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Metapopulation Model from 
Pathogen’s Perspective: A Versatile 
Framework to Quantify Pathogen 
Transfer and Circulation between 
Environment and Hosts
Shi Chen1, Cristina Lanzas2, Chihoon Lee3, Gabriel L. Zenarosa   4, Ahmed A. Arif   1 & 
Michael Dulin1

Metapopulation models have been primarily explored in infectious disease epidemiology to study 
host subpopulation movements and between-host contact structures. They also have the potential to 
investigate environmental pathogen transferring. In this study, we demonstrate that metapopulation 
models serve as an ideal modeling framework to characterize and quantify pathogen transfer between 
environment and hosts. It therefore unifies host, pathogen, and environment, collectively known as 
the epidemiological triad, a fundamental concept in epidemiology. We develop a customizable and 
generalized pathogen-transferring model where pathogens dwell in and transferring (via contact) 
between environment and hosts. We analyze three specific case studies: pure pathogen transferring 
without pathogen demography, source-sink dynamics, and pathogen control via external disinfection. 
We demonstrate how pathogens circulate in the system between environment and hosts, as well as 
evaluate different controlling efforts for healthcare-associated infections (HAIs). For pure pathogen 
transferring, system equilibria can be derived analytically to explicitly quantify long-term pathogen 
distribution in the system. For source-sink dynamics and pathogen control via disinfection, we 
demonstrate that complete eradication of pathogens can be achieved, but the rates of converging 
to system equilibria differ based on specific model parameterization. Direct host-host pathogen 
transferring and within-host dynamics can be future directions of this modeling framework by adding 
specific modules.

Mathematical models are powerful tools to study infectious disease dynamics, including the commonly used 
compartment models, particularly host-level compartment models, which categorize host’s epidemiological 
status (e.g., susceptible, exposed, infected, or recovered) and transition1–3. A potential drawback of these mod-
els is that they abstract the role of the environment in pathogen transmission process, as these compartment 
models were originally designed to describe epidemiological status changes of the hosts. Currently, there is no 
consensus on how to characterize environmental transferring dynamics of pathogens. Nevertheless, the envi-
ronment plays a critical part in infectious disease dynamics since many pathogens (e.g., avian influenza virus, 
zoonotic Escherichia coli and Salmonella spp.) are transmitted partially or exclusively through contaminated envi-
ronments4–8. Healthcare-associated infections (HAI, also known as nosocomial infections) are also facilitated 
by contacting surfaces and medical devices contaminated with pathogens, such as pathogenic Clostridium diffi-
cile9,10, Vancomycin-resistant Enterococci (VRE)11,12, and Methicillin-resistant Staphylococcus aureus (MRSA)13,14, 
and cause a tremendous amount of health and economic burden for society. Therefore, various novel modeling 
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techniques have been developed and discussed to highlight the role of environment in infectious disease trans-
mission especially HAIs15–17.

Metapopulation models are a type of spatial model which investigate interactions and movements among 
different subpopulations of (usually) the same species across time and space18–23. It is an extension of more 
conventional population-level compartment models that typically assume homogeneous mixing and implicit 
interactions within a population. Since pathogens transfer between heterogeneous hosts and environment, the 
metapopulation model could be extended to serve as a more appropriate modeling framework for capturing 
the explicit dynamics of pathogen movement, replication, and decay. Unlike more detailed agent-based models, 
which completely rely on simulation and do not have an explicit analytical form1,17, metapopulation models 
remain mathematically concise—usually expressed as an array of ordinary differential equations—and may be 
solved analytically without intensive computation.

Currently, most applications of epidemiological metapopulation models are restricted to direct host-to-host 
transmissions, focused exclusively on the host20,24–26. Pathogens are considered implicitly in these metapopula-
tion models (usually via direct host-host contact) and rarely quantified (only population sizes of host in different 
epidemiological states are tracked). Nevertheless, host, pathogen, and environment together form the inseparable 
epidemiological triad, the fundamental concept and cornerstone of modern epidemiology. Thus, mathematical 
models that consider pathogens explicitly could potentially better characterize the system.

We propose extending metapopulation models for environmentally transmitted pathogens and shifting our 
perspective to model pathogen (sub)population dynamics, including pathogen movement, replication, and 
decay27. In our proposed modeling framework, both environment and host are considered as various “patches” 
or “dwellings” for pathogens, a recently proposed novel concept28,29. Pathogen population sizes are approximated 
using colony forming units (CFUs) for bacteria and fungi. The frequency and quantity of transferred pathogens 
are determined by host-environment contacts. Furthermore, other important components of the metapopulation 
model, including microbe spatial structure, growth, motility, local carrying capacity, and sociobiology, have been 
already studied and discussed in the existing literature30–35.

