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Abstract

Background/aims: (1–3)-β-D glucans (BG) are cellular components of yeasts and fungi. Elevated blood levels may
be an adjunct in diagnosing invasive fungal infection, though can be high in dialysis patients without fungaemia.
BG can also induce false positive signals in endotoxin detection assays (Limulus Amoebocyte Lysate [LAL] assay).
We explored the relationship between BG levels, renal impairment, endotoxaemia and inflammation.

Methods: We measured serum BG levels, markers of inflammation and blood endotoxin levels in 20 controls, 20
with stages 1–3 chronic kidney disease (CKD), 20 with stages 4–5 CKD, 15 on peritoneal dialysis (PD) and 60 on
haemodialysis (HD). Another 30 patients were studied before and after HD initiation.

Results: BG levels increased with advancing CKD, being highest in HD patients, 22% of whom had elevated levels
(> 80 pg/ml). Levels increased significantly following HD initiation. Levels also correlated positively with CRP, TNFα,
IL-6 levels, independently of CKD stage. Blood endotoxin was detectable by LAL assays in 10–53% of the CKD
cohort, being most prevalent in the HD group, and correlating positively with BG levels. Adding BG blocking agent
to the assay reduced endotoxin detection confining it to only 5% of HD patients. Levels of inflammatory markers
were higher in those with detectable endotoxin - whether false- or true positives.

Conclusion: BG levels increased with decreasing renal function, being highest in dialysis patients. High BG levels
were associated with false positive blood endotoxin signals, and with markers of inflammation, independently of
CKD stage. The cause for high BG levels is unknown but could reflect increased gut permeability and altered
mononuclear phagocytic system function.
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Background
Beta glucans [(1–3)-β-D glucans] (BG) are major carbo-
hydrate constituents of the cell walls of yeast and fungi.
Recently, they have attracted significant scientific atten-
tion because of their reported biological activities, which
include anticancer, anti-inflammatory and immune-
modulating effects [1]. However, BGs are also key
pathogen-associated molecular pattern molecules that

trigger a number of host immune responses and can
stimulate the production of reactive oxygen species and
inflammatory cytokines mediated by interaction with
dectin-1 and toll-like receptors [2]. Elevated blood BG
levels have been used as a diagnostic adjunct for invasive
fungal infections and an assay has been developed and
cleared by the US Food and Drug Administration for
this purpose [3].
In haemodialysis (HD) patients, high blood levels of

BG can activate blood endotoxin detection assays such
as the Limulus Amoebocyte Lysate (LAL) assay leading
to apparently increased blood endotoxin levels [4]. False
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positive signals for endotoxemia occurred in 50% of HD
patients which were extinguished on remeasurement in-
corporating a BG-blocking agent with the LAL assay [5].
BG levels have been found to be elevated both in pa-
tients on HD and in those on peritoneal dialysis (PD) [6,
7]. Dialysis membranes can increase BG levels but the
effect appears to be confined to now obsolete cellulose
membranes and this phenomenon is not seen with mod-
ern biocompatible devices [8–10]. BG is cleared via the
reticuloendothelial system and clearance is thought to
be independent of renal function [11, 12]. Hence the
cause for elevated BG levels is not clear.
The purpose of this study was to explore the preva-

lence and clinical consequences of elevated BG levels in
non-infected subjects with CKD. We aimed to study BG
levels in patients across the spectrum of CKD to investi-
gate their associations with detectable blood endotoxin
levels and markers of inflammation.

Methods
Design and setting
This was a single centre study conducted at the East and
North Hertfordshire NHS Trust. Inclusion criteria were
adults aged 18 years and over. Participants consisted of
healthy controls, non-dialysed CKD, PD and HD pa-
tients. Exclusion criteria include participants with active
sepsis, positive HIV, hepatitis B or C serology, pregnancy
and those with active vasculitis or connective tissue
disease.

