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Type 2 diabetes is widely documented for osteogenic differentiation defect and impaired
bone quality, which is related to the skeletal accumulation of advanced glycation end
products (AGEs). Prediabetes is a condition in which hyperglycemia is lower than the
threshold for the diagnosis of diabetes. Prediabetic animal models consistently
demonstrate impaired osteogenic di fferent iat ion and deter iorated bone
microarchitecture. However, no evidence shows defects in osteoblast development
and skeletal effects of AGEs in prediabetic individuals. Therefore, it remains to be
elucidated whether impaired osteogenic differentiation ability and altered cellular
response to AGEs occur in patients with prediabetes. This cross-sectional study
included 28 patients with prediabetes as defined by impaired fasting glucose criteria,
fasting plasma glucose (FPG) between 100–125 mg/dl and 17 age-matched
normoglycemic controls to elucidate osteogenic differentiation and AGER expression in
the PBMC derived from those individuals. The PBMC-isolated from both groups showed
similar rates of expression of osteoblast-specific genes, namely, ALPL, BGLAP, COL1A1,
and RUNX2/PPAR (89.3% and 88.2%, p = 1.000), and showed comparable levels of
expression of those genes. By using age- and pentosidine-matched normoglycemic
individuals as references, the PBMC-isolated from prediabetic patients demonstrated
lower expression of both AGER and BAX/BCL2. The expression of AGER and BAX/BCL2
significantly correlated to each other (r = 0.986, p <0.0001). The multivariate analysis
demonstrated that serum pentosidine is an independent risk factor for AGER expression.
With logistic regression analysis, the area under the ROC curve (AUC) for serum
pentosidine at the cut-off level of 2.1 ng/ml and FPG at 100 mg/dl, which is a cut-off
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point for prediabetes, was significantly higher for predicting AGER expression than that of
serum pentosidine alone (0.803 vs 0.688, p = 0.048), indicating that serum pentosidine
was a good predictor of AGER expression in prediabetic individuals. In conclusion, this
study demonstrated a preserved osteogenic differentiation in the PBMC derived from
prediabetic individuals. In addition, those PBMC with preserved osteogenic differentiation
potential showed the suppression of both cellular RAGE and apoptotic-related signals.
Serum pentosidine was an independent risk factor for cellular RAGE expression and is
conceivably a good predictor for AGER suppression in prediabetic individuals.
Keywords: advanced glycation end products, impaired fasting glucose, osteogenic differentiation, prediabetes,
peripheral blood mononuclear cell, receptor of advanced glycation end products, type 2 diabetes
INTRODUCTION

Type 2 diabetes is a health problem of great concern worldwide.
It is a metabolic disorder that has insulin resistance as a central
pathophysiology. That insulin resistance occurs many years
before the development of progressive dysglycemia, starting
from modest hyperglycemia in prediabetes to full-blown
chronic hyperglycemia in type 2 diabetes. According to the
American Diabetes Association, prediabetes can be diagnosed
by one of the three following criteria (1): first, impaired fasting
glucose (IFG) defined by fasting plasma glucose (FPG) of
between 100 and 125 mg/dl; second, impaired glucose
tolerance (IGT) defined by FPG of between 140 and 199 mg/dl
at 2 h after 75 g of oral glucose loading; and third, a level of
glycated hemoglobin (HbA1c) that is between 5.7 and 6.4% (1). It
is well documented that chronic hyperglycemia accelerated the
accumulation of advanced glycation end products (AGEs) in
many tissues, influencing the occurrence of chronic
microvascular and macrovascular complications found in
patients with diabetes (2–5). Even though prediabetes is a
condition with hyperglycemia which is lower than the
threshold for the diagnosis of diabetes, prediabetes can also
lead to similar chronic microvascular and macrovascular
complications to those found in individuals with diabetes (6,
7). However, there is no evidence to show the association
between the accumulation of AGEs and those complications
found in prediabetes. Moreover, Gateva and colleagues (8)
demonstrated that serum pentosidine, a type of AGEs, did not
relate to vascular complications in prediabetic individuals.

Type 2 diabetic individuals consistently showed an impaired
bone quality represented by a decreased bone turnover (9, 10),
deteriorated bone microarchitecture (11), and an increased risk of
fragility fractures (12–15) even though they had a preserved bone
mineral density (13–15). Individuals with prediabetes who have a
milder level of hyperglycemia than those with diabetes were also
shown for low bone turnover (16, 17) and preserved bone mineral
density (17–20). However, evidence involving impairment of
bone quality and fragility fractures in prediabetic individuals is
still controversial. Chen and colleagues (19) and Park and
colleagues (21) demonstrated an increased risk of hip fractures
in a prediabetic population. In contrast, Dominic and colleagues
(22), and Iki and colleagues (23), demonstrated that hip fractures
n.org 2
did not increase in a population with prediabetes. In addition,
Dowson-Hughes and colleagues (24) showed the preservation of
bone material strength in individuals with prediabetes.