We demonstrate metapopulation model as a theoretically sound and pragmatic approach for epidemiologic 
analyses at the pathogen level. In particular, we show its application for simulating and analyzing pathogen trans-
ferring dynamics, including system equilibrium characteristics, uni-directional transferring, and rescue effects 
from source-sink dynamics. These concepts and approaches are critical for developing and evaluating more effec-
tive control strategies for HIA and improving patient safety12,36–38.

The objectives of this study are:

	 1.	 Develop a generalized metapopulation modeling framework to track pathogen transferring in a semi-
closed healthcare system, and;

	 2.	 Quantify pathogen circulation between environment and hosts and evaluate potential controlling strate-
gies in three case studies (pure transferring dynamics, source-sink dynamics, and external disinfection).

Methods
The Generalized Metapopulation Model for Pathogen Transferring.  We first construct a gener-
alized metapopulation model to characterize and quantify HAI pathogen transferring and circulation between 
the environment and a group of heterogeneous hosts that contact the environment in a semi-closed healthcare 
setting. We consider the environmental transferring of pathogens and exclude direct host-to-host contact. We will 
later discuss extensions of this modeling framework for direct transmission pathway. The pathogen metapopula-
tion consists of all the pathogen subpopulations in each of the hosts and environments. For ease of exposition, we 
consider only one homogeneous environment; however, this modeling framework easily accommodates multiple 
heterogeneous environments.

From metapopulation perspective, population dynamics of each pathogen subpopulation can be formulated 
as the following discrete-time difference equations in system 1:

= + Δ−X X X (1a)t t t1

= + − + −−X X X X X X (1b)t t 1 inflow outflow birth death

where Xt denotes the amount of pathogens (population size, could be approximated by CFUs) in a given subpop-
ulation at time t, which depends on population size Xt−1 and change in population size ΔXt, consisting of a total 
of four possible terms: total pathogen inflow Xinflow (e.g., transferred from all hosts to the environment, using 
environment subpopulation as example); total pathogen outflow Xoutflow (e.g., transferred from the environment 
to all hosts); pathogen birth Xbirth (e.g., replicated within the environment between t − 1 and t); and pathogen 
death Xdeath (e.g., decayed in the environment between t − 1 and t). The two terms increasing the subpopulation 
size have positive signs (i.e., inflow and birth) while the two terms decreasing population size have negative signs 
(i.e., outflow and death).

A generalized, continuous-time metapopulation model for pathogen population dynamics can be formulated 
as a system of ordinary differential equations (ODEs) deriving from system 1. Let E and Hi denote the instantane-
ous amounts of pathogens in the environment and host i ∈ {1, …, N}, where N is the number of hosts. Then, our 
generalized model for environmental pathogen transferring is expressed as the following ODE system 2:

∑ ∑λ λ μ δ= − + −
= =

dE
dt

H E E E,
(2a)i

N

H E i
i

N

EH E E
1 1

i i
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λ λ μ δ= − + − ∀ ∈ …
dH
dt

E H H H i N, {1, , } (2b)
i

EH H E i H i H ii i i i

where, for all i ∈ {1, …, N}, parameters λH Ei
 and λEHi

 denote pathogen transferring rates from host Hi to environ-
ment E and vice versa, respectively; parameters μE and μHi

 denote pathogen replication rates within environment 
E and host Hi, respectively, and parameters δE and δHi

 denote pathogen decay rates in environment E and host Hi, 
respectively. We focus on pathogen transferring instead of transmission. The transferring terms are considered 
linear and associated with either host or environment. This is different from host-level compartment models (e.g., 
SIR-type models) where transmission terms are generally nonlinear1. This generalized model is illustrated in 
Fig. 1A with N = 2 hosts as an example.

Pathogen transferring rates λH Ei
 and λEHi

 can be expressed as the product of two factors: (1) the contact fre-
quency between host and environment (which can be measured and quantified using proximity loggers or radio 
frequency ID tags39–41), and (2) the likelihood of pathogens transferring between host and environment. Because 
the two uni-directional transferring events are mutually exclusive and collectively exhaustive, the two pathogen 
transferring probabilities sum to unity. For notational brevity and introduction to this modeling framework, we 
use transferring rates λH Ei

 and λEHi
, and do not further divide them into more complicated interactions.