Study design
Sub-study 1
The study aimed to investigate BG levels in healthy con-
trols, CKD and dialysis patients. Across this spectrum,
the associations of BG levels with markers of inflamma-
tion and endotoxin levels, were explored. 135 subjects
were recruited (20 healthy controls, 20 patients with
CKD 1–3 (eGFR≥30mL/min), 20 patients with CKD 4–
5 (eGFR< 30 mL/min), 15 PD patients and 60 HD pa-
tients). Patients with CKD were recruited from nephrol-
ogy clinics at our trust, all patients had a confirmed
diagnosis of CKD based on reduced estimated GFR with
either structural, histological evidence or had significant
proteinuria. Estimated GFR was calculated using the
Modification of Diet in Renal Disease (MDRD) study.
The HD group consisted of two equal subgroups, a
group chosen considered to be at high risk of endotoxe-
mia, and a group whose risk was considered lower. Pa-
tient considered to be high-risk had chronic unexplained
inflammation indicated by a raised CRP > 5mg/L, mea-
sured on two separate occasions at least 1 month apart
during the 3 months prior to study recruitment together
with either a high ultrafiltration requirement (rate > 10
mL/kg/hr) (11) or pre- or post-dialysis systolic BP < 100

mmHg within the week prior to study recruitment. Pa-
tients with high ultrafiltration requirements or low blood
pressure are at risk of intra-dialytic hypotension and
may predispose to endotoxemia driven by gut hypoper-
fusion [13–15]. Low-risk patients had none of these fea-
tures. Patients were assessed to ensure no evidence of
sepsis, no recent antibiotic treatment or receipt of blood
products in the last month since these can elevate blood
BG levels [16].
Blood samples were drawn from all these subjects and

measured for BG, endotoxin, IL-6 (interleukin-6), TNF-
α (tumour necrosis factor alfa), and CRP levels. Demo-
graphic and relevant clinical data were collected for all
subjects.

Sub-study 2
This study aimed to investigate the effect of HD initi-
ation on blood levels of BG and endotoxin. Thirty pa-
tients with CKD stage 5 who were planned for dialysis
were recruited for this sub-study. Blood samples were
collected within the 6 months before starting HD and re-
peated within 6 months of initiation to determine the ef-
fect of HD initiation on levels of endotoxin, BG and
markers of inflammation.

Blood sampling and processing
Blood samples were collected peripherally using aseptic
technique as previously described [17, 18]. For haemodi-
alysis patients, blood samples were collected pre-dialysis.
Blood samples were not collected from haemodialysis
catheters to avoid endotoxin contamination. Samples for
BG measurements and endotoxin were collected in Ter-
umo Venoject II heparinised tubes (Project KBG). Sam-
ples for cytokine measurements were collected in S-
monovette Z-gel tubes (Sarsedt).

Laboratory measurements
(1–3)-β-D glucan assay
BG measurements was carried out using the Fungitell®
assay (Associates of Cape Cod, Inc.) as per manufac-
turer’s instructions and as previously described 5 [19,
20],. Serum samples were mixed with 20 μL pre-
treatment buffer (0.125M KOH/0.6M KCl), in micro-
plate wells, and incubated at 37 °C for 10 min. Fungitell
reagent, reconstituted in 0.1 M Tris HCl, pH 7.4, was
added to sample and standard curve wells (7.8–500 pg/
mL, Pachyman). The reactions were read kinetically, at
405 nm minus 490 nm at 37 °C, for 40 min. Vmean
values (milliabsorbance units/min) were calculated for
standards and samples and sample titres interpolated
from the standard curve. Coefficient of variation (CV)
for all assays was < 20%. Normal human serum contains
low levels of BG, typically 10-40 pg/mL [21]. Levels < 60
pg/mL are interpreted as negative and between 60 and
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80 pg/mL as indeterminate. Levels > 80 pg/mL are inter-
preted positive and in at-risk patients considered as a
marker of invasive fungal infection [22].

Cytokine measurements and C-reactive protein
measurements
Serum was measured for IL-6 and TNF-α using enzyme-
linked immunosorbent assays (Human Quantikine ELISA,
R&D systems). High-sensitivity CRP was measured using
particle enhanced immunoturbidimetric assay (Roche
Diagnostics).

