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DNA methylation is an epigenetic modification that
has consistently been shown to be linked with a
variety of human traits and diseases. Because DNA
methylation is dynamic and potentially reversible
in nature and can reflect environmental exposures
and predict the onset of diseases, it has piqued
interest as a potential disease biomarker. DNA
methylation patterns are more stable than tran-
scriptomic or proteomic patterns, and they are
relatively easy to measure to track exposure to
different environments and risk factors. Impor-
tantly, technologies for DNA methylation quantifi-
cation have become increasingly cost effective—
accelerating new research in the field—and have
enabled the development of novel DNA methyla-

tion biomarkers. Quite a few DNA methylation-
based predictors for a number of traits and dis-
eases already exist. Such predictors show potential
for being more accurate than self-reported or mea-
sured phenotypes (such as smoking behavior and
body mass index) and may even hold potential for
applications in clinics.

In this review, we will first discuss the advantages
and challenges of DNA methylation biomarkers in
general. We will then review the current state and
future potential of DNA methylation biomarkers in
two human traits that show rather consistent alter-
ations in methylome—obesity and smoking. Lastly,
we will briefly speculate about the future prospects
of DNA methylation biomarkers, and possible ways
to achieve them.
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Introduction

Epigenetics is a field of science investigating molec-
ular mechanisms with the potential to change
gene expression without altering the underlying
DNA sequence. The term “epigenetics” was first
coined to explain molecular events underlying cel-
lular differentiation—how cells with identical DNA
sequences end up with such diverse morphologies
and functions [1]. During the past two decades,
the focus in epigenetic research has shifted from
understanding single epigenetic events to profiling
the human epigenome and characterizing the com-
plex and dynamic relationship between the epige-
netic landscape andmultiple human traits and dis-
eases.

The three main epigenetic modifications are DNA
methylation, histone modifications, and noncod-
ing RNAs, out of which DNA methylation is the
most widely studied. Since its discovery in the late

1940s [2], DNAmethylation has been characterized
as the main determining factor for X-chromosome
inactivation, parental imprinting of genes, and
silencing of transposable elements. Decades since
the first discovery of DNA methylation, the link
between DNA methylation and gene expression
was observed [3]. Only after the completion of
the Human Genome Project in 2003 [4] and the
development of high-throughput DNA sequencing
methodologies did the profound role of DNAmethy-
lation in many biological processes and traits start
to be acknowledged [5–7]. DNA methylation means
the addition of a methyl (CH3) group into a cyto-
sine base (Fig. 1). This reaction is catalyzed by a
family of enzymes called DNA methyltransferases
(DNMT1, DNMT3a, and DNMT3b) [8, 9]. DNA
methylation occurs predominantly in cytosine–
guanine dinucleotides (CpGs) [10]. There are more
than 28 million CpG sites distributed across the
human genome, and the majority of them are gen-
erally methylated [11, 12]. Certain genomic regions
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Fig. 1 The mechanism of DNA methylation. The basic
unit of chromosome is a nucleosome, which consists of a
DNA strand and four histone proteins. Methylation of
DNA in cytosine bases is a prevalent modification and
has an important role in cellular differentiation,
transposon silencing, parental imprinting, and
regulation of gene expression. DNA methyltransferase
(DNMT) enzymes catalyze the methylation reaction.
Demethylation can occur passively or actively (mediated
by ten-eleven translocation enzymes).

with a concentrated number of CpG sites are
referred to as CpG islands (CGIs). CGIs are usually
found in regions involved in transcription initia-
tion, although some are outside of currently known
gene promoters [13]. CGIs, unlike most other CpG
sites, are usually unmethylated [12, 14, 15]. Tra-
ditionally, unmethylated CGIs are associated with
gene activity, whereas methylation of these regions
links to gene silencing. Two main mechanisms
through which methylated cytosines (5mCs) exert
their potential in modifying gene activity have been
proposed: they may either physically block the
binding of transcription factors, resulting in gene
silencing, or attract methyl-binding proteins that
can recognize 5mCs and cause changes in gene
expression. Nevertheless, a growing body of recent
literature has demonstrated that the relationship
between DNA methylation and gene expression is
far more complex than this canonical view suggests
[16, 17]. Methylation of other genomic regions,
such as gene bodies, can also influence expression
levels [18], in addition to which there are CpG sites
that may distally modify the expression of their
target genes [19]. Furthermore, it is well known
that different epigenetic modifications interact
with each other [20–23], creating an extremely
complex signaling network that fine-tunes gene
expression.

DNA methylation marks are mostly passed on
through cell division [24], but conclusive evi-
dence on transgenerational epigenetic inheritance
in humans [25, 26] is still lacking. The heritability
of DNA methylation has been estimated between

0.1 and 0.3 [27] when measuring human methy-
lome with a microarray that targets more than
450,000 CpGs (450K). Heritability close to zero
means that almost all the trait variability—here,
DNA methylation—is due to environmental fac-
tors, and heritability close to 1 means that genetic
differences among individuals account for most
of the trait variability. Up to 45% of the 450K
CpGs have been shown to be under direct genetic
influence [28]. Such single-nucleotide polymorphic
(SNP) genomic sites that associate with the vari-
ation of DNA methylation in specific CpG sites
are referred to as methylation quantitative trait
loci.

Demethylation occurs in living cells, and it can
be either passive or active. In passive demethyla-
tion, establishedmethylation marks are not passed
onto the daughter cells in cell replication due to
the absence or inhibition of DNMTs. Ten-eleven
translocation enzymes mediate active demethyla-
tion by oxidizing 5mCs into hydroxymethylated
cytosines (5hmCs) [29, 30], which is followed by
subsequent reactions and results in unmethy-
lated cytosine bases [31]. It was later shown
that hydroxymethylation is a stable modification
rather than just an intermediate product in active
demethylation reaction [32], and it has been fur-
ther discovered to contribute to gene regulation. Its
functions have been less studied over the years,
partly because the most frequently used measur-
ing techniques of DNA methylation can only detect
attached methyl groups but not hydroxymethyl
groups or cannot differentiate between those two.
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Due to the rapid technological progress in the
field of epigenetics, a wide range of techniques are
emerging to measure DNA methylation. The selec-
tion of the most suitable method may depend on
several preferences. For instance: is it relevant to
use a hypothesis-based approach or a hypothesis-
generating approach? What is the required level
of resolution (average methylation level across
the whole genome, methylation status of certain
genomic regions, or single CpG sites)? Is it suffi-
cient to examine the methylation of coding regions,
or should the method also capture regulatory and
intergenic regions?