Case Study 1: Pure Pathogen Transferring Model.  The pure transferring model is obtained from the 
generalized model where pathogen birth (replication) and death (decay) terms are omitted. Such models are valid 
since many HAI pathogens replicate and decay in negligible amounts within relatively short periods of time. In 
these studies, the system becomes a closed system where pathogens only circulate among environment and hosts. 
This case study is illustrated in Fig. 1B for N = 2 hosts, and its corresponding ODE system is shown as follows in 
system 3:

∑ ∑λ λ= −
= =

dE
dt

H E,
(3a)i

N

H E i
i

N

EH
1 1

i i

λ λ= − ∀ ∈ …
dH
dt

E H i N, {1, , } (3b)
i

EH H E ii i

We derive the analytical solution to the system equilibrium, evaluate the system’s long-term stability of the 
equilibrium, and provide a numerical simulation demonstrating pathogen transferring dynamics for this system.

Case Study 2: Source-Sink Dynamics Model for Pathogen Control.  Source-sink dynamics model is 
a special case of the generalized metapopulation model, where its pathogen transferring is uni-directional (i.e., 
from source to sink). In these models, pathogens originate from the source and transfer to the sink, where path-
ogen deaths subsequently occur. Two types of source-sink dynamics models are developed where either 

Figure 1.  Model Diagrams of General Pathogen Transferring Dynamics, Pure Pathogen Transferring 
Dynamics, Source-Sink Dynamics, and Pathogen Controlling Dynamics. Note: E: one homogeneous 
environment; Hi: host i; μH: pathogen replicate rate in host; δH: pathogen death rate in host; λ: pathogen 
transferring rate; μE: pathogen replicate rate in environment; δE: pathogen death rate in environment; WAIFW: 
Who-Acquire-Infection-From-Whom; red color indicates pathogen flow out of environment (E).
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environment or hosts plays the role of source (consequently, the other serves as sink). Source-sink dynamics 
where hosts as source is depicted in Fig. 1C (for N = 2 hosts, assuming pathogen decay rates are the same across 
all hosts, i.e., δ δ≡H Hi

) and the ODE system is expressed as system 4:

∑λ= −
=

dE
dt

E,
(4a)i

N

EH
1

i

λ δ= − ∀ ∈ … .
dH
dt

E H i N, {1, , } (4b)
i

EH H ii

Source-sink dynamics for the other type (environment as source) is depicted in Fig. 1D (for N = 2 hosts), and the 
ODE system is expressed in system 5:

∑λ δ= −
=

dE
dt

H E,
(5a)i

N

H E i E
1

i

λ= − ∀ ∈ … .
dH
dt

H i N, {1, , } (5b)
i

H E ii

We derive analytical solutions to system equilibria and provide numerical simulations demonstrating patho-
gen transferring dynamics for these two source-sink dynamics models.

Case Study 3: Pathogen Control via Disinfection.  Pathogen control via disinfection model is an exten-
sion of the pure transferring model where pathogens are removed from the environment and/or hosts via disin-
fection/sanitation. Here, we consider more realistic settings and incorporate external forces to reduce pathogen 
population size either in environment or in hosts, while still maintaining bi-directional pathogen transferring. 
Three types of pathogen control via disinfection models can be derived where: (1) only environment is disin-
fected; (2) only hosts are sanitized, and; (3) both environment and hosts are disinfected/sanitized. We provide the 
models for these types below and compare these three different pathogen controlling strategies using numeric 
simulations.

For controlling pathogens in the environment, we consider a janitor who comes in regularly at a given arrival 
rate to apply disinfectants in the healthcare facility (typically once or twice a day, also considered as disinfectant 
application rate). We assume that the janitor neither sheds pathogens to environment nor acquires pathogens 
from environment, and the disinfection probability is a fixed value (i.e., probability of killing the pathogen; usu-
ally specified by disinfectant manufacturer). We use a single parameter δE for the combined effect of disinfectant 
application rate and disinfection probability. This case study is illustrated in Fig. 1E for N = 2 hosts, and its corre-
sponding ODE system is shown in system 6:

∑ ∑λ λ δ= − −
= =

dE
dt

H E E,
(6a)i

N

H E i
i

N

EH E
1 1

i i

λ λ= − ∀ ∈ …
dH
dt

E H i N, {1, , }, (6b)
i

EH H E ii i

For controlling pathogens in hosts, we model hosts who regularly perform self-sanitation (e.g., washing hands 
or using hand sanitizer) at a given rate. Similar to the first type of environment sanitation, we use parameter δH 
for the sanitation rate of hosts. This case study is illustrated in Fig. 1F for N = 2 hosts, and its corresponding ODE 
system is shown in system 7:

∑ ∑λ λ= −
= =

dE
dt

H E
(7a)i

N

H E i
i

N

EH
1 1

i i

λ λ δ= − − ∀ ∈ …
dH
dt

E H H i N, {1, , }, (7b)
i

EH H E i H ii i

For controlling pathogens in both environment and hosts, we consider both disinfection and sanitation that 
influence pathogen transferring dynamics. This case study is illustrated in Fig. 1F for N = 2 hosts, and its corre-
sponding ODE system is shown in system 8:

∑ ∑λ λ δ= − −
= =

dE
dt

H E E,
(8a)i

N

H E i
i

N

EH E
1 1

i i

λ λ δ= − − ∀ ∈ …
dH
dt

E H H i N, {1, , }, (8b)
i

EH H E i H ii i
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Since this is the most comprehensive model for HAI control in this study, we also evaluate the relative impor-
tance of the parameters (λEHi

, λH Ei
, δE, δH), and their associated processes; for example, δ is associated with disin-

fection and sanitation through sensitivity analysis using Latin hypercube sampling42. Pearson partial rank 
correlation coefficients (PRCC) on the maximum amount of pathogen in both hosts combined at time t are cal-
culated. Note that we are not using the sum of maximum pathogen on either host, as the time of maximum path-
ogen occurrence could be different between two hosts. Additionally, it is difficult to evaluate the potential risk of 
HAI through time. As shown later in the results, this dynamic system has trivial equilibrium as the only system 
equilibrium, and such equilibrium will not be an effective measurement to evaluate parameter sensitivity. In gen-
eral, parameters with large absolute values and corresponding small p-values are considered more influential in 
the model. A complete description of parameters and their values used in simulation is provided in Table 1.

Results
Case Study 1: How Pathogen Circulate and Stabilize in System.  In this pure transferring case (cor-
responding to system 3), pathogens never leave the system nor do new pathogens enter. Therefore, the dynamic 
equilibrium (steady-state) of this system can be achieved and the equilibrium of pathogen distribution in envi-
ronment and each host can be derived analytically. We demonstrate that system equilibrium depends on the 
specific parameterization (i.e., numeric values of λs). Because this is a closed system, we scale E and Hi as follows 
(E′ and ′Hi  as percentages) in system 9:

′ =
+ ∑ =

E E
E H

,
(9a)i

N
i1

=
+ ∑

∀ ∈ …′

=

H H
E H

i N, {1, , },
(9b)

i
i

j
N

j1

Note that the right-hand side of system 3 for this case study is a singular matrix. Since we have scaled E and Hi, 
an additional equation E H 1i

N
i1+ ∑ =′

=
′  is added to derive the system equilibrium for this closed system ( ′E  and 

′Hi  represent scaled pathogen distribution at equilibrium in environment E and host Hi, respectively). For the case 
that we have proposed (one environment and two hosts), the equilibrium for scaled pathogen distribution in 
environment and each host is shown as follows in system 10:

λ λ

λ λ λ λ λ λ
′ =

+ +
E ,

(10a)

H E H E

EH H E H E H E EH H E

1 2

1 2 1 2 2 1

H ,
(10b)

EH H E

EH H E H E H E EH H E
1

1 2

1 2 1 2 2 1

λ λ

λ λ λ λ λ λ
=

+ +
′

H ,
(10c)

EH H E

EH H E H E H E EH H E
2

2 1

1 2 1 2 2 1

λ λ

λ λ λ λ λ λ
=

+ +
′

We also demonstrate that for the more general scenario (one environment and N hosts), the system equilibria 
of pathogen distributions can be formulated as system 11:

