
biology

Article

Quadruplex-Forming Motif Inserted into 3′UTR of Ty1his3-AI
Retrotransposon Inhibits Retrotransposition in Yeast

Viktor Tokan 1, Jose Luis Rodriguez Lorenzo 1, Pavel Jedlicka 1, Iva Kejnovska 2, Roman Hobza 1

and Eduard Kejnovsky 1,*

����������
�������

Citation: Tokan, V.; Rodriguez

Lorenzo, J.L.; Jedlicka, P.; Kejnovska,

I.; Hobza, R.; Kejnovsky, E.

Quadruplex-Forming Motif Inserted

into 3′UTR of Ty1his3-AI

Retrotransposon Inhibits

Retrotransposition in Yeast. Biology

2021, 10, 347.

https://doi.org/10.3390/

biology10040347

Academic Editor: Silke Jensen

Received: 15 March 2021

Accepted: 15 April 2021

Published: 20 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences,
Kralovopolska 135, 61200 Brno, Czech Republic; viktor.tokan@ibp.cz (V.T.); rodriguez@ibp.cz (J.L.R.L.);
jedlicka@ibp.cz (P.J.); hobza@ibp.cz (R.H.)

2 Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences,
Kralovopolska 135, 61200 Brno, Czech Republic; kejnovska@ibp.cz

* Correspondence: kejnovsk@ibp.cz

Simple Summary: Four-stranded DNA (guanine quadruplex) can regulate many cellular processes
such as replication, recombination and also gene expression. This study shows that four-stranded
DNA can also affect the activity of mobile genetic elements (transposable elements). We inserted a
quadruplex-forming motif into a non-coding region of the Ty1 transposable element and tested its
activity in yeast cells. We found that the quadruplex inhibited Ty1 jumping. Especially when the
quadruplex was formed on the transcribed strand, the amplification of the element was hindered.
Our study shows that DNA conformation can tune the activity of mobile genetic elements that in
turn shape eukaryotic genomes during evolution.

Abstract: Guanine quadruplexes (G4s) serve as regulators of replication, recombination and gene
expression. G4 motifs have been recently identified in LTR retrotransposons, but their role in the
retrotransposon life-cycle is yet to be understood. Therefore, we inserted G4s into the 3′UTR of
Ty1his3-AI retrotransposon and measured the frequency of retrotransposition in yeast strains BY4741,
Y00509 (without Pif1 helicase) and with G4-stabilization by N-methyl mesoporphyrin IX (NMM)
treatment. We evaluated the impact of G4s on mRNA levels by RT-qPCR and products of reverse
transcription by Southern blot analysis. We found that the presence of G4 inhibited Ty1his3-AI retro-
transposition. The effect was stronger when G4s were on a transcription template strand which leads
to reverse transcription interruption. Both NMM and Pif1p deficiency reduced the retrotransposition
irrespective of the presence of a G4 motif in the Ty1his3-AI element. Quantity of mRNA and products
of reverse transcription did not fully explain the impact of G4s on Ty1his3-AI retrotransposition
indicating that G4s probably affect some other steps of the retrotransposon life-cycle (e.g., translation,
VLP formation, integration). Our results suggest that G4 DNA conformation can tune the activity of
mobile genetic elements that in turn contribute to shaping the eukaryotic genomes.

Keywords: Ty1 LTR retrotransposon; G-quadruplex; retrotransposition; N-methyl mesoporphyrin
(NMM); Pif1 helicase; yeast

1. Introduction

Guanine-rich sequences (with consensus motive G≥3N1−7G≥3N1−7G≥3N1−7G≥3) are
capable of forming four-stranded DNA and RNA structures called G-quadruplexes (G4s,
recently reviewed in [1]). Since their discovery by Henderson in the 1980s [2], G4s rapidly
gained attention among scientists. The first structural studies were focused mostly on
quadruplex molecularity and topology, but later in vitro and in vivo studies showed
the biological importance of quadruplexes in a myriad of cellular processes serving as
regulators of replication, telomere maintenance, transcription, translation, recombination
and chromatin organization [3–5].

Biology 2021, 10, 347. https://doi.org/10.3390/biology10040347 https://www.mdpi.com/journal/biology

https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://doi.org/10.3390/biology10040347
https://doi.org/10.3390/biology10040347
https://doi.org/10.3390/biology10040347
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biology10040347
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology10040347?type=check_update&version=3


Biology 2021, 10, 347 2 of 13

Quadruplex-forming sequences (QSs) are abundant in eukaryotic genomes, e.g., al-
most 150 thousand putative non-telomeric QSs were found in the maize genome [6]. In
the human genome, more than 700 thousand distinct G4 structures were identified by
the G4-Seq approach [7] while only about 25 thousand were found by Single-Molecule
Real-Time (SMRT) technology [8].