The most extensively used methods for DNA
methylation quantification rely on bisulfite conver-
sion. In bisulfite conversion, DNA is treated with
sodium bisulfite, which converts unmethylated
cytosines into uracils while leaving 5mC or 5hmCs
unchanged. To differentiate between 5mC and
5hmC, an oxidation step is added to the treatment
of the DNA sample. This results in the oxidation
of 5hmC to 5-formylcytosine (5fC). Conversion of
the newly formed 5fC to uracil by bisulfite treat-
ment allows 5hmC to be discriminated from 5mC.
Uracil and cytosine can be differentiated from
each other either by sequencing or by microarray
technologies. Commonly used cost-effective tech-
nology to identify disease or trait-associated
methylation patterns is the Illumina Infinium
BeadChip array. The principle of Infinium arrays
is based on genotyping the bisulfite-converted DNA
using site-specific target probes followed by single-
base extensions to reveal the methylation status of
each targeted CpG site (n = 450,000 and 850,000
CpG in 450K and EPIC, respectively). Infinium
arrays provide a cost-effective way to quantify hun-
dreds of thousands of CpG sites at single-CpG res-
olution. In addition, a number of algorithms have
been developed for data processing, normalization,
and analysis, which are often grouped into different
pipelines [33–38]. Despite the increased coverage,
only about 3% of the total number of CpGs in the
human genome are captured on the EPIC array.
If a more extensive characterization of the full
methylome is required, sequencing of the bisulfite-
converted DNA is a valid alternative. Sequencing
technologies, including whole-genome bisulfite
sequencing (WGBS) and reduced-representation
bisulfite sequencing (RRBS), offer improved cover-
age compared to the arrays—in theory, up to 100%
of the CpG sites in WGBS. However, sequencing is
expensive, and the amount of input DNA needed
is often higher than in the array-based detection.

In addition, challenges in the sequence alignment
and data analyses could result in a much lower
coverage than expected in theory. It has been
reported that RRBS covers less than 20% and
WGBS less than 50% of the human genome [39].
Large-scale epigenome-wide association studies
(EWAS) using WGBS or RRBS are still uncommon
due to the expense and analytical challenges.

New technologies capable of examining the native
DNA strand without bisulfite conversion or poly-
merase chain reaction (PCR) are rapidly emerging.
Both the Oxford Nanopore Technologies (ONT) and
Pacific Biosciences (PacBio) sequencing platforms
can provide simultaneous real-time informa-
tion on DNA sequence and DNA modifications
[40], including methylation and hydroxymethy-
lation. Native DNA sequencing reduces biases
that bisulfite conversion may introduce and low-
ers the required amount of input DNA. High
costs and lack of standardized data-handling
methods are still hindering the wide-scale
adoption of ONT, PacBio, or similar methods.
Nevertheless, with the increasing availability of
high-performance computational tools for data
analysis, in the future, native DNA sequenc-
ing technologies may become the gold standard
in genomic and epigenomic research and will
advance the development of DNA methylation-
based biomarkers.

Biomarkers are biological measures that indicate
a presence (or absence) of a physiological con-
dition. However, they are not always involved in
disease causation. Biomarkers are used for screen-
ing, diagnosis, and prognosis of a disease or other
traits, and for monitoring a treatment response
or examining the safety of pharmacological com-
pounds. For example, fasting blood sugar for diag-
nosis of diabetes, troponin-I to identify coronary
ischemia, and prostate-specific antigen that is
used in prostate cancer screening are some of the
common biomarkers used in clinical practices. In
this review, predictor refers to a biomarker that can
predict the likelihood of a clinical condition such
as disease onset or recurrence. Examples include
BRCA1 and BRCA2, which are genomic variants
that increase the risk for breast cancer compared
to individuals without these susceptibility genes
[41].

Clinically feasible biomarkers should possess sev-
eral characteristics. First, they should be obtained
as noninvasively as possible, which is why most
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molecular biomarkers have been developed for
blood tissue. Second, quantification of biomarkers
should be rapid—ideally taking hours rather than
weeks—and the interpretation of results should
be straightforward. Finally, the costs of measuring
a biomarker should be minimal, allowing for fre-
quent monitoring.

There is a clear need and demand for new biomark-
ers, specifically to identify risks for diseases at
earlier stages than most of the current biomarkers
are capable of. Diagnosis of many complex traits
may be ambiguous due to many related comor-
bidities or different disease subtypes, which are
not well differentiated by the currently available
biomarkers. This highlights the need for biomark-
ers that are more informative about the disease
condition and the underlying biological process,
aiding in faster and more reliable diagnosis and
personalized treatment. Epigenetic biomarkers,
namely DNA methylation, can serve as an ideal
alternative to traditional biomarkers for several
reasons, as discussed below.

The human epigenome has been considered rel-
atively stable across the lifespan [42], with the
exception of massive epigenetic reprogramming
during early embryogenesis. However, certain
methylation sites are shown to react to external
signals, such as diet [43], physical activity [44,
45], polluting agents [46], or drugs [47]. Altered
methylation can modify gene expression, which in
turn translates to changes in cellular pathways
and phenotypes. Indeed, numerous studies so far
have reported associations between DNA methyla-
tion levels and hundreds of human diseases and
traits.

The dynamic and reversible nature of DNA
methylation—potentially transmitting environ-
mental and internal stimuli into biological
functions—makes it a suitable biomarker. As
methylation signatures may appear even before
any cellular or clinical changes arise, profiling the
epigenome has potential in identifying diseases
and traits at early stages. This would allow for a
rapid clinical or lifestyle-related intervention to
delay or halt the progression of a disease.

Furthermore, DNA methylation profiles can pro-
vide a holistic perspective on the whole-body
metabolism and health condition without the need
for analyzing multiple biomarker panels. Profiles
can be generated by a single blood draw and

measurement. This could improve and speed up
the diagnosis, and potentially assist in predicting
the predisposition for related comorbidities.