AGEs exert their downstream signaling cascades, including
inflammatory signaling pathways and apoptotic pathway, via
interacting with their specific receptors, the receptor of advanced
glycation end product (RAGE) (25). The polymorphism of the
RAGE gene is associated with proinflammation and oxidative
stress, and also with diabetic retinopathy, a microvascular
complication of diabetes (26). The activation of RAGE lead to
dysfunction and apoptosis of cells, namely, osteogenic lineage
cells (27–32). The accumulation of AGEs conceivably contributes
to the impairment of bone quality found in type 2 diabetes.
Preclinical studies have shown that the skeletal accumulation of
AGEs inhibited osteoblast differentiation (28–30), enhanced
osteoblast apoptosis (27, 29–31), and deteriorated the
mechanical properties of the skeleton (33–35). In human
subjects, our previous studies showed that the peripheral blood
mononuclear cells (PBMC) derived from patients with type 2
diabetes had an impaired osteogenic differentiation potential
which could be linked to the overexpression of RAGE (36, 37).
In addition, serum pentosidine has been shown to have a positive
correlation with vertebral fractures in patients with type 2
diabetes (38–40). Although AGEs have been widely
documented for their detrimental effects on bone cells and
bone strength in type 2 diabetes, the effects of AGEs on the
skeleton remain inconclusive in prediabetes. To date, there have
only been a few preclinical studies that demonstrated an adverse
effect of being prediabetic on osteoblast function and the skeletal
microarchitecture. Pramojanee and colleagues (41) showed a
decrease in osteoblast proliferation and survival, and a
deterioration of bone microarchitecture in prediabetic rats. In
addition, Ross and colleagues (42) demonstrated a decreased
osteoblast differentiation and compromised cortical bone
microarchitecture in prediabetic mice. However, both studies
did not explore the effects of AGEs on those cellular dysfunction
and skeletal microarchitecture deterioration. To date, there is
no evidence to show osteoblast dysfunction and the skeletal
impacts of AGEs in patients with prediabetes. Therefore, it
remains to be elucidated whether an impairment of osteogenic
differentiation or an alteration of cellular RAGE expression
occurs in prediabetic patients.
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Mesenchymal stem cells can be derived from various adult
tissues including adipose tissue, bone marrow and peripheral
blood (43). It is well documented that the peripheral blood-
derived mesenchymal stem cells (PB-MSC) can differentiate into
multiple cell types, namely, adipocytes, chondrocytes, and
osteoblasts (44–46). In terms of osteoblast differentiation,
Valenti and colleagues (47) demonstrated the expression of
multiple osteoblast-specific genes during differentiation of the
PB-MSC, namely, COL1A1 and RUNX2, and also the production
of the BGALP-encoded protein named osteocalcin. In addition,
our previous studies also demonstrated the differentiation
toward osteoblast of the PBMC-isolated from both non-
diabetic and diabetic individuals (36, 37). Therefore, to obtain
those stem cells with the least invasive measure, this study was
conducted using the PBMC-isolated from participants to
investigate the osteogenic differentiation potential of the stem
cells. This study aimed to determine whether 1) there was an
osteogenic differentiation defect in PBMC derived from
prediabetic individuals, and 2) there was an alteration of
RAGE expression in PBMC isolated from patients
with prediabetes.
MATERIALS AND METHODS

Ethics Statement
This study was a cross-sectional study, performed at the Maharaj
Nakorn Chiang Mai Hospital, Chiang Mai University, Chiang
Mai, Thailand and approved by the Research Ethics Committee
of the Faculty of Medicine, Chiang Mai University. All
participants provided their written informed consent to
participate in this study before enrollment.

Study Population and Sample Collection
Individuals with FPG between 100 and 125 mg/dl on at least two
occasions, which were classified as impaired fasting glucose
(IFG) by the American Diabetes Association, were enrolled as
prediabetic subjects. Age-matched individuals with FPG less
than 100 mg/dl were enrolled as normoglycemic subjects.
Individuals with IFG were excluded if HbA1c higher than
6.4%. The other exclusion criteria were as follows: females with
serum creatinine higher than 1.4 mg/dl males with serum
creatinine above 1.5 mg/dl; individuals who use steroids, anti-
resorptive agents or anabolic agents for osteoporosis,
immunosuppressive agents, thiazolidinedione; and individuals
with hematologic or metastatic malignancy. Venous blood
(35–40 ml) was collected from all enrolled participants to
isolate the PBMC, and to determine serum levels of
pentosidine (Elabscience Biotechnology, WuHan, Hubei,
China), soluble RAGE (sRAGE) (R&D, Minneapolis, MN,
USA), interleukin 1-b (IL1-b) (R&D, Minneapolis, MN, USA)
and tumor necrosis factor-a (TNF-a) (R&D, Minneapolis, MN,
USA) by ELISA. FPG, HbA1c, serum creatinine, high-density
lipoprotein cholesterol (HDL-C), low-density lipoprotein
cholesterol (LDL-C), and triglyceride levels were assessed using
Frontiers in Endocrinology | www.frontiersin.org 3
standardized procedures at the central laboratory of the Faculty
of Medicine, Chiang Mai University. Glomerular filtration rate
(eGFR) was calculated using the Chronic Kidney Disease
Epidemiology Collaboration (CKD-EPI) method. Fracture risk
estimation was estimated from the Fracture Risk Assessment
Tool (FRAX®) using the Thailand database (48).

