFα inwomenwith
non-Lactobacillus dominant microbiomes [42, 82, 83]. Cervicov-
aginal lavage from women with BV can induce maturation and
activation of DCs [84]. Both a clinical diagnosis of BV as well as
specific bacterial taxa in the vaginal microbiome, including Pre-
votella, Sneathia, Aerococcus, Fusobacterium, and Gemella have
been associated with increased genital inflammation, including
IL-1α, IL-8, IL-12p70, IL-6, TNFα, and MCP-1 [84, 85]. In addition
to direct effects on the production of inflammatory mediators
and immune cell recruitment or activation, the microbiome can
also produce metabolites that could regulate host immunity [85].
Taken together, this indicates that the microbiome can modulate

reproductive immunity which could impact fertility or success of
IVF, although studies investigating specific mechanisms linking
the microbiome to fertility are lacking.

3.2 Microbiome in the Male Urogenital Tract

3.2.1 Seminal Microbiome

Semen is not sterile and contains a microbiome that plays a
role in male reproductive health [86, 87]. Sequencing technolo-
gies identified bacterial genera within the seminal microbiome
including Lactobacillus, Pseudomonas, Prevotella, Gardnerella,
and others. Some genera are similar to the female genital
microbiome, and others are unique to the male microbiome,
including Stenotrophomonas and Brevibacillus [89]. Although
Stenotrophomonas has been found in the endocervical micro-
biome, Brevibacillus appears to be unique to the seminal micro-
biome [90]. Recent studies investigated the role of the seminal
microbiome on male fertility, identifying an association with
sperm quality, concentration, motility, morphology, DNA frag-
mentation, and semen particulate matter (PM) [86, 87, 88, 90,
91]. In general, Lactobacillus was associated with higher fertility,
whereas other bacterial species such as Prevotella, Pseudomonas,
Bacteriospermia, Ureaplasma, Enterococcus, Mycoplasma, and
Anaerococcus were associated with male infertility parameters
[86, 92, 93, 94].

One study associated Gardnerella with normal male fertility in
contrast to women where Gardnerella can induce an inflamma-
tory and dysbiotic microenvironment [96]. This study used next-
generation sequencing to investigate associations between the
seminal microbiome and fertility factors, identifying three main
microbiome groups dominated by Lactobacillus, Pseudomonas,
and Prevotella. The Gardnerella identified in this cohort was
found in most (96.9%) of the samples tested, though none
were Gardnerella dominant. Another recent study performed a
comprehensive semen analysis using 16S rRNA sequencing and
shotgunmetabolomics to identify differences between the micro-
biome and bacterial functions in either healthymen or those with
idiopathic infertility [97]. In this study, Prevotella was inversely
correlated with sperm concentration, while Pseudomonas was
positively associatedwith totalmotile sperm count and negatively
associated with semen pH and varicocele [97]. This indicates that
the microbiome effects on male fertility are likely multifaceted
and complex, with different bacteria having additive or alter-
nate effects on fertility factors. Structural changes in the male
urogenital tract, such as vasectomies or varicoceles, were also
observed to affect the seminal microbiome [97]. This pilot study
also identified some bacterial functions within the S-adenosyl-L-
methionine cycle that are associated with infertility which may
play a role in pathogenesis of the urogenital microbiome.

Female microbial-induced inflammation contributes to poor
reproductive health outcomes, and a similar effect may occur
in the male reproductive tract [96, 97]. Indeed, some studies
on HIV-infected men found evidence to support a relationship
between pro-inflammatory cytokines and seminal microbes, with
infertility associatedwith an increase in IL-10 and decreased IL-1β
[98, 99]. Chronic inflammatory conditions such as inflammatory
prostatitis show a decrease in seminal Lactobacillus and an
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increase in Proteobacteria. Chronic inflammation of the male
genitals can be caused by a genitourinary infection resulting in
epididymitis, epididymo-orchitis, or bacterial prostatitis and can
lead to infertility if untreated [100, 101, 102]. These infections
can disrupt spermatogenesis and damage structures leading to
irreversible oligospermia or azoospermia. Overall, male genital
inflammation is estimated to contribute to 13%–15% of male
infertility cases [32, 103]. These infections are often present
with leukocytospermia, an abundance of peroxidase-positive
leukocytes in seminal fluid frequently seen in the male partner
of couples experiencing infertility [104, 105]. Bacteria such as G.
vaginalis, Leptotrichia, and Sneathia species have been implicated
in male genitourinary infections [106, 107, 108].