λ

λ λ λ
′ =

∏

∏ + ∑ ∏
=

= = =
≠E ,

(11a)

i
N

H E

i
N

H E i
N

EH j
N j i

H E

1

1 1 1
,

i

i i j

Parameter Description Value Range PRCC p-value

λEH1 Pathogen transfer rate from environment to host 1 0.2 [0.05–0.5] 0.17 0.12

λEH2 Pathogen transfer rate from environment to host 2 0.3 [0.05–0.5] 0.17 0.12

λH1E Pathogen transfer rate from host 1 to environment 0.4 [0.05–0.5] −0.24 0.08

λH2E Pathogen transfer rate from host 2 to environment 0.5 [0.05–0.5] −0.24 0.08

δE Disinfection rate in environment 0.1 [0.05–0.25] −0.39 0.03*

δH Disinfection rate in host 0.2 [0.05–0.25] −0.55 <0.01**

Table 1.  Model Parameter Description, Values, and PRCC Result. Note: PRCC (partial rank correlation 
coefficient) is used to assess parameter sensitivity and relative importance for the target variable (maximum 
pathogen on both hosts in this study). A positive PRCC value indicates positive correlation with target variable 
and negative value indicates negative correlation. A larger absolute PRCC value (closer to 1) corresponds to 
higher parameter sensitivity. Simulations are based on the same initial condition = = =E H H50, 30, 300

1
0

2
0 . 

Parameter values are hypothetical and for demonstrating the feasibility of the modeling framework.
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λ λ

λ λ λ
=

∏

∏ + ∑ ∏
∀ ∈ …′ =

≠

= = =
≠H i N, {1, , }

(11b)
i

EH j
N j i

H E

i
N

HE i
N

EH j
N j i

H E

1
,

1 1 1
,

i j

i i j

These equilibria (system 10 and 11) are governed by specific system parameterizations (i.e., depending on λs, 
independent of initial pathogen distributions in hosts and environment) and determine how pathogens distribute 
in environment and different hosts in long-run when system reaches equilibrium. These equilibria can be used as 
practical guidance to identify potential “high-risk” environment/hosts (i.e., having a relatively large value of equi-
librium; for example, any environment and/or host having more than 

+ N
1

1
 of total pathogen could be considered 

as “high-risk”, where 
+ N
1

1
 represents homogeneous pathogen distribution across all hosts and environment). 

Empirical studies to identify “high-risk” fomites in healthcare facilities are generally based on contact structure of 
fomites (i.e., contact duration and frequency between host and fomite9,10,12). Our findings from pathogens per-
spective could help develop more specific controlling strategies against HAI. Another important implication is 
that the system equilibrium does not rely on initial condition (i.e., initial distribution of pathogens in the system), 
as the system will eventually reach its equilibrium, which could be readily derived analytically in system 10 and 
more generally system 11.

In this case, we do not consider the trivial solution to the system equilibrium = = =′ ′ ′E H H 01 2  because the 
parameter values (transfer rates) should always be nonzero. Nevertheless, in the next case study we demonstrate 
this trivial solution to the system equilibrium is important and meaningful. Besides the analytical solution of the 
system equilibrium that we have demonstrated, we also provide the numeric simulation of this system, with 
parameter set

λ λ λ λ= . = . = . = .0 2, 0 3, 0 4, 0 5EH EH H E H E1 2 1 2

and initial condition of pathogen amount = = =E H H50, 30, 300
1
0

2
0  as an example. The population dynamics 

of subpopulations in each of the two hosts and environment is shown in Fig. 2A, and we confirm that the system 
converges to its equilibrium ( = = =′ ′ ′E H H21, 43, 361 2 ), which could be derived from system 10. In this 
example, host H1 has the largest amount of pathogen on it.

Case Study 2: Why Trivial Solution of System Equilibrium is Actually Critical.  In the source-sink 
dynamics models, the systems are not closed and trivial solution = = =′ ′ ′E H H 01 2  is the only solution to the 
system equilibrium (no matter whether environment or hosts serve as source or sink, this can be solved by setting 
the right-hand side of the equations in systems 4 and 5 as zero). Furthermore, this system has stable equilibrium 
(more generally, it is shown that for such source-sink system with N hosts and M environments, E H 0,i j= =′ ′  
∀ ∈ … ∀ ∈ …i M j N{1, , }, {1, , }, equilibrium is stable). Mathematically speaking, a trivial solution is generally 
not very meaningful, but from a practical perspective, such a trivial solution actually represents the ultimate goal 
for HAI control: to completely remove pathogens from the system. Since all terms in this model are linear, we can 
combine potential pathogen replication (not originally considered) with pathogen outflow terms and formulate 
the “effective” decay rate in either environment and hosts. We show that as long as this effective decay rate remains 
positive (i.e., pathogen birth rate is smaller than decay rate), trivial solution of system equilibrium will also be 
valid, hence all pathogens will eventually be eradicated from the system.