Human Peripheral Blood-Derived
Mononuclear Cells (PBMC) Isolation
and Culture Protocol
Peripheral venous blood (35–40 ml) was applied to density
gradient centrifugation and PBMC were isolated and then
cultured as described in our previous study (36). In brief, the
plasma was removed from the venous blood by centrifugation at
1,500 rpm for 5 min. The remaining cell fraction was first diluted
with an equal volume of DMEM (Gibco, Grand Islands, NY,
USA) and then overlaid on Histopaque (specific gravity 1.077 g/
ml; Sigma-Aldrich, St. Louis, MO, USA) and further centrifuged
at 4,000 rpm for 30 min. The cells in the mononuclear cell layer
(PBMC) were plated in 24-well culture plates and cultured in
RPMI supplemented with 10% (v/v) fetal bovine serum (Gibco,
Grand Islands, NY, USA). The floating cells in the culture wells
were removed and the plastic-adhered cells were further cultured
in a non-osteogenic-inducing medium, DMEM supplemented
with 10% (v/v) fetal bovine serum (Gibco, Grand Islands, NY,
USA), for 7–10 days until confluence. To induce osteogenic
differentiation, the adhered cells were cultured in a non-
osteogenic-inducing medium until reaching 50% confluence.
They were then transferred to an osteogenic-inducing medium;
DMEM supplemented with 10−7 M dexamethasone, 60 mM
ascorbic acid, and 10 mM b-glycerophosphate) and cultured
for a further 21 days.

Analysis of the Expression of Osteoblast-
Specific Genes, AGER, and Cellular
Apoptotic-Associated Genes
The expression of genes, including osteoblast-specific genes,
AGER, BAX, and BCL2, was quantified using real-time PCR as
described in our previous study (36, 37). In brief, the total RNA
(500 ng) was isolated from the cell lysate using the illutraRNA
spin Mini Kit (GE Healthcare Life Science, Buckinghamshire/
Little Chalfont, UK) following the manufacturer’s instructions.
The isolated total RNA of each sample was reverse transcribed
into cDNA using an iScript™cDNA Synthesis Kit (Bio-Rad,
Hercules, CA, USA) following the manufacturer’s protocol. The
cDNA was subsequently analyzed by reversed transcription PCR
(RT-PCR) using Sso7d fusion enzyme technology according to
the manufacturer’s instruction (Bio-Rad, Hercules, CA, USA).
The PCR protocol consisted of 45 cycles of 5 s at 95°C, 10 s at
60°C, and 30 s at 72°C using the Applied Biosystems 7500/7500
Fast Real-Time PCR system. The total RNA isolated from
both non-osteogenic and osteogenic-inducing cells was used
to analyze: 1) osteoblast-specific genes, namely, ALPL, BGLAP,
COL1A1, and RUNX2 for representing osteoblast differentiation
and 2) PPAR-g which is a transcription factor driving
towards adipocytes for evaluating signals against osteoblast
February 2022 | Volume 13 | Article 799872
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differentiation. In this study, since multiple osteoblast-specific
genes, including ALPL, BGLAP, COL1A1, and RUNX2, were
expressed during the differentiation process toward osteoblasts
(47, 49) and were persistently elevated in human osteoblasts
(49, 50), the differentiation towards osteoblasts was defined by
the increment of expression of all osteoblast-specific marker
genes, including ALPL, BGLAP, and COL1A1, and also the
increment of the RUNX2/PPARg ratio. In contrast, the total
RNA extracted only from the non-osteogenic-inducing cells was
used to determine: 1) AGER expression to elucidate the alteration
of cellular RAGE expression and 2) BAX and BCL2 expression
for evaluation of cellular apoptotic signals. The GAPDH
expression was used for normalization of the relative
expression levels for each primer set (Table 1) by the 2(−DDCT)

method. All primers were purchased from Invitrogen.

Statistical Analysis
Statistical analysis was performed using SPSS version 23.0.All
continuous data are reported as mean ± standard deviation while
all categorical variables are presented as percentages. An
independent t-test was used for univariable comparative
statistics for continuous data. A Chi-square test was used for
univariable comparative statistics for all categorical variables, the
exception being the categorical variable with small counts which
was analyzed using Fisher’s Exact test. Pearson’s correlation was
performed to identify the correlation between two continuous
variables. Multivariate linear regression analysis was performed
to identify the independent risk factors of AGER expression. A
logistic regression model was performed to determine the
potential for using serum pentosidine as a predictor of AGER
suppression in prediabetic individuals. The areas under the
receiver operating characteristics (ROC) curves of the model
(AUC) were plotted to determine the diagnostic performance of
the serum pentosidine cut-off value which was calculated based
on the highest sensitivity or specificity. A p-value of less than 0.05
was used as a measure of statistical significance. A sample size
calculation was performed to estimate the number needed to
show the non-inferiority of osteogenic differentiation in the
prediabetic group compared to the normoglycemic group (51).
Frontiers in Endocrinology | www.frontiersin.org 4
A sample size of at least 12–16 participants in the
normoglycemic group and 17–23 patients in the prediabetic
group was estimated to give 80% power at the 5% significance
level to detect a non-inferiority of osteogenic differentiation in
the prediabetic group compared to the normoglycemic group at a
margin of equivalence of 20–25% (36, 51).
RESULTS