From a practical point of view, implementation
of DNA methylation profiling does not require
completely new infrastructure. Many health-care
facilities already have standardized and efficient
blood-collection protocols in place, which are
the basis for quantifying DNA methylation (in
biomarker use). Although DNA methylation is
highly tissue specific, studies have shown that
blood can be used as a surrogate tissue for mul-
tiple difficult-to-sample tissues (e.g., brain) [48]. In
addition, the rapid technological advances in the
field of epigenetics allowing for the quantification
of DNAmethylation in a genome-wide manner have
enabled a swift increase in studies aiming at poten-
tial biomarker detection.

Large-scale epigenome-wide studies are required
to identify trait-related methylation sites with the
potential to be developed into biomarkers. In addi-
tion to having a large set of CpG sites with quan-
tified methylation values, a large number of sam-
ples are required to uncover reliable relationships
between DNA methylation and the trait of inter-
est, as small or moderate effect sizes are expected.
Because epigenetic alterations are dynamic, sam-
ples must be collected at the time of exposure or at
a certain time point based on the research premise.
Also, the tissue- and cell type–specific nature of
epigenetic marks entails additional challenges. We
must ensure that the tissue of interest reflects
disease-associated changes in methylation. Mea-
suring methylation in bulk tissue may cause spu-
rious associations due to distinct cell-type propor-
tions. These challenges add another layer of com-
plexity in translating research findings into clinical
practices, as the obtained results cannot be auto-
matically generalized across different ages, ances-
tries, and tissues. Epigenetic studies require many
rounds of replication and validation using differ-
ent study cohorts to determine the potential of the
associated methylation sites as clinical biomark-
ers.

The ultimate goal in the search for a potential
DNA methylation biomarker is to determine a
CpG, a set of CpGs, or genomic regions whose
methylation status indicates a presence of a trait
or predicts a risk or treatment response for a trait.
One approach is to first run an exploratory EWAS
to identify CpG sites or differentially methylated
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regions that show significant association with
the trait of interest. Then, such trait-associated
methylation markers can be computed into use-
ful weighted scores in another study sample to
predict risk for the trait. This kind of approach
has been used to construct a score that associates
with smoking behavior [49]. However, it may not
be suitable for direct risk estimation, as unique
score thresholds need to be applied to different
populations. Another approach using EWAS hits
as the starting point is to apply logistic stepwise
regression with forward selection on the identified
significant methylation hits, as was done in build-
ing a methylation score to distinguish current and
former smokers from never smokers [50].

Another strategy—particularly when developing
predictors—is to perform feature selection using
cross validation rather than significance testing
(as in EWAS), as the goal is prediction rather than
establishing association/causality. A penalized
regression such as LASSO (Least Absolute Shrink-
age and Selection Operator) with nested cross
validation can be applied to select the best set of
CpG sites to reflect the trait of interest. The penalty
parameter prevents overfitting and controls the
size of the selected feature set. In LASSO regres-
sion, the penalty parameter makes the fit to choose
only the features (here, methylation probes) that
contribute the most to the prediction and shrinks
the coefficients of all other probes to zero.

Perhaps the most well-known tools using such an
approach are the various epigenetic clocks. These
clocks are based on the discovery that DNA methy-
lation at certain CpG sites changes over the lifes-
pan in a predictable manner [51–53]. Epigenetic
clocks are algorithms developed with elastic net
regression to predict age-related phenotypes from
genome-wide DNA methylation data. The age esti-
mates from these clocks serve as a proxy for accel-
erated aging [54–56] and may reflect the lifestyle-
stress burden [57–59]. The epigenetic clocks have
been widely used to estimate chronological age
[54, 55], pace of biological aging [60, 61], time
to disease, and time to death [58], as well as
their associations with various lifestyle factors [59].
EpiSmokEr, a DNA methylation-based predictor
[62], is another example demonstrating the use of
LASSO regression and cross validation to select the
CpGs that are predictive of smoking.

Some DNA methylation-based biomarkers already
exist in commercial use, mainly in detecting cancer

or predicting response to cancer treatment. This
is because a significant number of DNA methy-
lation abnormalities arise early in carcinogenesis
and are strongly associated with certain types of
cancer. For example, based on a study using DNA
methylation screening to simultaneously detect
different cancer stages and tissues of origin [63],
the health-care company GRAIL currently offers
a cancer-detection kit, which can be obtained
through health-care providers. DNA methylation
biomarkers in oncology are beyond the scope of this
paper but reviewed elsewhere [64]. The potential of
DNA methylation as a biomarker has been recently
identified and acknowledged in complex traits and
diseases other than cancer. Next, we will discuss
two human phenotypes that have been discovered
to be strongly associated with DNA methylation—
obesity and smoking.

DNA methylation biomarkers in obesity

Obesity is a multifactorial trait characterized by an
excessive accumulation of body fat. According to
the World Health Organization (WHO), over 1.9 bil-
lion adults were overweight in 2016, of which 650
million were obese. Obesity has been described as
the pandemic of the 21st century; the prevalence
has almost tripled since 1975. The recent growth
in prevalence among children and adolescents is
especially alarming.

Obesity has a significant genetic background—
twin studies have estimated the heritability of obe-
sity to range from 40% to 80% [65]. Only about
6% of the variance in body mass index (BMI) has
been captured by polygenic scores; however, the
genome-wide association studies (GWAS) suggest
that about 20% of the variance is explained by
common genetic variation [66, 67]. The discrep-
ancy between the heritability estimates of twin
studies and GWAS is known as the missing her-
itability. This missing heritability can be partially
explained by rare genetic variants, but it has also
been attributed to epigenetic mechanisms.

While genetics modify the predisposition for weight
gain, they do not alone explain the interindividual
variation in obesity. Genetic evolution is too slow to
account for the enormous increase in the incidence
of obesity since the 1970s. Instead, we need to
shift our focus to the other external factors. Modern
society strongly promotes weight gain, and on the
other hand, prevents weight loss due to unhealthy
dietary habits and increased sedentary lifestyle.
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It is well known that obesity substantially
increases the risk for multiple diseases, including
type 2 diabetes (T2D), cardiometabolic disorders,
and some cancers [68]. However, the underlying
molecular mechanisms remain poorly character-
ized as the research is hampered by the multi-
factorial nature of obesity. Obese individuals may
display highly dissimilar metabolic characteristics
from each other [69]. Hence, it seems that excess
weight does not solely explain why some people
are more prone to develop related diseases. The
factors driving these obesity subtypes and comor-
bidities need to be elucidated. Not only would this
enable the identification of individuals who are
at higher risk of becoming overweight, but more
importantly would pinpoint those who are at risk
of developing obesity-related metabolic aberrations
and secondary diseases. This would be extremely
beneficial for the person and would also reduce
the huge economic burden that obesity inflicts on
society.