3.2.2 Penile Microbiome

The penile microbiome, located on the outer area of the penis
such as the foreskin or coronal sulcus, has been found to be
up to 20-fold higher in total bacterial abundance than in the
urethra [111]. Recent studies on the penile microbiome identified
the presence of numerous bacterial species which can vary
depending on the individual and are associated with factors such
as sexual practices, infection, and even the urogenitalmicrobiome
of their partner [112]. Much like the vaginal microbiome, the
penile microbiome has been separated into community types
(CTs) based on the most dominant bacterial genera, including
Corynebacterium, Streptococcus, Sneathia, Prevotella, Finegoldia,
and L. iners [112]. In adolescents from South Africa and Uganda,
foreskin microbiome profiles included Corynebacterium, Pep-
toniphilus, Anaerococcus, and Finegoldia [113].

Penile microbiome CTs are associated with circumcision status.
In one study, Mehta et al. showed that only 4%–8% of circumcised
men hadFinegoldia- or Prevotella-dominatedmicrobiomes, while
60%–86% of circumcised men had other microbiome profiles
[112]. The penile microbiome has been observed to change in
children undergoing elective circumcision, with alpha diversity
decreasing post-circumcision, including a decrease in Prevotella
and Sulfurimonas taxa and a decrease in thiosulfate reductase
and polysulfate reductase bacterialmetabolic pathways [114]. This
study also looked at the mycobiome, identifying a decrease in
Saccharomycetales and Pleosporales after circumcision [114]. As
puberty occurs, changes to the penile and perineal microbiome
may occur, as indicated in a recently published pilot study
[115]. Though circumcision is associated with a change in the
microbiome, the size of the foreskinwas not observed to be associ-
ated with either increased penile anaerobes or pro-inflammatory
cytokines in a study investigating mechanisms for reduced HIV
acquisition riskwith circumcision [116]. Though there are studies
that showmale circumcision provides beneficial effects for female
sex partners by lowering the risk of HPV/cervical cancer or
STI acquisition, studies investigating the penile microbiome
contributions to male or female infertility and IVF outcomes are
lacking [117].

3.2.3 Microbiome, Inflammation, andMale Infertility

Inflammation of the male genital tract is largely induced by
either structural damage or microbe-host pathogenic interac-
tions. Structurally induced inflammation can lead to infertility

and includes ejaculatory duct obstructions, inflammation of the
epididymis, testicular torsion, and varicocoele [118]. In addition,
inflammation can indirectly affect semen quality by impairing
the functions of accessory glands and causing dysregulation of
spermatogenesis [119]. Inflammation in response to pathogens
can also induce tissue damage and sperm dysfunction, though
tissue repair usually follows clearance of the pathogen [118, 119].
In the event of a failure to eliminate an infection, chronic inflam-
mation, and recruitment of activated macrophages, lymphocytes,
and cytokine expression are associated with infertility [116, 120,
121].

Potential regulation of the immunological and inflammatory
responses by the seminal microbiome is thought to also be a
factor in fertility, as similar bacterial species in the gut have been
demonstrated to influence the immune system [124]. Pathogenic
bacterial species in the male genital tract (such as Staphylococcus
and Chlamydia) are linked to chronic prostatitis, urethritis,
and inflammation, however less than 10% of men who suffer
from chronic prostatitis have confirmed bacterial infections [32,
123, 124]. A reduction of Lactobacillus species in semen has
been shown in patients with prostatitis, indicating microbiome
dysbiosis (such as an overgrowth of E. coli and U. urealyticum) is
a contributing factor in chronic inflammation in the male genital
tract [125]. Inflammatory pathways that link male microbial
factors with infertility include the dysregulation of key pro-
inflammatory cytokines (TNFα, IL1α, IL1β) that are harmful to
sperm production [118].

The most well-understood functional inflammatory pathway
affecting male infertility is a response to oxidative stress. Oxida-
tive stress has been indicated as one of the most important causes
of male infertility because if left unchecked it can contribute
to poor sperm motility, sperm DNA damage, and low sperm
counts through damage to reproductive cells and intracellular
components [120, 125, 126]. Pathogenic bacteria, as well as
bacteria associated with a dysbiotic male genital microbiome,
have been shown to induce oxidative stress in the male genital
tract [90, 121].

Thus, there are several ways in which the male genital
microbiome can influence male fertility. However, associations
between the male genital microbiome, inflammation, and IVF
outcomes have not been investigated.

4 Inter-Couple Factors in Fertility

4.1 Urogenital Microbiome Associations With
Fertility Within Couples

Fertility is often evaluated in male and female partners con-
sidering IVF, creating a natural clinical context to evaluate
microbiome effects on fertility status and IVF outcomes. At this
couple level, individual female and male microbiome factors will
interact across partners and contribute to couple fertility. The
composition of urogenital microbiomes within couples generally
have common taxa represented regardless of fertility status
and IVF outcomes, with one report showing male and female
partners contained similar levels of G. vaginalis, L. crispatus, and
Mycoplasma species [129]. Another study found 56% of couples
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shared predominant genera and 41% of shared species within the
reproductive tract, including G. vaginalis, L. iners, L. japonicus,
L. jensenii, and L. agilis [130]. G. vaginalis and L. iners are
associated with BV in females and have been found within the
male microbiome which may impact fertility status and IVF
outcomes [131].