We show numeric simulations to two types of source-sink dynamics models, the first being environment as 
source (system 4), with hypothetical parameter set λ λ δ= . = . = .0 2, 0 3, 0 1EH EH H1 2

and the same initial condi-
tion as case study 1: = = =E H H50, 30, 300

1
0

2
0 . Illustration of system dynamics is provided in Fig. 2B, where 

pathogen population size in environment keeps declining to zero monotonically and population sizes in both 
hosts raise first and then both decay to zero. These numeric results demonstrate that trivial solution to system 
equilibrium E H H 01 2′ = = =′ ′  is indeed achieved.

In the second simulation, hosts are sources (system 5), and we set hypothetical parameters as λ = .0 4,H E1
 

λ δ= . = .0 5, 0 2H E E2
, keeping the same initial condition = = =E H H50, 30, 300

1
0

2
0 . The numeric solution 

of population dynamics is provided in Fig. 2C, where pathogen population sizes in both hosts decrease to zero 
monotonically, and population size in environment raise initially, but then decrease to zero as well. These numeric 
results also show that trivial solution E H H 01 2′ = = =′ ′  (more generally, = = ∀ ∈ …′ ′E H i M0, {1, , },i j  
∀ ∈ …j N{1, , }) is the stable equilibrium of this system.

Both analytical and numerical solutions to system equilibrium in these two types of source-sink dynamics 
model demonstrate that pathogen populations can be eradicated from the system. However, the true population 
dynamics in these two types of models differ. Although both conditions (cutting off host-environment transfer-
ring pathway versus cutting off environment-host transferring pathway) lead to total eradication of pathogens in 
the system, their efficacy and efficiency (i.e., convergence time to equilibrium) differ. When environment is the 
source, pathogen population sizes actually increases in hosts initially (hosts only receive pathogen from environ-
ment and never shed pathogen back), which could lead to potential HAIs (if we further consider the within-host 
infection dynamics). This provides a feasible solution to explicitly quantify, carefully evaluate, and accurately 
compare different HAI controlling efforts, and also develop more effective controlling strategies. We can further 
evaluate potential economic cost (constraints) to achieve the goal of HAI control by shutting down a specific 
pathogen transferring pathway, discussed in detail in discussion section of this paper.
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Case Study 3: Evaluating Efforts for HAI Control through Disinfection.  While it might not be fea-
sible to completely cut off either pathogen transferring pathway, a more practical solution is to control pathogen 
population in the environment, in hosts, or in both, via external disinfection and sanitation.

Similar to source-sink dynamics model, we demonstrate that the trivial solution to system equilibrium 
′ = = =′ ′E H H 01 2  (and more generally = = ∀ ∈ … ∀ ∈ …′ ′E H i M j N0, {1, , }, {1, , }i j ) is the only solution, 

regardless of whether the controlling effort is applied to environment and/or hosts. There are extra outflow terms 
in addition to the previously discussed closed system 3 (corresponding to case study 1, pure transferring system), 
so eventually the systems in case study 3 (systems 6–8) will reach the trivial solution of system equilibrium. Thus, 
from HAI controlling perspective, it is not a matter of “if ”, a more practical question would be “when” we expect 
pathogens to be thoroughly eradicated from the system. We demonstrate three sets of numeric simulations cor-
responding to HIA controlling strategies, focusing on environment, hosts, and both, respectively (systems 6–8). 
Further, pathogen replication could also be considered and combined within the “effective” controlling rate (i.e., 
disinfection rate minus replication rate). We demonstrate that as long as this effective controlling rate remains 
positive, trivial solution of system equilibrium will still be the only solution, though the rate of convergence will 
be different and depends on the new effective controlling rate.

Hypothetical parameter settings have the same pathogen transferring parameters as pure pathogen transfer-
ring case for consistency: λ λ λ λ= . = . = . = .0 2, 0 3, 0 4, 0 5EH EH H E H E1 2 1 2

, except differing in pathogen con-
trolling parameters δE = 0.1, δH = 0; δE = 0, δH = 0.2; and δE = 0.1,δH = 0.2 for these three simulations, respectively. 
These parameter values are chosen to reflect different rates in disinfection: usually host sanitation (e.g., hand 
washing) is more frequent than environment sanitation (e.g., disinfection by a janitor). All three simulations start 
with the same initial condition: = = =E H H50, 30, 300

1
0

2
0 . Pathogen population dynamics are shown in 

Fig. 2E through Fig. 2G for the three respective controlling strategies. Although pathogens decline and converge 
to system equilibrium (0) in all three simulations, the rates of convergence to system equilibria are different.