Several anthropometric and molecular measures
are currently used to assess obesity (Table 1),
but each metric comes with serious limitations.
The most widely used measure of obesity is BMI
(kg/m2), which classifies individuals as under-
weight (BMI <18), normal weight (18 < BMI <25),
overweight (25 < BMI <30), or obese (BMI >30).
The majority of GWAS and EWAS investigating
obesity apply BMI because it is easily measured
and, hence, is often available. While BMI is a very
useful measure to detect obesity at the population
level, it has serious downsides when applied at
the individual level. BMI does not reflect the body
composition—that is, whether the body mass is a
result of fat content or muscle mass, or where the
extra fat has accumulated in the body. Obesity is
therefore also diagnosed based on fat mass of 32%
and 25% or over in women and men, respectively.
As central adiposity (fat in the abdominal area) is
considered particularly unhealthy, waist circum-
ference (WC) and waist-to-hip ratio (WHR) are bet-
ter indicators for central obesity than BMI but are
more prone to measurement errors. WC of 88 cm
and 102 cm in women and men, respectively, are
the clinical cut-offs for central obesity diagnosis.

In addition to anthropometric measures, blood-
based molecular biomarkers (e.g., blood choles-
terol and triglyceride profiles) are used in assessing
obesity. Elevated levels of these biomarkers most
often indicate a prolonged period of obesity,
which has already significantly added to the risk

of secondary diseases. The most prevalent and
important obesity-associated adverse health state
is metabolic syndrome (MetS). According to the
National Cholesterol Education Program Adult
Treatment Panel III, MetS is diagnosed when an
individual presents with at least three of the follow-
ing: WC greater than 88 cm in women or 102 cm in
men, blood pressure greater than 130/85 mmHg,
fasting triglyceride level greater than 150 mg/dl,
fasting high-density lipoprotein (HDL) cholesterol
less than 40 mg/dl (men) or 50 mg/dl (women),
and fasting blood sugar greater than 100 mg/dl.

Obesity and associated metabolic imbalances
result from complex interactions between an
unhealthy environment such as dietary habits
and sedentary lifestyle, demographics (age and
sex), and genotype. The potential molecular mech-
anism linking these risk factors together may be
epigenetic regulation. Unsurprisingly, in order to
understand the complex interactions between the
environment, lifestyle, and genetics in the devel-
opment of obesity and related traits, there has
been an increased interest in epigenetic studies
on obesity and MetS. These studies also provide
a promising opportunity to address the demand
for the development of reliable, informative, and
affordable biomarkers to improve the diagnosis of
risks associated with obesity.

To date, a few studies have investigated the epige-
netic landscape in human obesity and weight loss
in blood (reviewed by Ling C and Rönn [70] and
Do [71], and Samblas et al. [72] and Aronica et al.
[73], respectively). Some molecular pathways and
genes, which could be prioritized when developing
novel epigenetic biomarkers for obesity, have sys-
tematically been identified (Fig. 2).

Given the definition of obesity and the availabil-
ity of study cohorts with BMI measures, it may
not be surprising that several studies have consis-
tently highlighted associations between BMI and
CpG sites that are located close to genes related
to lipid metabolism. Altered methylation in genes
ABCG1 [74–77], SREBF1 [74, 76–78], and CPT1A
[74, 77, 79] has been implicated in obesity. Both
ABGC1 (ATP binding cassette subfamily G mem-
ber 1) and SREBF1 (sterol regulatory element
binding transcription factor 1) have also been asso-
ciated with other closely related traits such as
dyslipidemia and T2D [80, 81]. Gene expression
levels of CPT1A (carnitine palmitoyltransferase 1A)
have been previously linked to blood lipid profiles
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Table 1. Overview of potential biomarkers for obesity; their associations with type 2 diabetes (T2D), cardiovascular diseases
(CVD), and all-cause mortality; and implications in clinical practices

Type Biomarker
Associations with T2D,
CVD, or mortality Clinical relevance

Anthropometric Body mass index T2D [162]
CVD [162, 163]
Mortality [164]

Easy to measure
Correlates with fat mass
Not a measure of body
composition

Waist circumference and
waist-to-hip ratio

CVD [165]
Mortality [166]

Proxy for abdominal fat

Molecular Cytokines (e.g., IL-6, TNF-α) CVD [167] Detects obesity-related
inflammation

Adipokines (e.g., leptin,
adiponectin)

T2D [168] Detects obesity-related
insulin resistance
(adiponectin)

Insulin related (insulin,
IGF-1,C-peptide)

CVD [169] Detects obesity-related
hyperinsulinemia

Glucose related (fasting glucose,
oral glucose tolerance test,
glycated hemoglobin (HbA1c))

T2D [170] Detects obesity-related
hyperglycemia

Plasma lipids (e.g., low-density
lipoprotein/high-density
lipoprotein, triglycerides)

CVD [171]
Mortality [172]

Detects obesity-related
dyslipidemia

C-reactive protein CVD [173] Detects obesity-related
inflammation

Polygenic risk scores 97 single-nucleotide
polymorphisms (SNPs)

− [66] Identifies high-risk
individuals

1458 SNPs CVD [174]
Mortality [174]

Genome-wide polygenic score
(2,100,302 genetic variants)

T2D [175]
CVD [175]
Mortality [175]

DNA methylation-based
scores

1109 cytosine–guanine
dinucleotides (CpGs)

226 CpGs
400 CpGs

− [89]
Mortality [89]
T2D [90]
CVD [90]

Identifies high-risk
individuals, identifies
obesity subtypes, and
monitors treatment

and insulin resistance [82], which correlate with
the methylation levels of this gene.