Endotoxin measurements
Endotoxin was measured twice, once using the standard
LAL assay [17] and then repeated with a BG-blocking
agent which inhibits the factor G pathway preventing
the LAL assay from false positive activation by BG that
may be present in the sample [4].

Endotoxin assay using standard LAL without BG-blocking
buffer
Endotoxin measurements were performed using the kinetic
turbidimetric LAL assay (Endosafe KTA2, Charles River La-
boratories) as previously described [17]. Plasma samples
were diluted 1:10 with 0.1% Tween80 (Merck Chemicals)
and heated to 70 °C for 10min to remove inhibitory factors
present in plasma and cooled to room temperature prior to
analysis. 100 μL of Endosafe KTA2 reagent was added to
each 100 μL sample in microplate wells. The plate was
monitored at 340 nm using a Biotek ELx808 absorbance
microplate reader with Endoscan-V software (version 4.0;
Charles River) with an onset optical density of 0.03. Six-
point standard curves were constructed using standard di-
lutions of control standard endotoxin (E.coli 055:B5) ran-
ging from 10 to 0.0025 EU/mL All standard curves had a
correlation coefficient > 0.98.

Endotoxin assay using LAL reconstituted with BG-blocking
buffer
To prevent false activation of the LAL assay by BG in
the sample, Endosafe KTA2 reagent was reconstituted
with 5.2 mL BG-blocking agent (Charles River ES-
Buffer) containing 1 mg/mL carboxymethylated curdlan
[4]. Endotoxin measurements were carried out using the
same procedure as described above.

Statistical analysis
Analyses were performed using IBM SPSS statistics ver-
sion 21. Parametric data were presented as mean ± stand-
ard deviation. Non-parametric data were presented as
median (interquartile range). Comparisons of continuous
data between multiple groups used one-way ANOVA or
the Kruskal-Wallis test and significance testing was ad-
justed using Bonferroni correction. Comparison of two

groups used t-test or Mann-Whitney U. Proportions were
compared using the Chi-squared test. Correlation analyses
was performed using Spearman rank correlation coeffi-
cient. Logarithmic transformation of variables was used as
required to allow the assumptions and conditions for mul-
tiple regression to be met. Kaplan-Meier analysis and Cox
proportional hazard models were used to explore the rela-
tionship between baseline BG levels and outcomes.
Follow-up during the study period was complete.
Wilcoxon signed rank test was used to compare pre- and
post HD initiation levels of BG and other variables.

Results
Demographic, clinical and biochemical characteristics
In general patients with advanced CKD and those on dia-
lysis were older and more highly comorbid than those
with lesser degrees of CKD and controls (Table 1). PD pa-
tients had lower dialysis vintage and higher residual renal
function (KRU) than HD patients. Low- and high-risk HD
patients (Table 2) were similar with respect to age, co-
morbidity and dialysis catheter use. There was a trend to-
wards greater use of haemodiafiltration (HDF) in low-risk
HD patients who also had lower dialysis vintage, higher
blood pressure, greater KRU, shorter dialysis sessions and
higher standard Kt/V. Ultrafiltration rates, phosphate and
albumin levels were lower in low risk HD patients but
these differences were not statistically significant.

Blood levels of (1→ 3)-β-D glucan
BG levels progressively increased with worsening kidney
function and BG levels were highest in patients on dialy-
sis [Fig. 1]. High-risk HD patients, low-risk HD patients
and PD patients had significantly higher BG levels than
CKD 1–3, CKD 4–5 groups and controls (all p < 0.005),
although there were no significant differences between
PD and HD patients. BG levels were not significantly dif-
ferent between high-risk and low-risk HD patients. High
BG levels above the cut-off level of 80 pg/mL were found
in 22% of HD patients (16.7% low-risk and 26.7% high-
risk), 13.3% of PD patients, 0% of CKD 4–5 and 10% of
CKD 1–3 patients.
Across the whole CKD group BG correlated with

Charlson co-morbidity score (rho = 0.305, p = 0.001).
There was no relationship to age or gender. In HD pa-
tients, BG levels were inversely correlated with KRU
(rho = − 0.414, p = 0.001). Levels were similar in those
receiving HDF and those on high-flux HD (57 vs. 45 pg/
ml, p = 0.151). There was no relationship between BG
levels and Kt/V.