Although abundance of Lactobacillus spp. in the vaginal micro-
biome is linked with successful reproduction there is conflicting
evidence as to whether male reproductive microbiomes are
associated with IVF outcomes [129, 130, 131]. A study of couples
with unexplained infertility undergoing intrauterine insemina-
tion (IUI) found a link between vaginal L. crispatus abundance,
but not the seminal microbiome with IUI success rate [134].
Another study found that high L. gasseri in females and colo-
nization of L. jensenii in the male partner were associated with
successful IVF outcomes [130]. Conversely, one report found
that Lactobacillus abundance in semen is associated with failed
embryo implantation [129]. Although Lactobacillus in females is
reliably correlatedwith successful IVF, its impact onmale partner
contribution to IVF success is less clear.

Collectively, studies of couples receiving IVF treatment have
found that (1) there are similar microbiomes between partners,
(2) abundance ofLactobacillus spp.within the femalemicrobiome
associates with greater likelihood of IVF success, and (3) the
relationship of Lactobacillus spp. or other microbiome species
in the male microbiome with IVF success and fertility remains
unclear.

4.2 Cross-Partner Microbiome Transmission Can
Affect Genital Inflammation and Fertility

Evidence to support interactions, disruptions, and subsistence of
microbiome populations between partners is reflected in reports
from couple studies. Commensal strains in the male and female
reproductive microbiomes along with sexual practices may also
play a role in influencing the state and function of urogenital
microbiomes and impact fertility via modification of one or both
partner’s microbiomes. G. vaginalis overgrowth in the vaginal
microbiome is associated with leukocytospermia and genital
inflammation within the partnered male. In seminal fluid, the
association of G. vaginalis with sperm quality is debated, with
some reports indicating suboptimal sperm parameters, others
report no relationship, and some reportG. vaginalis abundance is
associated with healthy semen parameters [88, 132, 133, 134, 135].

Two organisms associated with seminal fluid quality and infer-
tility that may be transmitted between couples are Ureaplasma
parvum and Ureaplasma urealyticum [93, 136]. Ureaplasma in
females are frequently isolated from the genital tract and thought
to be commensal organisms, however they have recently been
associated with increased presence of G. vaginalis and inflamma-
torymediators [137, 138]. In couples inwhich themale partner has
inflammatory prostatitis it has been observed that their female
partners have higher levels of U. parvum and increased vaginal
microbiome diversity after intercourse [142]. However, there is
more consensus on the detrimental association of Ureaplasma
spp. with fertility inmales compared to females. Inmales, bothU.
urealyticum andU. parvum are associated with suboptimal sperm

quality [134, 136, 140, 141]. In females, the link to infertility ofUre-
aplasma spp. is less defined, with the role of U. parvum disputed
and U. urealyticum associated with infertility if a coinfection is
present [142, 143, 144].

BV is dysbiosis of the vaginal microbiome, with risk factors
including unprotected sex and new or multiple sex partners,
and is linked to inflammation of the female genital tract [148].
The male genital region can host many BV-associated microbes
[94, 128, 146]. In infertile couples, seminal fluid may contain
microbes implicated in BV [135]. There are also more incidents
of BV with semen exposure in unprotected sex, which suggests
that the interaction of the genital secretions or genital surfaces
can facilitate the transmission of these bacteria. Though there
are mixed reports on the efficacy of condom use in preventing
BV [147, 148, 149], there is clear evidence that microbes can
be transmitted and that microbiome composition is correlated
across partners [150, 151, 152, 153, 154, 155]. In one report, female
partner BV status could be predicted based on theirmale partner’s
microbiome composition [131]. Moreover, males with a female
partner with BV exhibited a microbiome more similar to their
partnered female than to a non-partnered female with BV [158].

Sexual practices also impact the transmission of microbes
between partners with implications for fertility. Unprotected
sex alters male and female urogenital microbiome regardless
of being a first-lifetime or recurring sexual experience, with
more sexual experience being correlatedwith greatermicrobiome
diversity in both females and males [128, 156, 157, 158]. One report
found non-monogamous males were more likely to have a BV-
associated CST, though other reports dispute this [158, 159]. Non-
monogamous females have a higher vaginalmicrobiome diversity
index, with higher Gardnerella and Prevotella populations [163].