QSs are often present in regulatory regions of genes but we have recently found accu-
mulation of QSs within human and plant transposable elements (TEs; [9–11]). Transposable
elements constitute a significant proportion (up to 80%) of most eukaryotic genomes [12–15].
We have shown that potential quadruplex-forming motifs are present in regulatory regions
of transposable elements and are more abundant in evolutionarily young elements [9,10].
However, the role of quadruplexes in the retrotransposon life-cycle is far from understood.

Ty1 elements, LTR retrotransposons of the Ty1/copia superfamily, belong to the most
studied transposable elements in yeast. They represent a useful model system for studies
of retrotransposition regulation [16]. The engineered Ty1 element containing the HIS3
gene with an artificial intron (AI), that is spliced before reverse transcription, enables
the detection of new Ty1 retrotransposition events in His3+ colonies [17]. Such a system
referred to as Ty1his3-AI has the potential for inserting additional sequences (e.g., QSs) into
Ty1 and studying their effect on retrotransposition.

Previously, we have shown the effect of LTR located G4s on a downstream reporter
gene [18]. Here, we inserted a quadruplex-forming motif into the 3′UTR region of the
Ty1his3-AI retrotransposon and studied its effect on retrotransposition in yeast as well as
the impact of the G4-stabilizing drug N-methyl mesoporphyrin (NMM) and an absence of
Pif1 helicase, an enzyme which unwinds quadruplexes [19–21]. We also evaluated how
individual steps of Ty1his3-AI retrotransposition are affected by G4 formation.

2. Materials and Methods
2.1. Plasmid Construction

All plasmids were based on the pGTy1his3-AI plasmid (Addgene plasmid # 62228; http:
//n2t.net/addgene:62228 (accessed on 5 January 2018); RRID:Addgene_62228). In order to
clone the sequences of interest into the plasmid, a SacII recognition site was introduced into
the Ty1his3-AI 3′UTR using a single mutagenic primer GAGGATCCCGCGGGGAGCTC
and the QuikChange Multi Site-Directed Mutagenesis Kit (Agilent, Santa Clara, CA, USA).
The mutant product was electroporated into XL-1 blue competent cells (Agilent) and the
mutation was verified by SacII digestion and sequencing. The resulting plasmid pVTy1
was then digested by SacII, blunted, dephosphorylated and used for cloning annealed
oligonucleotides (Table S1). To anneal the oligonucleotides, 300 pmol of each sense and
antisense strands were treated for 90 min at 37 ◦C with 20 units of T4 polynucleotide kinase
(New England Biolabs, Ipswich, MA, USA). After incubation, the reactions were placed in
a boiling water bath for 2 min and allowed to cool to room temperature slowly. Then, 1 µL
of 100× diluted annealed oligonucleotides together with 50 ng of plasmid was used for
ligation. Copy-number and orientation of cloned sequences were verified by sequencing.

2.2. Circular Dichroism Spectroscopy, PAGE

Circular dichroism and polyacrylamide gel electrophoresis (PAGE) were performed
as described in [9]. The CD measurements were carried out at 22 ◦C in accordance with
yeast growth conditions. NMM was added to DNA and potassium solution in increments
to reach the final concentration of 0.25, 0.625, 1.25, 1.875, 2.5 and 7.5 µM representing 0.1,
0.25, 0.5, 0.75, 1 and 3 molar ratios to oligonucleotides, respectively.

2.3. UV Absorption Spectroscopy and Thermal Melting

UV absorption spectra were collected on a UV/VIS spectrometer Varian Cary 4000
(Mulgrave, Oakleigh, Australia) in the range of 230–330 nm in 1 cm cells. The temperature
was increased/decreased in 1 ◦C steps and the samples were equilibrated for 2 min before
each measurement. The melting curves were expressed as the change in molar absorption
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ε [M−1cm−1] at 297 nm with temperature and the Tm values were calculated as half of the
nature/denature state from the normalized melting dependencies.