Association of blood (1→ 3)-β-D glucan levels with
endotoxemia
Using the standard LAL assay revealed low level blood
endotoxin signals in HD, PD and CKD patients (Table
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1). Following repeat measurement with a BG-blocking
agent, the majority of endotoxin signals were extin-
guished and only three HD patients in the whole cohort
(two high-risk and one low-risk) remained positive for
endotoxin. Endotoxin signals derived from the LAL
assay without BG blocking agent correlated strongly with
BG levels in the CKD cohort (rho = 0.519, p < 0.001).
Endotoxin signal was highest in subjects with high BG
(> 80 pg/mL), intermediate at BG levels 60–80 pg/ml and
lowest at low levels (< 60 pg/mL) (p < 0.001) [Fig. 2].
These findings strongly suggest that endotoxin signal
detected using the LAL assay in the majority of CKD
patients may be artefactual due to elevated BG.

Associations of blood (1→ 3)-β-D glucan levels with
markers of inflammation
High–risk HD patients had higher levels of CRP (p <
0.05 for all) than all other groups as expected (Table 1).
IL-6 in high-risk HD patients were similar to low-risk
HD patients but higher than all other sub-groups (p <
0.05). IL-6 levels in PD patients were significantly higher
than controls but similar to CKD 1–3 and CKD 4–5 pa-
tients. There was no significant difference in IL-6 be-
tween CKD 1–3, CKD 4–5 and healthy controls. For
TNF-α, high-risk HD patients were similar to PD and
low-risk HD patients but higher than CKD patients and

healthy controls. TNF-α in low-risk HD patients were
similar to CKD 4–5 patients but higher than CKD 1–3
and healthy controls. PD patient had higher TNF-α than
controls but were similar to CKD 1–3 and CKD 4–5 pa-
tients. TNF-α was higher in CKD 4–5 compared to CKD
1–3 and controls. Levels of TNF-α were similar between
CKD 1–3 and controls.
Among the CKD cohorts, levels of BG correlated sig-

nificantly with markers of inflammation - CRP (rho =
0.271; p = 0.003), IL-6 (rho = 0.520; p < 0.001) and TNF-
α (rho = 0.486; p < 0.001). In separate models we con-
trolled for CKD group [CKD 1–3, CKD 4–5, PD, and
HD]. In these models log BG was an independent pre-
dictor of log IL-6 (standardised beta 0.209: p = 0.038),
log TNF (standardised beta 0.202: p = 0.023) and log
CRP (standardised beta 0.357: p = 0.004).

Association of endotoxaemia with markers of
inflammation
Table 3 depicts the relationship between endotoxin de-
tection and markers of inflammation. In general levels of
inflammatory markers were greater in patients in whom
endotoxin was detected – whether as a false positive or
true endotoxaemia although this was only significant for
IL-6. No differences in the levels of inflammatory
markers could be detected between those with true

Table 1 Patient characteristics and results of investigations Data represent median (interquartile ranges) or mean ± standard
deviation according to distribution

Healthy Control CKD 1–3 CKD 4–5 PD Low-risk HD High-risk HD p-value*

Age (years) 48 ± 8 50 ± 20 62 ± 12 60 ± 17 67 ± 17 61 ± 14 < 0.001

Weight (kg) 74 ± 14 83 ± 20 95 ± 18 85 ± 14 74 ± 19 82 ± 23 0.005

urine protein creatinine ratio (mg/mmoL) 41 [139] 97 [155]
*GFR/KRU(ml/min) – 54.4[17.3] 14.2[5.1] 4.1[4.9] 1.6[2.7] 0[0] –