Finally, an anatomical factor that impacts microbe transmission
across partners is male circumcision, with female partners of
circumcised men experiencing fewer genital disruptions such as
genital ulceration and trichomonas [161, 162]. Moreover, females
with circumcised partners experience fewer cases of BV and
their respective partners contain less BV-associated bacteria in
the penile environment when compared to uncircumcised males
[162]. In summary, microbial exchange occurs bidirectionally
between partners, with multiple sex partners facilitating new
interactions with unique environments, and fluctuations of the
microbiome between partners can impact inflammation and
fertility if microbiomes are unable to recover to their previous
undisturbed state.

4.3 Other Sexual Practices and Fertility

Urogenital microbiomes and microenvironments can be
impacted by other sexual practices including oral-to-genitalia
sex, anal sex, same-sex intercourse, and non-monogamy. Oral
microbes may be transmitted between partners and may be
associated with disruption of the vaginal flora and BV risk [162,
163]. Other types of transmission events have been reported;
these include transfer of Lactobacillus spp. from the vaginal
microbiome to male oral cavity and the development of recurrent
gingivitis in a female partner after oral sex with a male partner
with a history of chronic urethral infections [167]. These case
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FIGURE 1 Overview of female and male partner factors affecting fertility with overlapping areas between partners shown. Female fertility can be
affected by structural damage to the female genital tract, ovulatory disorders, microbiome, and inflammatory dysregulation. Male partners are affected
by numerous seminal disorders, obstructions, testicular deficiency, or the microbiome. Inter-couple factors include the exchange of microbial species or
STIs that can lead to increased inflammation.
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studies show that microbial transmission between reproductive
microenvironments is possible and oral-to-genital microbe
transmission needs to be further explored for implication in
fertility.

Anal intercourse is another route by whichmicrobe transmission
may impact fertility by modifying the risk of BV [162, 165]. In
one study, receptive oral-anal intercourse was only marginally
associated with BV risk [169]. Conversely, there are reports that
suggest the rectal microbiomemay supportivelymaintain vaginal
microbe populations [170]. Such examples demonstrate that oral
and analmicrobiomes can be transmitted between environments,
but a gap remains in understanding how this transmission
specifically impacts vaginal and seminal microbiomes and their
role in fertility fitness.

The sexual practices of same-sex couples may impact their repro-
ductive microbiomes and thus potential fertility and likelihood
of success if considering IVF. As is the case with heterosexual
couples, some reports indicate that women who have sex with
women (WSW) that engage in oral sex have an association with
risk of BV, though other reports do not find this risk [168, 169, 170].
In WSW there is a heightened risk of BV when the other partner
has BV, but, unlike heterosexual intercourse, the increased BV
risk in WSW may not be associated with the number of female
sex partners in one’s lifetime [168, 171, 172, 173, 174]. In one study,
BV Nugent scores tended to be similar between WSW in stable
long-term and shorter-term relationships [174]. The evidence is
inconsistent as to whether WSW who engage in anal intercourse
have an increased risk of BV [171, 174, 175]. Since BV is a risk factor
for reduced fertility, understanding how sexual practices inWSW
impact risk of BV is important for comprehending their effect on
fertility.

Inmenwho have sexwithmen (MSM), themicrobiome literature
tends to focus on STIs and not the impact on fertility. MSM
that are undergoing ART procedures typically require the use
of a donor ovum and a surrogate, likely making it difficult to
understand microbial impacts on IVF outcomes, although direct
impacts on semen parameters could still be studied. Ultimately,
sexual practices in MSM and WSW populations may impact
fertility via the increased risk of contracting infections associated
with impaired fertility parameters, indicating that further study
of the reproductive tractmicrobiomes in same-sex couplesmay be
important for understanding how sexual practices impact fertility
and likelihood of success of IVF.

5 Summary and Future Directions

Numerous factors affect fertility in bothmen and women, includ-
ing structural issues, inflammation, and the genital microbiome
(Figure 1). Studies of the urogenital microbiome have identified
associations betweenmicrobial composition, fertility, and success
of IVF procedures. In both the vaginal and seminal microbiomes
Lactobacillus has been associated with normal fertility, and
vaginal Lactobacillus with increased IVF success rates. Data on
the uterine microbiome and IVF success rates shows conflicting
results, which could be related to the timing of sample collection.
In addition, contamination of uterine specimens during sample
collection remains a concern. Although there is evidence of the

transfer of microbial species between partners, the impact of
this on fertility and/or IVF success has not been studied. In
addition, few studies have investigated potential mechanisms
linking the genital microbiome to inflammation and the impact
this has on fertility and IVF outcomes. Well-controlled studies
on the impact of the urogenital microbiome on fertility and
IVF success could identify new testing or treatment avenues for
couples undergoing IVF procedures. Indeed, testing or treatment
for microbial dysbiosis during infertility testing is limited to
those presenting with clinical symptoms. As evidence from
the vaginal microbiome demonstrates that even asymptomatic
microbial dysbiosis can modulate inflammatory profiles, this
could represent an important area of investigation to improve the
success of IVF procedures.
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