Methylation in genes related to the transport
and metabolism of amino acids and other small
molecules is affected in obesity. A gene, PHGDH
(phosphoglycerate dehydrogenase), involved in ser-
ine metabolism, has been implicated in people with
high BMI [75, 79]. In addition, methylation of the
solute carrier protein (SLC) genes are also asso-
ciated with BMI [76, 78] and WC [78]. One of

the implicated genes in this family is SLC19A1,
which regulates intracellular folate concentration
[83]. The folate pathway is tightly connected to
the methionine cycle, which is the main enzymatic
pathway for DNA methylation.

Hypoxia is a common occurrence in obesity [84],
and it describes a state of inadequate blood flow
to a tissue, resulting in a microenvironment with
low levels of oxygen. One of the earliest large-scale
EWAS in 2014 found that increased methylation
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of three CpGs in the H1F3A gene was significantly
associated with BMI [85]. A year later, another
study demonstrated a similar effect in children
[86]. HIF3A (hypoxia inducible factor 3 subunit
alpha) codes for a protein that is one of the main
factors regulating cells’ response to hypoxia. How-
ever, a number of recent studies have failed to
replicate this finding [75, 78, 79], which could
be attributable to a variety of factors. One of the
proposed explanations is the effect of maternal
BMI on the HIF3A methylation in the offspring
rather than the offspring’s body weight per se [87].

Inflammation is among the various changes in the
human body caused by obesity. Lipid accumu-
lation results in adipocyte hypertrophy (increase
in size), which is accompanied by infiltration of
immune cells and secretion of pro-inflammatory
factors such as cytokines. As a result, obesity is
often described as a state of low-grade inflamma-
tion characterized by, for example, elevated lev-
els of C-reactive protein [88]. Consequently, DNA
methylation shows alterations in genomic regions
and pathways that are known to be involved in
inflammation processes [74, 75]. However, studies
have not consistently identified the same set of dif-
ferentially methylated CpGs and genes. It is possi-
ble that each of them has a small effect size and
hence fails to reach genome-wide significance in
underpowered studies. Alternatively, these CpGs
could be specific to other confounders or obesity-
related comorbidities. Nevertheless, it appears that
obesity-related systemic low-grade inflammation
associates with DNA methylation changes; how-
ever, the molecular details and causal relation-
ships are still unclear.

Machine-learning models have recently emerged
alongside the traditional EWAS to discover the
methylation landscape in obesity. While the pre-
viously described potential biomarkers are based
on EWAS findings, a few studies have applied fea-
ture selection–based approaches to indicate obe-
sity from methylation data. For example, in one
study, researchers used LASSO with cross valida-
tion to construct methylation scores for BMI and
WHR [89]. Their model performed moderately in
discriminating obese individuals from nonobese.
Another study used a similar approach to develop
a methylation-based predictor for BMI [90], which
was found to be strongly associated with T2D and
cardiovascular diseases. These models were devel-
oped to indicate current obesity, that is, to discrim-
inate obese people from nonobese. Some attempts
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have beenmade to apply DNAmethylation as a pre-
dictor for future obesity and related diseases, as
discussed below.

The majority of the alterations in methylation arise
as a consequence of fat accumulation, leading to
metabolic disturbances through various routes, as
demonstrated by Mendelian randomization anal-
yses [75, 76, 91] and longitudinal studies [92].
Studies on children and adolescents show little
evidence on the connection between early life BMI
and DNA methylation [93]. Even though address-
ing the causality of BMI-associated methylation
markers is less relevant in the search of diag-
nostic biomarkers, the inability to do so might
limit the application of these results as a pre-
dictor. Fortunately, some encouraging discover-
ies have been made during the last 5 years. For
instance, a methylation risk score of 82 CpGs was
found to be strongly predictive of incident T2D
[75], yielding better predictions than traditional
risk factors such as high BMI. Another recent study
showed that the baseline methylation score based
on 116 CpGs could predict levels of interleukin-
6, an inflammatory marker elevated in obesity
[91]. Further, a population-based DNAmethylation
study on habitual diet with a relatively large sam-
ple size (n = 6662 European, 2702 African, and
360 Hispanic ancestry) provided evidence for the
link between diet-associated DNA methylation and
metabolic disorders as well as all-cause mortality
[94]. The findings additionally supported a causal
pathway between diet-associated DNA methylation
and BMI, triglycerides, HDL cholesterol, and T2D.
These results indicate a promising role of DNA
methylation as a predictor of obesity and associ-
ated diseases. However, further well-powered, mul-
titrait genome-wide studies on DNA methylation
are needed to discover the value of DNA methyla-
tion in predicting later-life outcomes.

In addition to holding great potential for predicting
the progression to obesity and obesity-associated
comorbidities [95], DNA methylation may also be
an indicator for lifestyle changes, as shown by
various intervention studies. DNA methylation
associates with both short- and long-term weight
loss [96], it differs between responders and non-
responders [97], and it may predict the outcome
of the intervention [98]. For example, a clinical
study on overfeeding has shown that saturated
and polyunsaturated fats induce differential DNA
methylation, and that DNA methylation prior to
dietary changes may predict weight increase in

response to overfeeding [99]. A few other studies
have also observed DNA methylation alterations in
blood cells and adipose tissue in response to diet
quality [94, 100–102], suggesting that DNA methy-
lation may mediate the effects of diet on the risk
for chronic diseases, including obesity and T2D.
Lifestyle changes in childhood and adolescence
are also reflected in DNA methylation [95, 97] and
may give us important clues about which genomic
regions to target for obesity prevention or treat-
ment. However, most of the lifestyle or weight-loss
intervention studies conducted to date are small
and rather short in duration and there is limited
reproducibility of the results. Therefore, these
findings should be interpreted with caution, and
studies with appropriate designs—including larger
sample sizes and adequate power—are needed to
make stronger conclusions regarding the role of
DNA methylation in relation to lifestyle changes.

Regardless of a great deal of evidence on obesity-
related alterations in the human epigenome, some
challenges hinder the translation of epigenetic
biomarkers in clinical use. Some of these chal-
lenges are common to all epigenetic research, as
discussed above. However, when investigating DNA
methylation in the context of obesity, a few stand
out—such as failure in replicating or validating
identified associations.