2.4. Retromobility Assay

Yeast strains BY4741 and Y00509 (BY4741; MATa; ura3∆0; leu2∆0; his3∆1; met15∆0;
pif1::kanMX4; EUROSCARF) were transformed by pVTy1-based plasmids (Figure 1). Three
to four single colonies of transformants were inoculated into 1500 µL SC-URA, 2% glucose
and shaken at 250 rpm at 30 ◦C over-night. Next day, 100 µL of the culture was used for
inoculation of 1500 µL SC-URA, 0.1% glucose, 2% raffinose and grown as previously. In
the case of NMM (N-methylmesoporphyrin IX, Frontier Scientific) treatment, it was added
to the final 8 µM concentration, to ensure G4 stabilization prior to Ty1 retrotransposition
induction. The following day, 100 µL of 1000× diluted over-night culture was used to
inoculate 1500 µL SC-URA, 2% raffinose, 2% galactose, (8 µM NMM) and shaken at 250 rpm
at 22 ◦C for several days until saturation. The 8 µM NMM concentration was chosen based
on literature [22]. Then 100 µL of each culture was plated in serial dilutions on SC-HIS
and YPD plates for colony counting. Best dilutions were 500× for SC-HIS and 100,000×
for YPD, 2–3 plates were counted for each colony and dilution. The retrotransposition
frequency was calculated as His positive CFU portion of all CFUs. One-way ANOVA (for
absolute retrotransposition frequencies) followed by Tukey’s HSD test (p ≤ 0.05) and Two-
way ANOVA (for relative retrotransposition frequencies) followed by Dunnett’s multiple
comparisons test (p≤ 0.05) were performed using GraphPad Prism version 8.0 for Windows
(GraphPad Software, La Jolla, CA, USA, www.graphpad.com (accessed on 2 June 2019)) at
a 0.05 significance level.

Figure 1. Schema of plasmid containing Ty1his3AI retrotransposon and element retrotransposition.
Plasmid borne chimeric Ty1 element contains retrotransposition indicating HIS3 gene in opposite
orientation with respect to Ty1 transcription. The HIS3 gene is disrupted by an artificial intron (AI),
which is spliceable only when transcription starts from an inducible Gal1 promoter (Gal1p). After
splicing and reverse transcription, the new Ty1 genomic copy contains functional HIS3 and yeast can
be grown on selective plates without histidine. TR-5′ truncated LTR.

www.graphpad.com
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2.5. RT-qPCR

For RNA isolation, 10 transformants were grown in the same way as for the trans-
position assay. RNA isolation was then performed in a pool containing 1 mL of each
culture. Hot acidic phenol extraction protocol was used for RNA isolation [23], but with
the RNA being precipitated by LiCl and repurified using RNAzol® RT (Molecular Research
Center, Inc.Cincinnati, OH, USA) with 4-bromoanisole (Sigma Aldrich, St. Louis, MO,
USA). This protocol produced RNA with only a very small amount of DNA contamination
that was then completely removed by TURBO DNA-free™ Kit (Invitrogen, Carlsbad, CA,
USA). Reverse transcription was done using High-Capacity RNA-to-cDNA™ Kit (Applied
Biosystems, Foster City, CA, USA). RT-qPCR was performed in triplicate with Rotor-Gene
Q (Qiagen, Hilden, Germany) and SensiFAST™ 2X HRM kit (Bioline, London, UK), 10 ng
of cDNA and 5 µM of each primer (Table S1). Data analysis and processing was done in
LinReg software (Heart Failure Research Center, Amsterdam, NL; [24]). Statistics were
performed in R Studio, V.1.2.1335 (R Development Core Team; Boston, MA, USA; [25]),
using the powerTransform function for transformation followed by Univariate analysis
of variance (ANOVA) with GLM procedure to decipher factor interactions and post hoc
Tukey’s HSD test (p ≤ 0.05) to carry out multiple comparisons.

2.6. cDNA Analysis

Yeast cultures were prepared the same as for the retromobility assay except for an
increase in volume to 5 ml SC-URA (2% rafinose, 2% galactose). Two controls were included:
cells with pVTy1 without galactose induction (glucose only) and cells without plasmid
but with galactose induction (SC with all amino acids). Spheroplasts were prepared by
incubation of cells with 1 mg/mL of Zymolyase 20T (MP Biomedicals) at 37 ◦C for 60 min
in 0.9 sorbitol, 0.1 M EDTA containing 1 µL of ß-mercaptoethanol per mL (Sigma Aldrich)
and 0.1 mg/mL RNase A (Qiagen). DNA from spheroplasts was extracted by incubation
with CTAB extraction buffer for 45 min at 62 ◦C (2% CTAB, 2M NaCl, 10mM EDTA, 50 mM
HEPES) followed by two chloroform extractions and isopropanol precipitation. About 3
µg of total DNA were digested by AflII and subjected to electrophoresis on 1% agarose and
transferred to Hybond-N+ (Amersham, UK). The membrane was hybridized with HIS3
PCR product (Table S1) labeled by α32P (dATP) using Prime-It II Random Primer Labeling
Kit (Agilent). The 32P activity was analyzed by Typhoon FLA9000 and ImageQuant TL
v8.1.0.0 software (GE Healthcare; Chicago, IL, USA).