Anuric (%) – – – 6.7 33.3 80 < 0.001

Charlson Co-morbidity Index – 1 [0–4] 5 [4–8] 6[3–7] 7[4.8–9] 5.5[3.8–8] < 0.001

Diabetes (%) – 25 45 27 40 33 NS

Dialysis vintage (years) – – – 1 [0.3–4] 1.6 [0.9–4.3] 3[1.3–6.1] 0.056

BG (pg/mL) 13.5 [6.5] 15.5 [16] 22.5 [10.5] 37 [36] 55.5 [39] 57 [34.5] < 0.001

CRP (mg/L) 1.5 [2.8] 2.9 [7.9] 3.9 [3.8] 4.1 [9.2] 1.9[3.0] 12.9 [11.8] < 0.001

IL-6 (pg/mL) 0 [0.8] 3.1 [6.7] 2.4 [5.6] 6.3 [7.9] 8.6 [5.6] 14.3 [13.2] < 0.001

TNF-α (pg/mL) 8 [4.1] 7.6 [7.0] 16 [6.6] 15.9 [6.5] 22.4 [8.0] 23.9 [7.0] < 0.001

Endotoxin level (EU/ml)
[− BG blockade] (%)

0 0 [0] 0 [0] 0 [0.049] 0 [0.036] 0.027 [0.041] 0.001

Detectable endotoxin
[− BG blockade] (%)

0 10 15 47 37 53 < 0.001

Detectable endotoxin
[+ BG blockade] (%)

0 0 0 0 3.3 6.7 NS

eGFR - estimated glomerular filtration rate - applies to healthy and non-dialysed CKD patients, KRU - residual urea clearance - applies to dialysis patients. NS – p >
0.1. For other abbreviations see text. Reference ranges for CRP, IL-6 and TNFα are < 5 mg/L, < 3.1 pg/mL and < 15.6 pg/mL respectively. + and - BG blockade refers
to performance of LAL assay with and without use of BG blocking buffer to prevent any false activation by any circulating (1–3)-β-D glucan present in the sample.
* P-value derived from one way ANOVA, Kruskal-Wallis or Chi-square tests as appropriate and denotes overall significant difference between independent groups.
See text for relevant individual group differences as appropriate
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endotoxaemia and those with false positive tests but
comparisons were hampered by the small number with
true endotoxaemia.

Determining the effect of haemodialysis initiation on
serum (1–3)-β-D glucan
The effect of HD initiation on endotoxin and BG levels
was explored in a separate cohort of pre-dialysis patients
with CKD 5 (Table 4). Twenty-nine had full data and

were analysed. Serum BG levels taken in the 6 months fol-
lowing dialysis initiation were significantly higher than
those taken prior to initiation (26 vs. 41 pg/mL, p = 0.002).
There were minimal increases in inflammatory markers
post-initiation – significant only for TNF-α. Pre-dialysis,

Table 2 Comparison of Low and High Risk Haemodialysis patients.