To date, we have identified several methylation
sites consistently associated with obesity, but
there are still numerous significant findings that
have not been successfully replicated in any other
studies. This could be due to discrepancies in
study cohorts having different underlying con-
founder characteristics such as age and sex. In
addition, some of the CpGs can also be specific
to ethnicity. However, there has been limited
research on population heterogeneity in obesity-
related methylation sites [75, 91]. Finally, distinct
obesity-related comorbidities or metabolic charac-
teristics may exist among study participants that
are not accounted for by BMI, the most commonly
studied obesity measure. For instance, a blood
methylation study noticed that monozygotic twins
discordant for BMI had no differences in their
methylome, but when BMI and liver-fat percentage
were considered together, pairs discordant for both
BMI and liver fat showed differential methylation
in multiple genomic sites [103]. It is likely that
different obesity comorbidities exhibit specific
DNA methylation profiles. This is also supported
by the results obtained from EWAS of traits closely

398 © 2022 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.
Journal of Internal Medicine, 2022, 292; 390–408



Biomarker for obesity and smoking / A. Heikkinen et al.

related to BMI, such as T2D [70] or MetS [81].
While some of the significant findings are shared
between BMI and related traits (e.g., SHREB and
ABCG), a proportion of nonreplicated CpGs may be
due to different molecular phenotypes. Although
BMI is a general, indirect measure of obesity,
it has provided an important starting point for
the discovery of associations between increased
body fat and DNA methylation. Nevertheless, dis-
crepancies in the results between studies have
demonstrated that, in the future, we will need to
incorporate additional obesity-related measures to
distinguish DNA methylation signatures amongst
obesity comorbidities. This would allow for the
identification of obese individuals who are at
high risk for secondary diseases such as T2D. To
combine the knowledge on methylation profiles in
different obesity subtypes and related traits, we
need improved phenotyping, standardized study
procedures, large prospective cohort studies, and
clinical interventions through which the findings
can be validated before introducing them to the
primary-care and public-health sectors.

More comprehensive approaches may help in
developing the epigenetic obesity biomarkers
for clinical use. Similar to epigenetic clocks as
biomarkers of aging, it could be useful to con-
struct such algorithms for obesity and metabolic
diseases. This could be achieved by predicting
levels of several relevant obesity-related clin-
ical values and markers (e.g., BMI and those
important in the diagnosis of MetS) using genome-
wide methylation data. These DNA methylation
biomarkers could then be combined into one score
or estimate for an overall biomarker of obesity
and metabolic status. Such a methylation score
could serve as a more specific biomarker for the
metabolic status than current obesity biomarkers.
Like epigenetic clocks that capture both chrono-
logical age and age-associated blood measures
and therefore yield better prediction for age-
related diseases, a methylation score for obesity
could improve the diagnosis of unhealthy obe-
sity and prediction of the risk for obesity-related
diseases.

Integrating epigenomic data with other physio-
logical, lifestyle, and “omics” data holds another
promising avenue for future biomarker develop-
ment [104]. The underlying molecular network
of complex traits is likely to be seen in multiple
layers of biological data (genomic, epigenomic,
transcriptomic, and metabolomic), the integration

of which will aid in disentangling the etiology
of diseases. For instance, when the methylation
score by McCartney et al. was combined with
polygenic scores, the model explained 19.7% of the
phenotypic variation in BMI and 12.5% when used
alone [89]. This is not surprising, because obesity
is known to have a genetic background; therefore,
incorporation of the polygenic score naturally adds
to the prediction accuracy. The most recent and
currently the most comprehensive study aimed at
developing a predictor for obesity risk combined
BMI-associated SNPs and methylation CpG sites
with dietary and lifestyle factors in machine-
learning algorithms [105]. The best-performing
model in the study had an overall accuracy of
70% in predicting current obesity by using 21
SNPs, 230 CpG sites, and 26 dietary factors—such
as processed meat, high-fat dairy, French fries,
artificial sweeteners, and alcohol intake. These
more comprehensive approaches to developing an
obesity biomarker—such as (1) combining multiple
methylation sites into scores, (2) using a compos-
ite biomarker based on multiple DNA methylation
surrogates of clinical markers of obesity, or (3)
combining obesity-associated DNA methylation
sites with multiple omics and lifestyle factors—
will likely increase the clinical value of obesity
biomarkers.

Taken together, it is clear that obesity is highly
heritable; however, the eventual weight of an indi-
vidual is determined by the complex interactions
of genetic and environmental factors, such as
diet and lifestyle. Epigenetic marks react to the
environment, and may reflect (or capture) both
the external (e.g., exposure to a certain diet) and
internal (e.g., metabolic state) environments of
an individual. Therefore, epigenetic markers of
obesity have great potential to be of clinical value
as obesity and associated disease risk biomarkers.
Multiple genetic studies have identified obesity-
associated variants that determine the genetic
predisposition to obesity. However, the genetic
makeup of an individual cannot be changed, and
therefore obesity prevention and treatment strate-
gies target modifiable factors such as diet and
physical activity. The clinical value of methylation
biomarkers of obesity comes from their ability to
precisely predict obesity- and weight loss–related
outcomes. By the aid of epigenetic markers, we
will be able to predict obesity with precision and
identify modifiable factors that can change the risk
of obesity and associated diseases. Such epigenetic
biomarkers will, in the future, have their value as
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tools to develop effective strategies for personalized
prevention and treatment of obesity and associated
diseases. Epigenetic markers that have a causal
role in obesity or associated diseases could also be
targeted for pharmacological treatment.

DNA methylation biomarkers in smoking

Smoking is a significant risk factor for a variety
of chronic diseases, as well as a leading cause of
preventable mortality, accounting for more than
8 million deaths annually and costing the global
economy 1.4 trillion US dollars [106]. Besides
the well-established detrimental effects of smok-
ing with regard to lung cancer, chronic obstructive
pulmonary disease, and heart disease, it has also
been associated with comorbidities such as tuber-
culosis, alcoholism, and mental illness [107].

Smoking is a complex behavior and has been
regarded as a multifactorial disease that involves
both genetic and environmental factors. Smok-
ing behavior encompasses multiple phases, start-
ing with smoking initiation then progressing to
nicotine dependency (observed in most smok-
ers), nicotine withdrawal (while attempting to quit
smoking), cessation, and relapse [108]. Peer pres-
sure throughout adolescence [109, 110], a positive
image of smoking, socioeconomic status, parental
smoking, gender, ethnicity, and usage of other sub-
stances are the major factors that lead to smoking
initiation [111–113].