3. Results
3.1. Characterization and Biophysical Properties of G4 Sequences

In order to test the effect of G4 on retrotransposition we choose a modified chimeric
Ty1his3-AI retrotransposon system ([17]; see Materials and Methods for details). As a
first step, we analyzed the Ty1his3-AI element (File S1) for its natural G4 forming ability
using PQS finder [26]. The default setting, copying human G4-seq detected quadruplexes
(min. score 47), did not propose any potential quadruplex sequence (PQS). To confirm this
absence we applied a suboptimal min. score of 25 which resulted in the identification of 4
PQSs all on the template strand (Figure S1). However, none of the sequences contained an
undisrupted track of 3 guanines, a typical prerequisite for G4 formation. According to both
CD spectroscopy and thermal UV melting assays, none of these sequences form orderly
structures in vitro, as suggested by the low amplitude of ellipticity (thermal melting data
not shown).

Following the confirmation that quadruplexes were not formed by motifs present
within Ty1his3-AI, we proceeded with inserting quadruplex-forming sequences (QSs) as
well as control sequences into the element. The QS originated from the LTR retrotransposon
Machiavelli family found in Zea mays B73 [27], and the control sequences were derived
from the QS by replacing a number of guanines with adenines (Figure 2).

In order to characterize the effect of guanine substitutions on G4 formation, stability
and interaction with the G4 stabilizing drug NMM, circular dichroism spectroscopy was
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used with a combination of UV absorption spectroscopy, thermal melting assay and poly-
acrylamide gel electrophoresis (PAGE). All tested oligonucleotides represented the G-rich
strand and also contained an additional G-track present on the plasmid carrying Ty1his3-AI
element (Figure 2). Both the WT and M1 sequences formed parallel-stranded G4s suggested
by the development of a typical CD spectra in increasing potassium concentration with
peaks at 260 and 240 nm [28]. The CD spectra of the M2 sequence were not affected by
increasing potassium concentration and were shifted to longer wavelengths, suggesting
B-DNA formation. Native PAGE revealed that WT, as well as M1, formed monomolecular
G-quadruplexes where WT also contained a bimolecular fraction after annealing in 150 mM
potassium (Figure S2). M2 produced a clear strong band on native PAGE gel, confirming B
form hairpin formation.

Figure 2. CD spectra of inserted sequences into Ty1his3-AI. CD spectra obtained in an increasing
potassium concentration showing formation of quadruplex in WT and M1 but not in M2 (ON—
overnight, AN—annealed). The sequences of tested oligonucleotides are shown with G-tracts
highlighted by red and G to A substitutions by green color.

To test the effect of NMM on G4 formation and stability, we first added NMM incre-
ments to oligonucleotides (up to 3:1 molar ratio) supplemented with only 15 mM K+. The
CD spectra showed that NMM sped up the G4 formation however the effect on the final
structures was negligible (Figure S3). UV absorption spectroscopy and thermal melting
assay showed that addition of NMM to WT and M1 gave rise to a typical absorption peak at
402 nm, indicating an interaction of NMM with G4s (Figure 3A; [21]). This absorption peak
reached zero values with an increasing temperature as the G4 melted and the interaction
was disrupted (Figure 3B). Absorption maxima of free NMM at 377 nm behaved in the
opposite manner with respect to temperature. Note that due to NMM being also in a
blank sample, the free NMM signal reached negative values when there was G4–NMM
interaction in the sample. The spectrum of M2 was not changed by NMM. The melting
temperatures (Tm) of G4 forming oligonucleotides were calculated at 297 nm and revealed
that NMM increased Tm by 7 ◦C in WT and by 4 ◦C in M1 suggesting that NMM stabilized
tested quadruplexes (Figure 3C). The melting temperature of M2, which does not form
G4, was calculated at 254 nm and irrespective of NMM addition Tm remained at 73 ◦C.
A different wavelength for melting temperature calculation of M2 was used because of
negligible differences of A297 with respect to temperature changes.
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Figure 3. UV absorption spectroscopy and thermal melting. (A) Full absorption spectra obtained
during heating from 20 to 95 ◦C in 15 mM potassium and 7.5 µM NMM show typical peaks at 377
and 402 nm of free and G4-bound NMM, respectively. Black arrows indicate peak development with
increasing temperature. (B) Absorbance at 377 and 402 nm plotted against temperature revealing a
disruption of NMM-G4 interaction due to the increase in temperature. (C) Comparison of normalized
absorbance of WT and M1 at 297 nm shows the effect of NMM on G4 melting temperature and G4
stabilization by NMM in 15 mM potassium. Melting curves for M2 are calculated as normalized
absorbance at 254 nm.