High-risk HD Low-risk HD p-value

Age (years) 61 ± 14 67 ± 17 NS

Weight (kg) 82 ± 23 74 ± 19 NS

KRU (ml/min/1.73m2) 0[0] 1.6 [2.7] < 0.001

Anuric (%) 80 33.3 < 0.001

Charlson co-morbidity score 5.5[3.8–8] 7[4.8–9] NS

Diabetes (%) 33 40 NS

Access with THL (%) 23 17 NS

Td (min) 224 ± 25 206 ± 26 0.007

UFR (ml/kg/min) 5.9 ± 3.5 4.4 ± 3.2 0.084

HDF (%) 74 90 0.095

Pre-SBP (mmHg) 131 ± 29 157 ± 24 < 0.001

Pre-DBP (mmHg) 68 ± 22 74 ± 14 NS

Post-SBP (mmHg) 117 ± 31 137 ± 25 0.007

Post-DBP (mmHg) 63 ± 18 64 ± 12 NS

Calcium (mmol/l) 2.32 ± 0.14 2.34 ± O.13 NS

Phosphate (mmol/l) 1.90 ± 0.58 1.66 ± 0.44 0.079

Albumin (g/l) 40 ± 3 38 ± 3 0.053

PTH (pmol/l) 41.9 [22.5–83.8] 43.4 [27.3–63.7] NS

Standard Kt/V 2.1 ± 0.3 2.5 ± 0.4 < 0.001

KRU – residual renal urea clearance; THL Tunnelled Haemodialysis catheter, Td sessional dialysis time, UFR Ultrafiltration rate, HDF haemodiafiltration, Pre-SBP pre-
dialysis systolic blood pressure, Pre-DBP pre-dialysis diastolic blood pressure, post-SBP post-dialysis systolic blood pressure, post-DBP post-dialysis diastolic blood
pressure, PTH parathyroid hormone, Kt/V normalised dialysis urea clearance. NS – p > 0.1

Fig. 1 Median (1–3)-β-D glucan levels in controls and at various
stages of CKD. Error bars represent 95% confidence limits

Fig. 2 Endotoxin levels in CKD cohort detected using LAL assay
without betaglucan blocker stratified according to betaglucan levels.
There is a significant difference in endotoxin levels across the three
betaglucan groups (p < 0.001 by Kruskal-Wallis). Error bars represent
95% confidence limits
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all patients had undetectable endotoxin. Following haemo-
dialysis initiation, one patient tested positive for endotoxin
only.

Discussion
We found that blood BG levels increased progressively
with advancing CKD stage. BG levels were highest in
dialysis patients with around a quarter of HD patients
having BG levels above the cut-off value of 80 pg/mL for
diagnosis of fungaemia. Across the CKD group high BG
levels were associated with increased levels of inflamma-
tory biomarkers, independently of CKD group. There
was a small but significant increase in BG levels post

dialysis initiation though inflammatory markers changed
little.
The source of elevated BG in kidney disease is uncer-

tain. BG are large molecules varying from tens to thou-
sands kD. They are not significantly removed by dialysis
and modern dialyser membranes do not influence blood
levels [23]. Levels were inversely related to residual kid-
ney function in dialysis patients although there was no
relationship to either Kt/V or use of HDF, and though
slightly higher levels were observed after HD initiation,
it is unlikely that loss of renal function contributed. Pre-
vious studies have not found a significant effect of mod-
ern dialysis membranes on BG levels, however it is
important to rule out the effect of membrane compos-
ition potentially leading to elevated BG levels and in this
regard in-vitro studies may be useful. The metabolism of
BG in humans is poorly understood, but in animal
models BG is primarily removed by liver Kupffer cells,
which comprise the major phagocytic activity of the
mononuclear phagocyte system (MPS) [24]. Following
intraperitoneal injection, the majority of BGs are distrib-
uted in organs prominent in the MPS, especially the liver
[11, 25] and metabolised by oxidative degradation [12].
There are few data on Kupffer cell function in CKD,
though MPS dysfunction has been described. Defects of
immunity including defective phagocytic function, im-
paired maturation of monocytes and monocyte-derived
dendritic cells have been reported [26–28]. Elevated
blood BG levels detected in our population could relate
to dysfunction of the MPS in advanced CKD.
Since the prevalence of high BG levels (> 80 pg/ml) were

highest in HD patients who are inherently at increased
risk of intra-dialytic and intestinal hypotension, the gut is
another potential source of elevated BG. Although we
were unable to detect a difference between our high-risk
and low-risk HD patients this may have been due to the
small sample size or that our high risk HD patients were
not experiencing significantly worse intra-dialytic
hypotension compared to low-risk patients. Advanced
CKD may impair intestinal barrier function and result in
translocation of bacterial products into the circulation -
perhaps exacerbated by intradialytic gut hypo-perfusion
[13, 29, 30]. Similarly, intestinal mucosal barrier damage
and translocation has been described in end-stage kidney
disease. Translocation of BG from the gut has been de-
scribed and BG levels have been proposed as a marker of
intestinal permeability [31–33]. There is a possible role for
increased intestinal permeability in increasing systemic
BG levels which may contribute to chronic inflammation.
Similarly, the appearance of endotoxemia in advanced
liver disease is thought to result from gut translocation to-
gether with MPS dysfunction [34]. True endotoxemia
accounted for 5% of our HD cohort, a much lower preva-
lence than that reported in most other studies [35] though