We also quantify model parameters’ relative importance based on partial rank correlation coefficient (PRCC). 
The results are provided in Table 1. Parameters corresponding to pathogen circulation (transferring parameters 
λs) are considered less important (smaller absolute PRCC values) than parameters associated with pathogen con-
trolling (δE and δH). Furthermore, host sanitation parameter δH is more sensitive (i.e., it changes system dynamics 
more substantially given the same amount of parameter value change) than environment disinfection parameter 

Figure 2.  Numerical Results of Case Studies of Pure Transfer Dynamics, Source-Sink Dynamics, and Pathogen 
Control Dynamics Models. Note: Panel (A) pure transferring dynamics; (B) for source-sink dynamics where 
environment as source; (C) for source-sink dynamics where hosts as source; (D) for pathogen control dynamics 
through environment sanitation; (E) for pathogen control dynamics through host sanitation; (F) for pathogen 
control dynamics through both environment and host sanitation. Note that pure transferring dynamics model 
has non-trivial system equilibrium, and all the other cases have trivial equilibrium (i.e., no pathogen eventually 
exists in the system).
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δE. These findings imply that increasing pathogen controlling efforts (e.g., increasing disinfection rates in the 
system, especially on hosts) could lead to faster eradication of pathogens in the system and used as useful guid-
ance to reduce HAI. Additional numeric simulation results based on combinations of different δE and δH values 
are provided in Fig. 3A through Fig. 3D to illustrate the influence of these parameters on pathogen population 
dynamics and potential effects of HAI controlling. Maximum numbers of total pathogens (i.e., maximum burden 
of pathogens) on both hosts with varying pathogen controlling parameters (δE and δH) are illustrated in Fig. 4.

Discussion
In this study, we have developed a versatile metapopulation modeling framework from pathogen’s perspective 
and demonstrate how this model can investigate pathogen transferring and circulation in a closed or semi-closed 
system, such as healthcare settings. Results show that for a closed system (pure pathogen transferring case study), 
equilibrium distribution of pathogens can be achieved analytically. These results regarding long-term equilib-
rium of pathogen distributions on hosts and environment serve as potential guidance to identify and evaluate 
high-risk areas (also known as fomites) and/or personnel in HAI. For a semi-closed system (e.g., applying path-
ogen controlling), we are able to achieve the goal of pathogen eradication and different controlling strategies (via 
host sanitation, environment sanitation, or both, with differing efficacy), which could be quantified by time until 
equilibrium distribution. The relatively simple model structure (e.g., all linear transferring, replication, decay, and 
controlling terms, instead the of more complicated nonlinear transmission terms commonly utilized in host-level 
compartment models) enables the easy use of this model, explicit interpretation of the results, and straightfor-
ward implications of pathogen controlling for researchers (especially in the field of HAI), even without intensive 
training in mathematical modeling. Future study directions include investigating specific HAI pathogen transfer-
ring dynamics such as MRSA, VRE, and C. difficile. Further cost-effectiveness of these different methods can be 
evaluated by adding corresponding financial constraints (e.g., cost of disinfectant, labor, and cost associated with 
treating HAIs, etc). Other applications include exploring macroparasites whose population size could be more 

Figure 3.  Numerical Results of Pathogen Control Dynamics Models with Varying Control Parameters (δE, δH). 
Note: Pathogen control parameter δE is associated with environment sanitation and δH is associated with host 
sanitation. 3A through 3D have varying hypothetical parameters.

https://doi.org/10.1038/s41598-018-37938-0


www.nature.com/scientificreports/

9Scientific Reports |          (2019) 9:1694  | https://doi.org/10.1038/s41598-018-37938-0

explicitly measured43. Both macroparasites and pathogens share similar population dynamics characteristics (e.g., 
replication, decay, inflow, and outflow), hence they can be analyzed with our modeling framework as well.