In addition to behavioral, physiological, and other
environmental factors, smoking behavior is also
strongly influenced by genetic and perhaps epige-
netic factors. According to family and twin studies,
the heritability of smoking behavior is high, with
genetic effects increasing from adolescence into
adulthood [114]. Thus, genetic differences among
individuals have a substantial impact on smok-
ing behavior. Several loci associated with nicotine
dependence, cigarettes per day, and smoking ces-
sation have been identified, with nicotinic receptor
genes CHRNA5-CHRNA3-CHRNB4 at 15q25 [115–
121] and the primary nicotine metabolism gene
CYP2A6 at 19q13 [122] being the most signifi-
cant and consistently replicated hits. However, the
observed genotype associations only account for
low- to moderate-heritability estimates for each
smoking-related trait [123].

Epigenetic factors including DNA methylation
could, on the one hand, partially predispose an

individual to smoking behavior or mediate the
causal effect of the genotypes on smoking behav-
ior [124, 125]. On the other hand, smoking may
lead to alterations in DNA methylation. Numerous
studies have shown that smoking has a signifi-
cant influence on DNA methylation levels. Multi-
ple independent studies on different populations
have revealed several smoking-associated CpGs in
the blood methylome [49, 126–134]. The biggest
EWAS to date with approximately 16,000 individu-
als identified almost 19,000 significantly differently
methylated CpGs across 7000 genes between
current and never smokers [127]. Interestingly,
the majority of smoking-associated CpGs are
hypomethylated in current smokers compared to
never smokers. Smoking-associated methylation
signals seem rather robust, with many of the stud-
ies [128, 132–134] consistently reporting the same
top significant CpGs at the AHRR and F2RL3 genes
(Fig. 2). AHRR (aryl hydrocarbon receptor repres-
sor), a known tumor suppressor, is involved in
the detoxification of harmful components present
in cigarette smoke [135]. F2RL3 (coagulation fac-
tor II receptor-like 3 gene) encodes PAR-4 (throm-
bin protease-activated receptor-4), which plays
a crucial role in leukocyte recruitment and is
thereby involved in smoking-induced inflammatory
reactions [134]. Hundreds of novel methylation
smoking signals have also been identified in lung
tissue [136] and whole blood [137] using EPIC
array, which targets CpGs across the genome,
including enhancer regions.

It has also been demonstrated that methylation lev-
els in former smokers partially reverse after ces-
sation, approaching those of never smokers [126,
128, 130, 134, 138–140]. However, the extent of
reversal can be site specific depending on the
degree of smoking-induced methylation changes
at a specific CpG site [128, 138]. Furthermore,
CpGs with persistent methylation changes have
been observed after decades of smoking cessation,
implying that smoking has a broader and longer-
lasting impact on the methylome [128, 131, 138].

Despite the tissue-specific nature of DNA methyla-
tion, studies have also reported widespread effects
of smoking on methylation. For instance, a com-
parable overlap of smoking-associated methylation
patterns was found in buccal tissue and whole
blood [141]. This suggests that complex behaviors
like smoking have broader impacts on methylation
at specific CpGs across tissues, resulting in tissue-
shared effects.
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The ability to create suitable treatments—
ranging from preventative interventions for occa-
sional smokers to cessation therapy for current
smokers—depends on having a precise under-
standing of smoking history. Furthermore, an
accurate smoking history can be used to predict
long-term health concerns linked to smoking (e.g.,
lung cancer). Self-administered questionnaires
have traditionally been used to assess smok-
ing exposure. The most widely used self-report
questionnaires to capture nicotine dependency are
the Diagnostic and Statistical Manual of Mental
Disorders [142] and the Fagerström Test of Nico-
tine Dependence [143]. Due to under-reporting
and poor recollection of long-term smoking history,
self-reported smoking status is prone to mistakes.
Furthermore, it does not take passive smoking
into consideration.

Nicotine, cotinine, and carbon monoxide (CO)
are the most widely used smoking biomarkers.
Nicotine is the most active component of the
tobacco leaf and is highly addictive in nature,
thereby making it extremely difficult to quit smok-
ing permanently [144]. Nicotine’s rapid absorption
followed by speedy elimination from body tissues—
resulting in a short half-life of about 2 h—limits its
effectiveness as a biomarker. Cotinine—a primary
metabolite of nicotine—can be used to measure
the amount of nicotine absorbed in bodily fluids
[145]. However, given the short half-life of about 16
h, cotinine can only be identified for a few days at
most after smoking [146]. Hence, its usefulness is
restricted to evaluating recent smoking. Further-
more, the use of nicotine-replacement therapy,
smokeless tobacco, and e-cigarettes may cause ele-
vated cotinine levels, leading to erroneous evidence
of smoking. Exhaled CO can effectively measure
recent smoking exposure in smokers [147]. How-
ever, limitations of CO include a short half-life of
5–6 h and its inability to distinguish exposure to
nontobacco sources like air pollution. This clearly
illustrates the need for a reliable smoking-exposure
indicator that can overcome these shortcomings
and reliably quantify current and former smoking.

Self-reported smoking status and traditional
biomarkers like cotinine—which can only quantify
short-term exposure—have been demonstrated to
be less reliable than methylation-based smoking-
status prediction. The methylation status of the
genes AHRR [132, 133] and F2RL3 [134] are the
most consistently reported smoking-associated
signals, and they have been proposed as potential

biomarkers to estimate smoking habits (smoking
cessation for F2RL3) [128, 132–134, 148]. Some
of these smoking-associated methylation signals
have been shown to be robust across ethnici-
ties [62, 137, 148], demonstrating the possibility
of using trans-ethnic smoking biomarkers to
predict smoking status. Demethylation at both
AHRR (measured by Illumina BeadChip probe
cg05575921) and 6p21.33 (cg06126421) was
linked to cardiovascular mortality and a 2.5-fold
increased risk of dying from any cancer [149]. DNA
methylation levels at AHRR (cg05575921), F2RL3
(cg03636183), and 6p21.33 (cg06126421) were
shown to be predictive of lung-cancer incidence
[150]. A droplet digital PCR (ddPCR) assay mea-
suring methylation at cg05575921 successfully
predicted smoking status in adults with vary-
ing smoking histories [151]. Also, methylation-
sensitive ddPCR assessments of the same CpG
site have been shown to identify current smokers
in both whole blood and saliva [152]. These exam-
ples demonstrate the effective implementation
of methylation biomarkers in clinical settings to
reliably assess smoking.