Demographic Data, Clinical Characters,
and Biochemical Parameters of Study
Participants
This study included 28 individuals with prediabetes and 17 age-
matched participants with normoglycemia. All participants with
prediabetes were diagnosed with impaired fasting glucose (IFG)
using the FPG criteria with a cut-off value of 100–125 mg/dl as
recommended by the American Diabetes Association (1). All
prediabetic participants had at least two FPG instances between
100 and 125 mg/dl during the three months before or after the
recruitment date. All participants in the normoglycemic group
had never had a recorded FPG higher than 99 mg/dl before
enrollment. Age, gender, body mass index (BMI), systolic blood
pressure (SBP), diastolic blood pressure (DBP), eGFR, HDL-C,
LDL-C, triglyceride and 10-year fracture risk as determined by
FRAX® using the Thailand database were comparable in both
normoglycemic and prediabetic groups (Table 2). Either
angiotensin-converting enzyme inhibitors (ACEI) or
angiotensin II receptor blockers (ARB) were used at a higher
rate in patients with prediabetes while dihydropyridine calcium
channel blocker (DHP-CCB) was used at a higher rate in
participants with normoglycemia; however, the difference did
not reach statistical significance (Table 2). Lipid-lowering agents,
namely, statins and fibrates were used at a comparable rate in
both normoglycemic and prediabetic groups (Table 2).

In the group with prediabetes, the duration of being
prediabetic was 3.4 ± 2.8 years. Patients within the prediabetic
group had a significantly higher level of FPG than those in the
normoglycemic group (102.1 ± 10.7 mg/dl vs 90.2 ± 6.3 mg/dl,
TABLE 1 | Sequences of Real-Time qPCR Primers.

Genes Primer sequence (5’-3’)

Forward Reverse

Osteoblast-specific genes
ALPL CATGGCTTTGGGCAGAAGGA CTAGCCCCAAAAAGAGTTGCAA
BGLAP GAAGCCCAGCGGTGCA CACTACCTCGCTGCCCTCC
COL1A1 CAGCCGCTTCACCTACAGC TTTTGTATTCAATCACTGTCTTGCC
RUNX2 TCTTAGAACAAATTCTGCCCTTT TGCTTTGGTCTTGAAATCACA
Adipocyte-specific gene
PPARg AAAGAAGCCAACACTAAACC CTTCCATTACGGAGAGATCC
Apoptotic signal-associated genes
BAX TGGAGCTGCAGAGGATGATTG GAAGTTGCCGTCAGAAAACATG
BCL2 CATGCTGGGGCCGTACAG GAA CCGGCACCTGCACAC
Others
AGER GCTGGAATGGAAACTGAACACAGG TTCCCAGGAATCTGGTAGACACG
GAPDH CCCTTCATTGACCTCAACTA AGATGATGACCCTTTTGGCT
February
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p <0.0001) and had a level of hemoglobin A1c (HbA1c) of 5.9 ±
0.5%. All prediabetic patients were recommended for lifestyle
modification as a measure for diabetic prevention except one
patient received metformin at the dosage of 1,000 mg daily.

Serum pentosidine was slightly lower in the prediabetic group
than that in the normoglycemic group (3.0 ± 1.8 ng/ml vs 4.1 ±
2.2 ng/ml, p = 0.071); however, the difference did not reach
statistical significance (Table 3). The level of serum pentosidine
positively correlated with the level of HbA1c by univariate
analysis (r = 0.614, p = 0.044) in prediabetic population,
suggesting that hyperglycemia had an impact on the
accumulation of AGEs. Serum sRAGE, a decoy receptor of
AGEs, and also the ratio between sRAGE and pentosidine
(sRAGE–pentosidine ratio), were comparable in both
prediabetic and normoglycemic groups (Table 3). In addition,
serum interleukin-1b (IL-1b) and tumor necrosis factor-a (TNF-
a), markers of systemic inflammation, were comparable in both
prediabetic and normoglycemic groups (Table 3). Therefore,
individuals in both prediabetic and normoglycemic groups had
comparable baseline characteristics (Tables 2, 3); FPG was the
only parameter that showed significant difference between the
two groups (Table 2).
Frontiers in Endocrinology | www.frontiersin.org 5
Preserved Osteogenic Differentiation, and
Suppressed Expression of Both AGER and
Apoptotic-Related Signals in PBMC
Derived From Patients With Prediabetes
The levels of expression of multiple osteoblast-specific genes,
namely, ALPL, BGLAP, COL1A1, and RUNX2/PPAR were
measured in the PBMC-isolated from both prediabetic and
normoglycemic groups to define osteogenic differentiation. The
PBMC derived from patients with prediabetes showed a
preservation of osteogenic differentiation potential. The PBMC-
isolated from 25 patients with prediabetes (25/28) expressed
ALPL, BGLAP, COL1A1, and RUNX2/PPAR and the PBMC-
isolated from 15 patients with normoglycemia (15/17) expressed
those genes. Therefore, the PBMC derived from both prediabetic
and normoglycemic groups had a comparable rate of osteogenic
differentiation (89.3 and 88.2%, p = 1.000). Among the
PBMC showing differentiation toward osteoblast, the levels of
osteoblast-specific gene expression were not significantly different
between the normoglycemic and prediabetic groups, namely,
ALPL (7.0 ± 10.2 vs 6.4 ± 3.5, p = 0.837), COL1A1 (9.30 ± 9.2
vs 10.1 ± 7.3, p = 0.779), BGALP (5.2 ± 7.8 vs 6.3 ± 5.5, p = 0.588),
and RUNX2/PPAR (5.1 ± 3.0 vs 8.0 ± 7.6, p = 0.239) (Figure 1).
TABLE 3 | Serum Pentosidine, sRAGE and Inflammation Markers in the Study Participants.