In order to meet the physiological potassium concentration, we also tested the effect of
NMM in 150 mM K+ which produced similar results as in lower potassium concentration
(Figure S4). As a result of the high G4 stability in physiological potassium concentration, it
was not possible to precisely determine melting temperatures of the oligonucleotides and
therefore these are only roughly estimated. Both G4 forming WT and M1 oligonucleotides
adopted a stable G4. The melting temperature of the M1 oligonucleotide was 83 ◦C and the
hairpin formed by M2 was also 83 ◦C, whereas the WT did not completely melt even at
99 ◦C. Nevertheless, we still observed typical NMM related absorption peaks and shift of
the melting curves towards higher temperatures suggesting G4 stabilization by NMM also
in 150 mM potassium. Interestingly, while WT was more stabilized by NMM than M1 in 15
mM potassium, the shift of melting curves in 150 mM potassium was more prominent in
M1.

3.2. Inhibition of Retrotransposition—Effect of Strand Orientation, Pif1 Deficiency and NMM

As mentioned above, we cloned the QS and control sequences into the modified
Ty1his3-AI. This element is carried by pVTy1 plasmid and contains a SacII recognition site
in the 3′UTR 42 bp upstream of the polypurine tract (Figure S1A). Tested sequences were
cloned in both orientations. Plasmids carrying wild-type QSs were denoted as pWT+ and
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pWT− depending on the presence of the G rich sequence on either the coding or template
strand, respectively (Figure 4A). Similarly the plasmids containing mutated G4-forming
motifs were named pM1+/− and pM2+/−. Using the plasmid constructs containing G4-
forming motifs (pWT+/− and pM1+/−), constructs where G to A substitutions prevented
G4 formation (pM2+/−) and a control without inserted QS (pVTy1), we measured the retro-
transposition frequency in Saccharomyces cerevisiae strain BY4741 (Figure 4B). We observed
that the presence of quadruplexes strongly inhibited retrotransposition, especially when
the G rich strand was the template for transcription (constructs pWT− and pM1−). The
presence of M2 sequence showed no significant reduction of retrotransposition compared
to pVTy1 and also the orientation of M2 sequence was not important (Tukey’s HSD test,
p ≤ 0.05).

Figure 4. Frequency of Ty1his3-AI retrotransposition. (A) Sequences cloned (underlined) into SacII recognition site located
in 3′UTR of Ty1his3-AI. Guanine blocks are highlighted by red and G to A substitutions by green color. (B) Absolute
retrotransposition frequency of Ty1his3-AI (pVTy1) containing G-quadruplexes (pWT and pM1) as well as control sequences
(pM2), demonstrate the inhibitory effect of G4s as well as Pif1p deficiency and NMM treatment. Columns represent
mean ± SD (n = 3–4 colonies) of retrotransposition frequency. Significantly different transposition frequencies within each
treatment/yeast strain are indicated by different letters. (One way ANOVA, Tukey’s HSD test; p ≤ 0.05). (C) Heatmap
of inhibitory effect of inserted sequences combined with NMM treatment and Pif1p deficiency on retrotransposition. (D)
Relative Ty1his3-AI retrotransposition frequency normalized to pVTy1 revealing an inhibitory effect of NMM treatment
or Pif1 helicase deficiency (pif1::kanMX4). Statistical differences are with respect to BY4741 (One way ANOVA, Dunnett’s
test). Columns represent mean ± SD (n = 3–4 colonies) of retrotransposition frequency. * p-value ≤ 0.05; ** p-value ≤ 0.01;
*** p-value ≤ 0.001.

In order to further enhance the effect of G4s, we treated the BY4741 cells with G4
stabilizing ligand NMM and and also used an isogenic strain Y00509 lacking the G4
unwinding helicase Pif1 (containing pif1::kanMX4 mutation). The inhibitory effect of both
G4 stabilizing conditions on Ty1his3-AI retrotransposition is scaled in the heatmap of
aligned and clustered data normalized to pVTy1 control (Figure 4C). The most suppressed
retrotransposition was recorded in BY4741 cells treated with NMM (BY4741 NMM) and in
the strain lacking Pif1 helicase carrying constructs pWT− and pM1−. However, two-way



Biology 2021, 10, 347 8 of 13

analysis of variance revealed a higher significance of plasmid construct modification than
the yeast treatments (p < 2 × 10−16 and p = 5.51 × 10−8, respectively) suggesting that the
presence of G4 was critical and that G-quadruplex orientation was more important than its
stability.