Table 3 Median levels of inflammatory markers in whole CKD
group in relation to endotoxin detection – no endotoxin, false
positive endotoxin and true endotoxaemia

Endotoxaemia None
n = 76

False + ve
n = 36

True
n = 3

p-value

IL-6 (pg/ml) 7.4 (8.5) a9.4 (13.9) 4.9 {8.2} 0.020

TNF (pg/ml) 18.4 (11.7) 20.6 (9.6) 23.7 {1.4} 0.053

CRP (mg/l) 3.9 (7.8) 6.4 (10.8) 4.7 {15.0} 0.294

Values quoted are median (interquartile range) except for true endotoxaemia
which are median {range} since the number with this condition was only 3.
The values quoted for significance relate to the application of the Kruskal-
Wallis test across all three groups. a relates to the application of the Mann-
Witney test to compare medians in the no endotoxin and false positive
endotoxin groups (p = 0.012)

Table 4 Patient characteristics with endotoxin, (1–3)-β-D
glucan, inflammatory cytokines, and symptoms pre- and post-
initiation of haemodialysis

Parameter (n = 29) Value

Age (year) 56 ± 16

Male gender (%) 69

Charlson Comorbidity Index 5 [3–5]

Weight (kg) 87 ± 17

Before HD Post HD initiation p-value

Sample time (months) 0 [0.28] 2.8 [2.3] –

BG (pg/mL) 26 [17] 41 [22.5] 0.002

IL-6 (pg/mL) 5.9 [9.7] 7.3 [7.8] NS

TNF-α (pg/mL) 19.4 [7.5] 21.9 [7.1] 0.008

CRP (mg/L) 5 [10.7] 5.6 [9.8] NS

Endotoxin (EU/mL)
(without BG blockade)

0 [0.032] 0 [0.026] NS

Detectable endotoxemia
(without BG blockade) [%]

31 (9/29) 28 (8/29) NS

Detectable endotoxemia
(with BG blockade) [%]

0 (0/29) 3.4 (1/29) NS

For abbreviations see text. NS – p > 0.1. BG blocking buffer consists of highly
concentrated carboxymethylated curdlan. Applying this buffer to the LAL
assay the blocks the factor G pathway of the assay preventing any false
activation by any circulating (1–3)-β-D glucan that may be present in
the sample
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more in keeping with the clinical state of participants. Our
study has a number of limitations. CKD sub-groups were
not well matched so we cannot discount factors other
than kidney function and treatment modality contributing
to the observed differences in BG levels. The Fungitell
assay is a biological assay which has inherent limitations
[36]. It is well-validated though in many studies in other
patient groups as a pan-fungal marker [37]. Reports of its
accuracy in patients with CKD are more limited. It may be
though that the threshold of > 80 pg/ml for the diagnosis
of fungaemia needs to be revised in dialysis patients and
comparison of BG levels in those with and without fungal
infections in dialysis patients would be informative. In
addition the numbers of patients with true endotoxaemia
were too small to permit valid comparisons with other
groups.

Conclusion
This is the first study to investigate the relationship be-
tween renal function, blood BG levels and inflammation.
Our findings show that blood concentration of BG
progressively increased with advancing CKD and were
highest in those on dialysis. There was a significant asso-
ciation of BG with inflammation – a poor prognostic
marker in dialysis patients. Mechanisms of high BG
levels are unknown but a combination of increased
translocation from the gut and reduced clearance in the
context of MPS dysfunction may contribute. High BG
levels were also associated with inflammation, independ-
ently of CKD stage. BGs may have an important clinical
role in patients with advanced kidney disease, particu-
larly in dialysis patients.
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