Parameter Normoglycemia (n = 17) Prediabetes (n = 28) p-value

Pentosidine (ng/ml) 4.1 ± 2.2 3.0 ± 1.8 0.071
Soluble RAGE (sRAGE) (pg/ml) 610.4 ± 352.3 539.9 ± 380.7 0.539
sRAGE-Pentosidine ratio (pg/ng) 196.6 ± 181.8 245.6 ± 232.4 0.462
Interleukin-1b (pg/ml) 0.7 ± 0.9 0.7 ± 0.7 0.785
Tumor necrosis factor-a (pg/ml) 1.7 ± 3.6 2.6 ± 2.8 0.319
February 2022 | Volume 13 | Article
TABLE 2 | Clinical Characteristics of the Study Participants.

Parameter Normoglycemia (n = 17) Prediabetes (n = 28) p-value

Age (years) 59.1 ± 9.0 61.1 ± 7.7 0.424
Gender (% female) 64.7 71.4 0.637
BMI (kg/m²) 24.3 ± 2.6 24.5 ± 3.9 0.876
SBP (mmHg) 126.5 ± 14.5 132.9 ± 12.2 0.124
DBP (mmHg) 80.4 ± 9.4 76.9 ± 10.3 0.261
FPG (mg/dl) 90.2 ± 6.3 102.1 ± 10.7 <0.0001
HbA1c (%) – 5.9 ± 0.5 –

Triglyceride (mg/dl) 95.6 ± 61.2 119.1 ± 94.2 0.367
LDL-C* (mg/dl) 112.5 ± 42.9 100.9 ± 28.6 0.282
HDL-C# (mg/dl) 62.7 ± 31.4 60.5 ± 14.7 0.751
IFG duration (years) – 3.4 ± 2.8 –

Drugs (% use)
* ACEI or ARB** 23.5 48.1 0.102
* DHP-CCB## 58.8 37.0 0.158
* Thiazide-like diuretic 11.8 25.9 0.257
* Statins 52.9 57.1 0.783
* Fibrate 11.8 10.7 0.913
eGFR (ml/min) 76.4 ± 26.7 84.7 ± 21.9 0.264
FRAX: 10-year risk of hip fractures (%) (FRAX-H) 0.7 ± 1.0 1.5 ± 2.1 0.215
FRAX:10-year risk of osteoporotic fractures (%) (FRAX-O) 2.9 ± 1.6 4.6 ± 3.5 0.085
*LDL-C, low-density lipoprotein cholesterol.
#HDL-C, high-density lipoprotein cholesterol.
**ACEI angiotensin-converting enzyme inhibitors.
**ARB, angiotensin II receptor blockers.
##DHP-CCB, dihydropyridine calcium channel blockers.
799872
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According to the results of osteogenic differentiation in this study,
we further performed backward power calculations to confirm
that our sample size had adequate power to demonstrate a
comparable differentiation ability between the prediabetic and
normoglycemic groups (51). As a result, our study had 80%
power to demonstrate non-inferior potential for osteogenic
differentiation in the prediabetic group compared to the
normoglycemic group at a margin of equivalence of 23%.

Our previous studies demonstrated impaired osteogenic
differentiation in PBMC isolated from patients with type 2
diabetes (36, 37), as well as cellular RAGE overexpression only
in PBMC showing an impaired ability to differentiate toward
osteoblast (37). Therefore, that cellular RAGE overexpression
was conceivably associated with the impairment of osteogenic
differentiation found in patients with type 2 diabetes. Since we
demonstrated a preservation of osteogenic differentiation
potential in PBMC derived from prediabetic patients, it was
interesting to determine how cellular RAGE expression changes
in those cells. To determine the alteration of cellular RAGE
expression in patients with prediabetes showing preserved
osteogenic differentiation, the level of AGER gene expression
was compared between groups with prediabetes and
normoglycemia. The PBMC showing poor osteogenic
differentiation, two in the normoglycemic group and three in
the prediabetic group, were excluded from the following analysis
due to very small counts in these groups. Since pentosidine has
been documented in other studies as an AGER enhancer (28, 29),
and age was demonstrated in our previous study as a predictor of
osteogenic differentiation potential (37), the level of AGER
expression in prediabetic participants was compared with the
Frontiers in Endocrinology | www.frontiersin.org 6
level of AGER expression in age- and pentosidine-matched
normoglycemic individuals. Interestingly, the AGER expression
was significantly suppressed in individuals with prediabetes
compared to age- and pentosidine-matched normoglycemic
individuals (0.5 ± 0.6 vs 1.0 ± 0.0, p = 0.003) (Figure 2). Since
the activation of RAGE gives rise to the activation of its
downstream apoptotic pathway, the levels of BAX and BCL2
expression were measured to determine whether the apoptotic-
associated signals were also suppressed in prediabetic
individuals. In concordant with AGER expression, BAX/BCL2
expression ratio was significantly suppressed in prediabetic
participants compared to those with normoglycemia (0.7 ± 0.5
vs 1.0 ± 0.0, p = 0.010) (Figure 2). Furthermore, the level of
AGER expression significantly correlated with the level of the
BAX/BCL2 expression ratio (r = 0.986, p <0.0001). Therefore, the
cellular RAGE suppression shown in prediabetes was
conceivably a protective factor against cellular apoptosis and
also osteogenic differentiation defects.