Both the NMM treatment and the absence of Pif1 helicase reduced the overall retro-
transposition frequency, even in the case of pVTy1 (Figure 4B). In particular, the absence of
Pif1 helicase showed much stronger effect than NMM treatment and reduced the trans-
position frequency by roughly 3.6-fold compared to untreated BY4741. Surprisingly, we
also observed a significant inhibitory effect of both NMM treatment and pif1::kanMX4
mutation on the pM2+ and pM2− relative retrotransposition frequency normalized to
pVTy1 (Dunnett’s test, p ≤ 0.05; Figure 4D).

3.3. The Effect of G4 and Its Stabilization on mRNA Levels and Products of Reverse Transcription

To assess which step of the Ty1his3-AI life-cycle was affected by G4 formation we first
measured the mRNA quantity by real-time PCR for possible G4 effect on transcription
and/or mRNA stability (Figure 5A). We tested a limited sample set consisting of 10 pooled
induced cultures of control pVTy1 and pWT+/− with a combination of both NMM treat-
ment and deficiency of Pif1 helicase. We observed an overall reduction of mRNA quantity
by NMM treatment as well as by Pif1p deficiency. However, there was not any common
effect of both the presence of G4 and G-rich strand orientation that we observed in the
case of retrotransposition frequency. This shows that mRNA level is not affected by G4
but rather that both Pif1 helicase deficiency and NMM treatment reduce Ty1his3-AI mRNA
levels.

Consequently, we used Southern blot analysis to assess the effect of G4 on products
of reverse transcription (Figure 5B–F). We utilized a similar approach as [29] hybridizing
Ty1his3-AI specific probe on AflII digested total genomic DNA. In this approach, an uninte-
grated extrachromosomal cDNA fragment is the shortest (2240 bp) since all other fragments
originating from genomic DNA also contain a junction with surrounding chromosomal
DNA and hence are longer (Figure 5B). We used a probe homologous to the coding part of
the HIS3 gene. Such probe design ensures that the cDNAs produced from plasmid borne
elements will be distinguished from endogenous (genomic) Ty1 elements.

Southern blotting showed that Ty1his3-AI elements with motif adopting G4s exhibited
similar amounts of cDNA as elements not forming quadruplexes (pM2+/− and pVTy1;
Figure 5E). However, Ty1his3-AI elements having a G4 motif on template strand (pWT-
and pM1−) gave rise to an additional band around 1.8 kb (Figure 5C,D,F). Such a band
coincides with the length of the AflII-G4 fragment originating from unintegrated cDNA
in which reverse transcription was stopped at G4. However, we observed no increase in
intensity of this band in the case of NMM treatment nor pif1::kanMX4 mutation. Such an
observation would be expected in the case of stabilization of G4 by NMM treatment or
pif1::kanMX4 mutation. Nevertheless, the presence of shorter cDNA indicates the abortion
of reverse transcription by the G4 and thus reveals the potential molecular mechanisms
standing behind the inhibitory effect of G4 on Ty1his3-AI retrotransposition.
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Figure 5. Measurement of Ty1his3-AI mRNA levels by real-time PCR and analysis of reverse transcription products by
Southern blot. (A) mRNA relative quantities of plasmid borne Ty1his3-AI measured by real-time PCR showing only a slight
inhibitory effect of G4 but also overall reduction of mRNA by both NMM treatment and pif1::kanMX4. The mRNA levels
were normalized to the plasmid-borne URA3 mRNA. Significantly different expression levels are indicated by different
letters (One way ANOVA, Tukey’s HSD test; p ≤ 0.05). (B) Schematic of Southern blot design of unintegrated cDNA and
genomic copy indicating hybridization probe position (green rectangle) and relevant AflII sites. The probe detected a
2240 bp AflII fragment corresponding to unintegrated Ty1his3-AI cDNA and various longer fragments originating from the
junction of Ty1his3-AI and chromosomal DNA. (C) Southern blot analysis of AflII-digested total cellular DNA of cultures
induced for Ty1his3-AI retrotransposition by cultivation at 22 ◦C in galactose containing media (except for line 8, glucose).
Plasmid, cDNA and interrupted products of reverse transcription are indicated by blue, black and red arrows, respectively.
Band around 6 kb originates from a gDNA fragment containing his3∆1. Lines: (1) pWT+; (2) pWT−; (3) pM1+; (4) pM1−;
(5) pM2+; (6) pM2−; (7) pVTy1; (8) pVTy1 non-induced (NI); (9) BY4741 without plasmid; (10) pVTy1 isolated plasmid.
(D) Signal intensity of selected lines. For better visualization, the curves were aligned so that corresponding peaks match.
(E) Quantification of unintegrated cDNAs normalized to plasmid intensity. (F) Quantification of interrupted products of
reverse transcription normalized to plasmid intensity. Plotted values are means and standard deviations of three biological
replicates (independent cultures), except for NMM representing only two replicates.