Similar to the polygenic risk score approach,
smoking-associated EWAS findings have been
translated into scores that reflect the extent of
smoking (Table 2). To determine smoking sta-
tus, existing DNA methylation-based approaches
employ scores generated from cumulative methyla-
tion levels at smoking-associated CpGs. Smoking
score [49] and methylation score [50] are two
popular approaches. Smoking score uses an
ethnic-specific threshold to distinguish smokers
from never smokers, restricting its universal appli-
cation, and it requires a separate threshold for
each ethnicity. Methylation score was built from
cotinine EWAS hits to distinguish current and
former smokers from never smokers. It can be
used to measure current and long-term smoking
exposure, which is important when assessing
the health risks posed by cumulative smoking
exposure. However, because a score threshold
value must be determined for each dataset and
these methods can only conduct binary classifica-
tions, they have limited utility. Machine-learning
approaches have also been used to build classi-
fiers to estimate smoking status based on DNA
methylation profiles [62, 153]. A smoking-status
classifier [62] developed using whole-blood data
has demonstrated good predictability in buccal
tissue samples. A DNA methylation composite
score that predicts both smoking status and
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Table 2. An overview of recent studies with a focus on development of DNA methylation-based smoking scores or predictors

Purpose Methodology Reference

Smoking score based on 187 smoking-associated
cytosine–guanine dinucleotides (CpGs) identified
in whole blood, can distinguish heavy smokers
from nonsmokers (former and never)

A weighted DNA methylation score was
calculated using methylation values of 187
CpGs identified by an earlier
epigenome-wide association study (EWAS)
[130] as reference values.

[49]

A DNA methylation score based on two top
smoking-associated CpGs shown to be predictive
of all-cause, cardiovascular, and cancer mortality

Restricted cubic spline regression [149]

Methylation score based on methylation values of
four smoking-associated CpGs in whole blood; can
discriminate current smokers from never smokers,
as well as former smokers from never smokers

EWAS followed by stepwise logistic regression
with forward selection

[50]

A smoking status estimator (EpiSmokEr) that can
predict the smoking status of individuals from
whole-blood methylation data

Least Absolute Shrinkage and Selection
Operator (LASSO) regression

[62]

A DNA methylation smoking score that can classify
newborns based on the maternal smoking
exposure during pregnancy

EWAS followed by LASSO regression [160]

A prenatal DNA methylation smoking score to
predict prenatal exposure to maternal smoking

A weighted DNA methylation score calculated
using the methylation values of CpGs
identified by an earlier genome-wide
consortium meta-analysis [176]

[159]

A machine-learning based DNA methylation score
that distinguishes individuals exposed to in utero
smoke from individuals not exposed to in utero
smoke

Elastic net regression [161]

damage to biological systems—namely, the lungs
and gums—has also been proposed [154].

Further investigations are required to establish
the predictive role of DNA methylation in passive
smoking [155] and e-cigarette usage [156]. For
example, methylation at the cg05575921 CpG site
most frequently used as a biomarker for tobacco
smoke is not suitable alone for assessing the use
of e-cigarettes and smokeless-tobacco products
[157]. Similarly, as discussed above in relation to
obesity, combining DNA methylation biomarkers
with conventional metabolite biomarkers for smok-
ing may enhance the precision and characteriza-
tion of smoking behavior. For example, propylene
glycol, 2-cyanoethylmercapturic acid, and anaba-
sine measured from urine have been used together
with smoking-associated cg05575921 methylation
biomarker to distinguish combustible-tobacco
users from e-cigarette and smokeless-tobacco

users [157]. While cigarette smokers were identi-
fied by dose-dependent lowered methylation levels
of cg05575921, this CpG site was not affected in
smokeless-tobacco users. However, both groups
showed increased urinary anabasine levels [157].

In addition to active and passive smoking in adults,
maternal smoking is a crucial research and public-
health topic. The adverse impact of prenatal expo-
sure to maternal smoking during pregnancy is well
established [158]. Mounting evidence suggests that
DNA methylation can serve as a robust predictor of
the long-term effects of maternal smoking on off-
spring health [159–161].

Conclusions and future prospects

Substantial evidence shows that several human
traits and diseases are associated with specific
DNA methylation signatures, prompting studies
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to investigate the potential of DNA methylation
as a biomarker. DNA methylation is dynamic and
reversible in nature and is easy to collect and quan-
tify, making it a viable diagnostic and predictive
biomarker. DNA methylation marks can be used to
detect the early onset of diseases, aid in diagnosis,
reveal environmental exposures, and predict the
likelihood of a trait or disease. DNA methylation
biomarkers can also be used in conjunction with
traditional biomarkers, and their utility can be
further enhanced by integrating them with other
omics data. The most promising biomarkers or pre-
dictors are those that reflect the genetic and envi-
ronmental causes of complex diseases or traits,
and thus may incorporate genomic and epigenomic
data with other omics (such as metabolomics, pro-
teomics, transcriptomics, and metabolomics)
and lifestyle factors, and moreover, consider
their interactions to predict individuals’ health
status.

There are no widely used epigenetic biomarkers
in clinical settings outside of oncology. The field
of epigenetic biomarkers is relatively new and
the trait-associated changes may be difficult to
discover due to sample sizes, small effect sizes,
cell-type heterogeneity, confounding factors, phe-
notype heterogeneity, and lack of replication.
Nevertheless, the latest research in recent years
has presented compelling evidence on trait-specific
DNA methylation profiles for conditions other than
cancer, including obesity and smoking. In addition
to the scientific rigor, there is also a need to val-
idate novel findings and further attract industrial
stakeholders and policy makers to accelerate the
development of methylation biomarkers.

With the rapid advancement of the field of epige-
netics and the decreasing costs associated with
high-throughput technologies, the quantification
of DNA methylation may soon become a part of
routine clinical evaluations. Novel technologies are
emerging and—especially those of long-read native
DNA sequencing—can revolutionize the availability
of examining individuals’ genomes and epigenomes
in research and health care. By offering a compre-
hensive molecular picture of the clinical condition,
DNA methylation profiling provides notable oppor-
tunities for health-care systems that are currently
shifting towards personalized medicine.
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