Serum Pentosidine was an Independent
Risk Factor for Determining AGER
Expression in Individuals With Prediabetes
Since the lower level of AGER expression was conceivably
associated with the preservation of osteogenic differentiation of
PBMC isolated from prediabetic individuals, the factors
influencing that AGER suppression were valuable to be
elucidated. Univariate analysis showed that AGER expression
positively correlated with serum pentosidine (r = 0.513, p =
0.006), but inversely correlated with the duration of being
prediabetic (r = −0.480, p = 0.011). Next, we performed the
FIGURE 1 | The Expression of Osteogenic Differentiation Markers. Box and whisker plots to show a comparison of the expression of osteoblast-specific genes
between participants with normoglycemia and patients with prediabetes (mean ± SD). Both prediabetic and normoglycemic groups had comparable levels of
osteoblast-specific gene expression, namely, ALPL, COL1A1, BGALP, and RUNX2/PPARg ratio (RUNX2/PPAR).
February 2022 | Volume 13 | Article 799872

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Phimphilai et al. Preserved Osteogenic Differentiation in Prediabetes
multivariate analysis using backward linear regression analysis to
identify an independent risk factor for the expression of AGER.
In addition to serum pentosidine and duration of being
prediabetic, we included another 4 parameters that showed a
correlation with either serum pentosidine or duration of being
prediabetic in the further analysis because those factors may
influence the expression of AGER. These 4 factors were as
follows: HbA1c, which showed a positive correlation with
serum pentosidine in the prediabetic group (r = 0.614, p =
0.044); and FPG (r = 0.425, p = 0.007), FRAX-H (r = 0.477,
p = 0.004), and FRAX-O (r = 0.49, p = 0.003), which showed a
positive correlation with the duration of being prediabetic. Upon
performing the backward linear regression analysis, the
multivariate analysis showed that only serum pentosidine
significantly associated with the expression of AGER (r =
0.879, p = 0.002), indicating that serum pentosidine was an
independent risk factor for determining AGER expression.
Therefore, in this present study, serum pentosidine was the
only factor identified as independently contributing to the
expression of AGER.

We next determined the potential of using serum pentosidine
as a predictor of AGER suppression in prediabetic individuals.
We categorized the AGER expression into two groups, including
the AGER suppression group as defined by an AGER expression
level of less than 1 and the AGER non-suppression group as
defined by the level of AGER expression as equal to 1 or higher.
Regarding serum pentosidine, the cut-off level of serum
pentosidine to predict the level of AGER expression with the
Frontiers in Endocrinology | www.frontiersin.org 7
highest sensitivity and specificity was calculated. As a result, the
cut-off level of serum pentosidine to predict the level of AGER
expression with 90.9% sensitivity and 46.7% specificity was 2.1
ng/ml. Therefore, we applied this value of serum pentosidine for
further analysis. After categorizing patients into two groups
according to the level of AGER expression, we next performed
logistic regression analysis to determine whether the proposed
cut-off point of serum pentosidine predicted the occurrence of
AGER suppression. When the AGER expression was categorized
into two groups, serum pentosidine at the cut-off level of 2.1 ng/
ml (OR 8.75; 95% CI 0.88–86.6, p = 0.064) and FPG at the cut-off
level of 100 mg/dl (OR 0.15; 95% CI 0.02–0.94, p = 0.043) showed
an association with the group of AGER expression. As
demonstrated in Figure 3, the area under the ROC curve
(AUC) of serum pentosidine to predict the AGER expression
was 0.688. In addition to serum pentosidine, when we put the
cut-off point of FPG at the prediabetic range into the model, the
AUC significantly increased from 0.688 to 0.803 (0.803 vs 0.688,
p = 0.048) (Figure 3). This improvement in AUC indicated that
serum pentosidine was a good predictor for AGER expression in
prediabetic patients. The predictive probability of AGER
suppression by serum pentosidine at the cut-off point of less
than 2.1 ng/ml and FPG at the cut-off point of prediabetes was
0.97, which means that 97% of patients with prediabetes were
correctly classified into the AGER suppression group if those
patients had a serum pentosidine level lower than 2.1 ng/ml.

The results of linear regression analysis indicated that serum
pentosidine was an independent risk factor for AGER expression.
FIGURE 2 | The Expression of AGER, BAX, and BCL2 Genes. Box and whisker plots to show a comparison of AGER and BAX/BCL2 ratio between PBMC-isolated
from individuals with normoglycemia and prediabetes. AGER and BAX/BCL2 ratio in PBMC-isolated from individuals with prediabetes were significantly suppressed
by 2 and 1.4 folds, respectively, compared to those in age- and pentosidine-matched PBMC-isolated from participants with normoglycemia.
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However, from the result of logistic regression analysis, serum
pentosidine was shown as a good predictor for AGER expression
only in the prediabetic group. Therefore, our study demonstrated
the potential of using serum pentosidine as a predictor of AGER
expression in prediabetic individuals. With a serum pentosidine
level of lower than 2.1 ng/ml, there was an extremely high
possibility of the expression of AGER being suppressed in
prediabetic individuals. Since the AGER suppression shown in
the prediabetic group was conceivably a protective factor against
cellular apoptosis as well as osteogenic differentiation defects, it
may be inferred that a serum pentosidine level of lower than 2.1
ng/ml is a protective factor against cellular apoptosis and
impaired osteogenic differentiation in this prediabetic group.
DISCUSSION

This study demonstrated the preservation of osteogenic
differentiation ability in the PBMC derived from prediabetic
individuals as defined by the impaired fasting glucose criteria. In
addition, the suppression of AGER and apoptotic-related signals
was demonstrated in those prediabetic-derived PBMC that
showed the preservation of osteogenic differentiation potential.
Serum pentosidine was shown as an independent risk factor for
the cellular RAGE expression. In addition, the level of serum
pentosidine of lower than 2.1 mg/dl was demonstrated as being a
good predictor for the occurrence of AGER suppression in
individuals with prediabetes.