4. Discussion

The presence of G4 motifs within specific parts of LTR retrotransposons indicates that
these sequences could play a role in retrotransposition regulation. We previously showed
that the majority of G4 motifs are located within long terminal repeats (LTRs) where
quadruplexes are close to promoters and the functional importance of G4s is strengthened
by their higher number in evolutionary younger elements [9,10]. Nevertheless, other parts
of LTR retrotransposons with regulatory function, namely 3′UTR, also exhibit higher G4
forming potential. We show that there are no endogenous G4 forming sequences within
the yeast Ty1his3-AI element and hence we inserted a G4 motif into the 3′UTR. Higher
regulatory potential and lower selective constraints were expected since the 3′UTR region
often contains additional sequences such as extra ORF and satellites [30]. Moreover, since
transcription ends inside the 3′LTR, the predicted G4s present in LTRs may actually be part
of the 3′UTR as well.
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Our results showed that insertion of QSs into the 3′UTR of the Ty1his3-AI retrotranspo-
son impeded retrotransposition frequency. Notably, the effect of G-rich strand orientation
was more important than the stability of the G4s. Although the inhibitory effect was more
pronounced when G4s were formed on the template strand for transcription and poten-
tially could block RNA polymerase, we did not observe any correlation between Ty1his3-AI
mRNA levels and the presence of G4s. It should be noted that transcription from Gal1
promoter leads to strong overexpression compared to LTR promoter [17]. Moreover, tran-
scription level is a poor predictor of transpositional potential due to post-transcriptional
control of this process [31] and mRNA quantities do not have to correspond to altered
transcription. On the other hand, elements carrying G4-forming sequences with guanines
on the template strand exhibited unique bands around 1.8 kb on Southern blots suggesting
the interruption of reverse transcription by G4s. Due to the strand specific nature of this
band and probe design, we suggest that reverse transcription is blocked at the last stage
after the second “jump” when the full length cDNA is synthesized. In any case, this lower
molecular weight band is a result of plasmid borne Ty1his3-AI retrotransposition since it is
missing in control samples where there is neither galactose induction nor plasmid carrying
Ty1his3-AI element (Figure 5C, lines 8 and 9, respectively). We also observed an even
shorter band (1.6–1.7 kb) that is probably intermediate of reverse transcription which can
lead to aberrant byproducts [32]. Elements carrying less stable G4s (M1 vs. WT) showed
better responsiveness to G4-stabilizing conditions in vivo (which is in agreement with
in vitro observations in physiological potassium concentration) and also produced more
prominent extra bands on Southern blots. This suggests that the stability of G4s could play
a crucial role for its regulatory potential, namely, less stable G4s could be more sensitive
regulators than those of greater stability. In other words, the in vitro thermostability does
not necessarily reflect in vivo potential of G4 structures and further experiments with
different G4s would be helpful.

Since mRNA levels and deviant products of reverse transcription did not fully ex-
plain the differences between retrotransposition frequencies of elements with or without
quadruplexes, we can conclude that at least other stages of Ty1his3-AI life-cycle are also
affected by quadruplex formation, i.e., translation, virus-like particle assembly and/or
cDNA integration.

