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Abstract
Two classes of cognitive mechanisms have been proposed to explain segmentation of continuous sensory input into discrete 
recurrent constituents: clustering and boundary-finding mechanisms. Clustering mechanisms are based on identifying fre-
quently co-occurring elements and merging them together as parts that form a single constituent. Bracketing (or boundary-
finding) mechanisms work by identifying rarely co-occurring elements that correspond to the boundaries between discrete 
constituents. In a series of behavioral experiments, I tested which mechanisms are at play in the visual modality both during 
segmentation of a continuous syllabic sequence into discrete word-like constituents and during recognition of segmented 
constituents. Additionally, I explored conscious awareness of the products of statistical learning—whole constituents versus 
merged clusters of smaller subunits. My results suggest that both online segmentation and offline recognition of extracted 
constituents rely on detecting frequently co-occurring elements, a process likely based on associative memory. However, 
people are more aware of having learnt whole tokens than of recurrent composite clusters.

Keywords Statistical learning · Word segmentation · Sequence learning · Clustering · Boundary-finding · Artificial 
language

Although sensory input is continuous, cognitive systems 
operate on discrete constituents. Splitting continuous sen-
sory input into discrete units is called segmentation. Seg-
mentation is based on statistical learning, the process of 
detecting statistical regularities in continuous sensory input 
in order to structure this input into processable units. Sta-
tistical learning mechanisms operate across all modalities 
(visual, auditory, tactile: Conway & Christiansen, 2006; 
Kirkham et al., 2002); and across domains (splitting speech 
into words and phrases: Thiessen et al., 2013: music com-
positions into rhythmic groups: Deutsch, 2013; Povel & 
Essens, 1985; Ravignani et al., 2016; continuous actions into 
discrete event sequences: Hard et al., 2019, among others).

Statistical learning mechanisms are very important for 
language learning and speech processing (Erickson & Thies-
sen, 2015; Misyak & Christiansen, 2012). They are engaged 
in multiple language-related tasks: category formation and 
detection (Erickson et al., 2014; Maye et al., 2002); encoding 

and decoding of linguistic sequences (Stadler, 1992); rule 
learning and cause–consequence understanding (Sobel 
& Kirkham, 2007); and associations between real-world 
objects and discrete constituents segmented from continuous 
acoustic streams (Graf Estes et al., 2007; Smith & Yu, 2008). 
Therefore, better knowledge of the cognitive mechanisms 
underlying statistical learning, including segmentation, is 
crucial to understanding how humans process language. In 
this study, I will focus on a subtype of statistical learning 
based on conditional statistics—that is, the predictive rela-
tionships between two syllables (Harris, 1955). The strength 
of predictive relationships is measured as the transitional 
probability (TP) between adjacent syllables (Saffran et al., 
1996). TPs tend to be higher between syllables within word 
boundaries than between syllables straddling word bound-
aries, and this difference can be used to extract words as 
discrete constituents from a continuous stream of syllables. 
Note that statistical structures include both conditional 
and distributional information (e.g., prosody, pauses, coar-
ticulatory differences in phoneme realization both at word 
boundaries and within words) and can be considered within 
a single theoretical framework. Although distributional cues 
are extensively used for segmenting natural speech (Mattys 
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et al., 1999), this study focuses exclusively on cognitive 
mechanisms for processing conditional statistics.

The cognitive mechanisms used to extract, learn, and 
employ conditional statistics are highly debated. Two pos-
sible classes of mechanisms, which assign different roles to 
TPs in the segmentation of continuous input, have been pro-
posed: (1) clustering mechanisms and (2) boundary-finding 
mechanisms (see Perruchet & Pacton, 2006, and Perruchet, 
2019, for an overview). Boundary-finding mechanisms 
(often referred to as bracketing mechanisms) are based on 
detecting high-entropy transitions, where one element pre-
dicts the following element with low probability. This is a 
general mechanism for detecting rarely co-occurring ele-
ments, and high-entropy transitions between elements signal 
boundaries between discrete constituents (Elman, 1990). By 
contrast, clustering mechanisms work by detecting element 
pairs with high transitional probabilities (i.e., detecting those 
clusters of elements that frequently co-occur together; Frank 
et al., 2010; Perruchet & Vinter, 1998).