In high fat diet-induced obesity and prediabetic animal
models, a decrease in osteoblast proliferation, differentiation,
and survival, and also a deterioration of bone microarchitecture
have been consistently demonstrated (41, 42). However, in
humans, it has been shown that individuals with prediabetes
retain a preservation of both bone mineral density (17–20) and
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bone material strength (24). Moreover, there have been
inconsistent reports involving the increment of hip fracture in
prediabetic population (19, 21–23). Therefore, the detrimental
effects of prediabetes on the skeleton remain to be elucidated in
prediabetic patients. This study involving osteogenic
differentiation ability of the stem cells in prediabetic patients
may give rise to additional information on this obscure issue.
Furthermore, it is valuable to elucidate whether there is an
osteogenic differentiation defect at the prediabetic stage as a
measure for establishing a skeletal health strategy in type 2
diabetes in the future. In this study, we demonstrated the
preservation of osteogenic differentiation in PBMC isolated
from patients with prediabetes. The PBMC derived from this
prediabetic group showed the same rate of differentiation toward
osteoblasts as the rate in the normoglycemic group. In addition,
they also had the same degree of osteoblast-specific gene
expression as that in normoglycemic individuals. Therefore,
being prediabetic as diagnosed by IFG, did not show a
detrimental effect on the osteogenic differentiation potential of
the PBMC, which is probably linked to the preservation of bone
mineral density and bone microarchitecture which has been
shown in several previous studies and may favor a neutral
fracture risk in prediabetic individuals.

Our previous study, performed in patients with type 2
diabetes, demonstrated AGER overexpression only in PBMC
showing poor osteogenic differentiation ability but not in the
PBMC showing preserved osteogenic differentiation (37),
suggesting a linkage between AGER overexpression and a
defect in osteogenic differentiation in PBMC derived from
individuals with type 2 diabetes. In this study, we
demonstrated the preservation of osteogenic differentiation in
the PBMC isolated from patients with prediabetes. Therefore, it
is interesting to see how cellular RAGE expression alteration in
this group of patients with preserved osteogenic differentiation.
FIGURE 3 | ROC and Area under ROC (AUC) for the Prediction of the expression of AGER. With serum pentosidine at the cut-off level of 2.1 ng/ml, the AUC of
serum pentosidine to predict the expression of AGER was 0.688. With the combination of both serum pentosidine at the cut-off level of 2.1 ng/ml and fasting plasma
glucose at the cut-off level of 100 mg/dl into the model, the AUC significantly increased from 0.688 to 0.803 (0.803 vs 0.688, p = 0.048).
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In this study, when we performed analysis of cellular RAGE
expression in PBMC showing preserved osteogenic
differentiation, we demonstrated a lower level of AGER
expression in the PBMC derived from the prediabetic group
compared to those from the normoglycemic group, indicating
cellular RAGE suppression in prediabetes with preserved
osteogenic differentiation ability. Therefore, it is noteworthy to
state that the level of cellular RAGE expression would influence
osteogenic differentiation in both prediabetic and diabetic
individuals, ranging from suppression in prediabetes to
overexpression in type 2 diabetes. Our results regarding AGER
suppression in prediabetes were consistent with a previous report
(52). Ruelas and colleagues (52) demonstrated lower expression
levels of both the AGER gene and RAGE protein in PBMC
derived from patients with prediabetes and insulin resistance
than those in the PBMC-isolated from normal healthy
volunteers. However, they did not determine the differentiation
potential of those isolated PBMC (52). Even though AGER gene
suppression was repetitively shown in both our and previous
studies, the underlying mechanism leading to the suppression of
AGER in prediabetes remains to be elucidated. To date, several
signal alterations have been shown to maintain normal bone
metabolism in prediabetes. In an animal model, Mohammad and
colleagues (53) reported a ligand-induced downregulation of
TLR4 in bone marrow-derived macrophages isolated from
prediabetic mice while TLR4 was constantly high in diabetic
mice. Zhang and colleagues (54) demonstrated that the
decrement of TLR4 reduced hyperglycemia-induced osteoblast
apoptosis, promoted bone mineralization, and improved bone
structure in a rat model. Therefore, the downregulation of TLR4
occurred at a prediabetic stage to maintain osteoblast survival
and bone integrity. In contrast, Bhansali and colleagues (55)
demonstrated an increase in mitophagy-related markers and
mitochondrial mass in PBMC derived from patients with
prediabetes but showed a decrease in those mitophagy-related
markers and mitochondrial mass in cases with type 2 diabetes.
Later, Gao and colleagues (56) showed that the regulation of
mitochondrial stress by the prevention of oxidative damage to
the mitochondria is required during osteogenic differentiation
and bone formation. In addition, Dobson and colleagues (57)
demonstrated that mitochondrial dysfunction entailed impaired
osteogenesis and accelerated age-related osteoporosis. Therefore,
the upregulation of mitophagy which occurred at the prediabetic
stage was essential to maintain normal osteoblast development
and function. Following previous reports on changes in signal
regulation in prediabetes, we hypothesized that the
downregulation of AGEs-dependent RAGE activation occurred
at the prediabetic stage. The downregulation of AGEs-dependent
RAGE activation would yield a lower degree of RAGE
stimulation even in the presence of the same amount of AGEs,
as demonstrated by the significant suppression of AGER in
prediabetic individuals compared to age- and pentosidine-
matched normoglycemic participants in our study. In addition,
the downregulation of AGEs-dependent RAGE activation may
lead to a lower rate of AGEs formation even in the presence of
mild hyperglycemia, as demonstrated by the insignificant lower
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serum pentosidine level in the prediabetic group compared to the
normoglycemic group in our study. Even though the underlying
mechanism for the downregulation of AGEs-dependent RAGE
activation remains to be further elucidated, it is noteworthy to
state that the downregulation of AGEs-dependent RAGE
activation that occurred at the prediabetic stage is conceivably
one of the mechanisms to promote osteoblast differentiation and
survival, which then maintains osteogenesis and bone integrity in
individuals with prediabetes.