We used NMM treatment and pif1::kanMX4 mutation strain to enhance the G4-effect
on retrotransposition by G4 stabilization. Although the most suppressed retrotransposition
was recorded for pWT− and pM1− in these conditions (Figure 4C), the effect of both
NMM and pif1::kanMX4 does not seem to be G4 specific. The main reason is that NMM
treatment as well as pif1::kanMX4 mutation also decreased Ty1his3-AI retrotransposition
irrespective of G4 presence in the 3′UTR (even in both pM2+/− and pVTy1). This could
be explained by the fact that NMM treatment and pif1::kanMX4 mutation exhibited lower
amounts of Ty1his3-AI mRNA compared to untreated BY4741. However, the reduction
of Ty1his3-AI transcript due to the absence of Pif1 helicase was not proportional to the
overall retrotransposition reduction (1.7-fold vs. 3.6-fold for pVTy1, respectively) which
indicates that the lower mRNA levels only partially explain the reduction of retrotrans-
position frequency. Another reason is that both pif1::kanMX4 and NMM also decreased
the retrotransposition frequency of pM2+/− relative to pVTy1 (Figure 4D). Nevertheless,
based on in vitro experiments, M2 sequence does not interact with NMM and the effect of
M2 orientation was not prominent. Therefore, we hypothesize that the retrotransposition
reduction could be caused by high GC content of M2 and/or high stability of a hairpin
formed by M2 in combination with NMM treatment or pif1::kanMX4 mutation. It could
be expected that both NMM treatment and Pif1p deficiency have large scale effects on
various cellular processes. Nevertheless, the G4-non-specific effect of G4 stabilization can
be explained. Firstly, both WT and M1 form very stable G4 in physiological potassium
concentration (>83 ◦C; Figure S4C) and it is questionable whether further stabilization
is relevant to biological processes that take place in much lower temperatures. Secondly,
since the main effect of G4 was observed during reverse transcription, Pif1 helicase was
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not shown to be encapsulated in VLP and hence the effect would be Pif1p independent,
even though RNA–DNA hybrid is preferential substrate for this helicase [33]

To our knowledge, there is no evidence of Pif1p regulating the Ty1his3-AI retrotranspo-
sition and also that no studies have been performed to analyze the connection between G4
and Ty1his3-AI retrotransposition. Although a closely related helicase, Rrm3p (one of two
Pif1 helicase family members in S. cerevisiae), has been studied with respect to Ty1his3-AI
transposition [34]. Unlike Pif1p deficiency, rrm3∆ mutation leads to increased Ty1his3-
AI retrotransposition and cDNA multimer insertion. These opposite effects of Rrm3p
and Pif1p deficiency on Ty1his3-AI retrotransposition are puzzling, but several studies
showed opposite effects on other processes that could be G4 dependent. Antagonistic roles
have been shown in maintaining unidirectional replication fork barriers in rDNA genes,
telomere erosion/lengthening, and rDNA recombination [35]. rDNA genes have high
strand-specific G4 forming potential [22] and telomeric sequences have also been shown to
form G4s [36]. Moreover, a number of other proteins were shown to regulate Ty1his3-AI
retrotransposition [16], and also to bind and process G4s: notably Sgs1 helicase [37] and
Xrn1 nuclease [38]. It is tempting to speculate that there is some general relationship
between G4s and Ty1his3-AI retrotransposition. However, Pif1 is a multifuncional helicase
with distinct roles in replication through non-histone proteins, lagging strand replication,
replication fork convergence and double strand break repair [39]. Inhibition of all these
pathways may affect Ty1his3-AI retrotransposition and therefore more evidence is needed.

There are a few studies that show that G4 can have both stimulatory and inhibitory
effects on retrotransposition. For example, small-ligand stabilization of G-quadruplexes
within the 3′UTR of human LINE-1 elements stimulated retrotransposition [40]. On the
other hand, the presence of G-quadruplexes has inhibited the reverse transcription of HIV-
1 [41]. Similarly, we have recently shown that maize seedlings grown in the presence of the
quadruplex-stabilizing drug NMM changed the transcription of the LTR retrotransposon;
having a stimulatory effect in some families and an inhibitory effect in the others [18].

5. Conclusions

Even though we used an artificial retrotransposon system, our results suggest that
from the mechanistic point of view DNA conformation, namely four-stranded structures,
may represent a challenge for the enzymes to go through. Since G4 formation is a cell cycle
dependent and controlled process [42,43], these structures can represent an important factor
tuning the activity of mobile genetic elements that in turn significantly shape eukaryotic
genomes during evolution. The greatest advantage of DNA conformation-based regulation
of transposable elements is that DNA conformation sensitively responds to environmental
changes, e.g., ionic composition, enabling a better adaptation of a host species. Compared
to epigenetic changes that are also reversible, G4 DNA conformation represents a faster
and more flexible tool for genome response to the environment. However, the molecular
mechanism by which G4 motifs modulate retrotransposon mobility, involving DNA, RNA
or protein levels, still represents a challenging question for further research.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
biology10040347/s1. Figure S1: Analysis of endogenous PQS in Ty1his3-AI retrotransposon. Figure
S2: Native PAGE. Figure S3. Effect of potassium and NMM concentration on G4 formation and
kinetics measured by circular dichroism (CD). Figure S4. DNA melting assay in 150 mM potassium.
Table S1. Overview of oligonucleotides used in this study. Supplemental file S1: Ty1his3-AI sequence.
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