While high TPs correspond to syllable pairs within the 
boundaries of discrete constituents (e.g., words or phrases), 
extraction need not rely on the calculation of these TPs, 
because frequently co-occurring elements can be committed 
to memory based on associative learning mechanisms (Per-
ruchet, 2019; Perruchet & Vinter, 1998). In fact, statistical 
learning abilities could, more generally, be based on a set 
of memory mechanisms rather than extraction of statistical 
structures and regularities (McClelland et al., 1995; Thies-
sen, 2017).

In a critical review, Perruchet (2019) analyzed recent 
evidence and concluded that transitional probabilities are 
neither sufficient nor necessary for segmentation, since 
memory mechanisms can account for both conditional and 
distributional statistical learning (Thiessen, 2017). This pro-
posal has received support from computational models of 
segmentation (Christiansen et al., 1998; Perruchet & Vinter, 
1998). However, some evidence suggests that low TPs attract 
the attention of infants who are just beginning to acquire 
language and need to extract lexical units from continuous 
speech before they can figure out the semantic content and 
reference of these units (Endress & Langus, 2017; Endress 
& Mehler, 2009a, 2009b; Johnson et al., 2009). Thus, it is 
possible that both types of mechanisms operate in segmenta-
tion (Sohail & Johnson, 2016, for edge detection, and Slone 
& Johnson, 2018, for clustering by babies), depending on 
the environment and the nature of the constituents that need 
to be segmented from the sensory input. Modality may also 
play a role in determining which mechanisms are more likely 
to be engaged. In the visual modality, for example, when 
several elements are presented simultaneously, recurrent 
patterns might more easily be registered as frequently co-
occurring configurations (Fiser & Aslin, 2005; Glicksohn 
& Cohen, 2011); in the auditory modality, consecutively 

presented sequences of syllables might more easily engage 
boundary-finding mechanisms (e.g., Ordin, Polyanskaya, 
Soto, & Molinaro, 2020b). Giroux and Rey (2009) showed 
that after 2 minutes of exposure to an artificial language, 
participants were equally likely to prefer bisyllabic and tri-
syllabic words, as well as pairs from which trisyllabic words 
were composed, over part-words (syllabic concatenations 
composed of a final syllable from one recurrent word and the 
initial syllable of a different word from the familiarization 
input). Only after 10 minutes of exposure was the discrimi-
nation of part-words and words better than discrimination 
of part-words and subword syllable pairs. This clearly shows 
that at least at the initial stages of segmentation, recurrent 
syllable pairs were the perceptual units that were extracted 
and memorized. Longer exposure was necessary for longer 
sequences, composed of several recurrent pairs, to be learnt. 
When complex words had been memorized, representation 
of their subcomponents (the syllable pairs from which trisyl-
labic words were composed) was impeded. A fundamental 
difference between clustering mechanisms operating in the 
visual and auditory modality is that in the visual modal-
ity, complex scenes can be learnt without acquiring smaller 
subconstituents (Fiser & Aslin, 2005; Glicksohn & Cohen, 
2011). By contrast, in the auditory modality, subconstituents 
are extracted and memorized quickly, before representations 
of longer recurrent sequences can be formed (Giroux & Rey, 
2009). It is possible that complex scenes composed of simul-
taneously presented elements are segmented exclusively by 
clustering mechanisms, while sequences from consecutively 
presented elements are learnt using clustering mechanisms 
at the beginning but later, when constituents have been 
memorized and their representations are well-established, 
they can be segmented from continuous input based on 
boundary-finding mechanisms.