The novelty and uniqueness of our study is that our modeling framework is from pathogen’s perspective. Even 
for pathogens that cannot be directly quantified (e.g., viruses), occupancy metapopulation model19 can be applied 
to reflect whether or not the patch (either host or environment) is occupied by the pathogen (though the actual 
quantity of pathogen is not available), as there is a direct link between the occupancy metapopulation model 
and more conventional host-level compartment model. The 0–1 occupancy metapopulation model is in fact 
another representation of the SIS-type compartment model, where 0 corresponds to susceptible hosts who are not 
infected with the pathogen, and 1 corresponds to infected hosts with the pathogen. Once the pathogen leaves the 
host (either moved or removed via disinfection), the infected host comes back to susceptible state.

Since pathogen, host, and environment collectively form the inseparable epidemiological triad, this modeling 
framework is, indeed, an individual-based model from host’s perspective (even for the 0–1 occupancy metapo-
pulation model, as we are still tracking pathogens among individual hosts). For instance, pathogen transferring 
is determined by host-environment contact structure, hence the pathogen transferring rates corresponds to the 
individual host’s contact rate with the environment, as well as the janitor’s disinfecting schedule. With recent tech-
nological advances, it is relatively easy to capture and characterize host-environment contact structure with high 
accuracy and precision. Recent advances include radio frequency ID tags, proximity loggers, and, even more tra-
ditionally, close circuit TVs coupled with advanced image-processing and artificial intelligence algorithms39–41. In 
the case studies discussed in this paper, we set pathogen controlling parameter δ consistent among multiple hosts, 
but it can be easily tweaked to characterize individual host’s different behavior (e.g., hand-sanitation frequency). 
Additionally, the individual host’s demographic and clinical characteristics, such as susceptibility to certain path-
ogen, can be incorporated to further model within-host infection dynamics44,45. For instance, risk factors such 
as age, gender, and ethnicity group can be used to quantify or adjust susceptibility. Based on the results from our 
modeling framework (i.e., maximum amount of pathogen in hosts at time t), we can evaluate the real-time infec-
tion risk for each individual host in the system. Moreover, this versatile modeling framework can handle variable 
host population size through time (number of hosts N is not fixed, e.g., representing a healthcare setting with high 
fluidity of patient flow17). Once between-host transfer dynamics and within-host infection dynamics are coupled, 
we can infer host’s epidemiological state and quantify potential pathogen shedding to further parameterize the 
pathogen transfer rate from host to environment λHE.

Although we initially refrain this modeling framework to pathogen transferring between host and environ-
ment, other transmission pathways such as direct host-host transmission can also be included. As discussed 
earlier, environments and hosts are both patches from pathogens perspective, and the host-host pathogen trans-
ferring pathway is a similar process, provided that we can quantify host-host contact structure. This can be fur-
ther investigated by network analysis for hosts’ contact structure. For a closed or semi-closed system such as 
healthcare settings, measuring and characterizing host-host contact network with high accuracy is technically 
feasible. Important epidemiological metrics for infectious diseases such as basic reproduction number (R0) could 
be derived as long as host’s epidemiological states are determined. Furthermore, even if direct host-host contact 
structure cannot be characterized, we are also able to infer the “who-acquire-infection-from-whom” (WAIFW) 
information using this modeling framework and track pathogen flow among different host species46–48. Note that 

Figure 4.  Maximum Pathogen Load on Both Hosts with Varying Control Parameters (δE, δH). Note: Pathogen 
control parameter δE is associated with environment sanitation and δH is associated with host sanitation. 
Maximum pathogen load is calculated as the maximum value of pathogen population size on both hosts 
combined at any given time during simulation. The parameters are hypothetical.
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though this modeling framework can accommodate multiple environments and various hosts, it is possible to 
track how pathogen flows between different environments and hosts. In this case, we use the bipartite network 
where environments are represented as level-1 vertices and hosts are level-2 vertices, and pathogen flow can be 
traced to infer the WAIFW information (see Fig. 1).

Regardless of the affability of our proposed metapopulation modeling framework, it is best suited for closed/
semi-closed system (such as healthcare settings), where detailed contact structure and other parameters (such 
as disinfection rates) can be measured and quantified. Nevertheless, the beauty of metapopulation model lies 
in its scalability: from individual to population and to metapopulation levels. Similarly, we can treat a single 
ward within a hospital, or even an entire healthcare facility, as a large metapopulation for pathogens, as patients 
proceed within or among hospitals, creating the potential pathogen flow. With modern information technology 
such as electronic medical record (EMR) and/or electronic health record (EHR), we are able to track patient flow 
explicitly and build more effective early warning systems for potential HAIs among multiple healthcare facilities49.
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