Since the suppression of AGER conceivably contributes to a
decrease in cellular apoptosis and preservation of osteogenic
differentiation in prediabetes, the suppression of AGER would be
a good predictive factor for the maintenance of skeletal integrity
in prediabetes. However, the measurement of AGER expression
in the PBMC required multiple steps that were mostly performed
on research scales. Further analysis was conducted to determine
the independent risk factors of AGER expression. If this
independent risk factor could be analyzed easily, it may be
used as a surrogate marker for cellular RAGE expression and
the differentiation ability of the PBMC. Using linear regression
analysis, serum pentosidine was shown to be an independent risk
factor for AGER expression. Since the cut-off point of serum
pentosidine level to predict the adverse outcomes of AGEs has
never been reported, the cut-off point of serum pentosidine was
calculated for the highest sensitivity and specificity in our study.
A serum pentosidine level of 2.1 ng/ml showed the highest
sensitivity and specificity to predict the expression of AGER.
Logistic regression analysis was then performed to determine the
predictive potential of this proposed cut-off point. Our results
showed that this proposed cut-off point was a good predictor for
AGER expression only in the prediabetic group (AUC 0.803).
Since serum pentosidine is much easier to measure than cellular
RAGE expression, it is more applicable, especially in the clinic, to
use serum pentosidine as a surrogate marker for cellular RAGE
expression and differentiation potential of the PBMC. Serum
pentosidine has previously been shown to be useful as a predictor
of chronic microvascular (2, 4) and macrovascular complications
(3), and also vertebral fractures (14, 39, 40) in a diabetic
population. A higher level of serum pentosidine would increase
the risk of diabetic complications and fracture; however, a cut-off
point for clinical prediction has never been proposed. Our study
provided another aspect of using serum pentosidine as a
protective predictive factor in prediabetes. A level of serum
pentosidine lower than the threshold of 2.1 ng/ml was found
to be associated with lower AGER expression level and may relate
to the preservation of osteogenic differentiation in prediabetes.

This study is the first study to demonstrate the preservation of
osteogenic differentiation in PBMC derived from prediabetic
individuals, and being the first to show the suppression of
cellular RAGE and apoptotic-related signals in those PBMC with
a preserved osteogenic differentiation ability. In addition, this study
proposes the possibility of using serum pentosidine as a surrogate
marker for cellular RAGE expression and osteogenic differentiation
ability in prediabetic patients. However, this evidence should be
interpreted with caution as there are several limitations. First, this
study only demonstrated signal activation by mRNA levels due to
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the limited number of isolated cells from the relatively small 35–40
ml sample of peripheral blood collected from recruited patients.
Due to the possibility of the gene being transcripted but not
translated into proteins, the AGER suppression probably does
not lead to lower RAGE activation. Second, this study was a
small study, including 28 individuals with prediabetes and 17
participants with normoglycemia, which may have impacted the
power of the study. This study was shown to have 80% power to
demonstrate non-inferior potential for osteogenic differentiation in
the prediabetic group compared to the normoglycemic group at a
margin of equivalence of 23%, so the small difference in osteogenic
differentiation potential of less than 23% would not be detected by
this study. Third, this study demonstrated only the pattern of
association between parameters, so the causes and effects of those
parameters cannot be concluded. Regarding the association
between AGER suppression and osteoblast differentiation, studies
involving RAGE overexpression would clarify whether cellular
RAGE suppression directly yields to preserved osteoblast
differentiation. Fourth, the cut-off level of serum pentosidine may
not be universally equal to 2.1 ng/dl. This proposed threshold may
need to be verified before diagnostic application in the clinic. Even
though the ELISA test kit used for the measurement of serum
pentosidine in this study has a wide range of detection (0.47–50 ng/
dl) and has a coefficient of variation of less than 10% according to
the manufacturer information, this test kit is established for a
research scale but not for diagnostic purposes. Last, this study was a
cross-sectional study which had several unexpected confounding
factors caused by the nature of this type of study. Even though all
baseline characteristics of the enrolled participants were generally
comparable, those unexpected confounding factors might influence
the results of the study.
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