The current study was designed to address two issues: 
What cognitive mechanisms are brought to bear during the 
segmentation of linguistic input in the visual modality? And 
to what extent are people consciously aware of the constitu-
ents that emerge as psychological units over the course of 
visual familiarization with a continuous stream of syllables? 
In this study, a standard artificial language learning para-
digm (Saffran et al., 1996) was used. For the familiariza-
tion stream, 2 trisyllabic words were concatenated, with 
0.5 TPs between syllables within word boundaries, and 
visually presented this stream to participants. Participants 
were told that the stream represented a text in an unfamiliar 
language. For the subsequent recognition test, the same syl-
lables were used to construct novel items, which were not 
embedded in the familiarization stream, but embodied the 
same TPs as the words. For example, the syllables from the 
words RO-SE-NU and PA-SE-TI (0.5 TPs between adjacent 
syllables within triplets) were recombined to create novel 
tokens—RO-SE-TI and PA-SE-NU. These novel tokens 
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were statistically congruent with the words yet could not 
be retrieved from memory as whole constituents because 
they had not been embedded in the familiarization stream 
as whole triplets. However, participants might still endorse 
these novel items (phantoms) because they were statistically 
consistent with the exemplars in the familiarization input 
(e.g., Endress & Langus, 2017; Endress & Mehler, 2009a; 
Nosofsky & Zaki, 2002; Roediger & McDermott, 1995), 
or because they were composed of frequently co-occurring 
syllable pairs (Perruchet, 2019; Thiessen, 2017). For the rec-
ognition test, three types of tokens were used: old syllabic 
triplets from the familiarization stream (words), phantoms, 
and novel triplets that violated the statistical regularities of 
the familiarization input (nonwords). During the test, par-
ticipants performed a binary yes/no test (deciding whether 
or not the presented syllabic triplet was a word from the lan-
guage they had been familiarized with). In Experiment 1, the 
test tokens were presented in isolation (as a three-syllabic 
sequence). Here, participants could only rely on the TPs 
(0.5 for words or 0 for nonwords) between syllables within 
presented tokens, which were either 0.5 or 0 between the 
first and second and the second and third syllables. Since 
participants had to rely on mid-token TPs, they had to base 
their decision on its absolute value (high vs. low). By con-
trast, in Experiment 2, participants saw seven syllables on 
the screen and had to report whether a recurrent triplet from 
the familiarization stream was embedded within a seven-syl-
lable sequence. Here, participants could also rely on the rela-
tive differences between TPs, since TPs between syllables 
straddling the triplet boundary were lower than TPs between 
syllables within words and phantoms. Relatively lower TPs 
marked triplet boundaries and therefore provided better con-
ditions for engaging boundary-finding mechanisms. Addi-
tionally, in both experiments, conscious awareness of the 
decisions made during the test was probed. This should cast 
light on the contribution of consciousness to recognition of 
discrete tokens retrieved from memory as whole constitu-
ents (i.e., words that were embedded as recurrent triplets in 
the familiarization input) or were reconstructed during the 
recognition test based on clusters of frequently co-occurring 
syllables (without additional support from memory repre-
sentations of whole triplets).

To understand the cognitive mechanisms that underpin 
segmentation and recognition of segmented constituents, 
these behavioral measures and eye-tracking measures 
were combined. This is the first study to use eye-tracking 
to resolve the respective contributions of clustering and 
boundary-finding mechanisms to statistical learning. The 
saccade behavior was explored as a proxy for attention to 
reveal underlying cognitive mechanisms. It should reveal 
whether participants attended—that is, made more fre-
quent saccades between co-occurring syllables or instead 
to the boundaries (edges) of the recurrent embedded 

constituents. The expectations were as follows. In Experi-
ment 1, clustering mechanisms would elicit saccades 
between adjacent syllables, while bracketing mechanisms 
would elicit saccades between the initial and final syllables 
of the triplets. In Experiment 2, bracketing mechanisms 
would elicit saccades to syllable boundaries with lower 
TPs (i.e., short range, pairwise saccades to and from the 
triplet-initial and preceding syllables or to and from the 
triplet-final and following syllables), and longer saccades 
across a triplet (i.e., between the triplet-initial and triplet-
final syllables) to check triplet boundaries (edges). Clus-
tering mechanisms would instead elicit saccades to and 
from syllables within triplets to check that syllables within 
each pair were indeed frequently co-occurring. Saccades 
were analyzed separately for both words and phantoms, 
since endorsement of different token types might be based 
on different mechanisms: words might be accepted based 
on boundary detection, while phantoms might be endorsed 
based on clustering; if so, differences in saccade behavior 
on different types of statistically congruent tokens might 
be observed. Eye-tracking provides exquisite temporal and 
spatial resolution. The analysis of saccades allows for pre-
cise identification of the time and location of saccade start 
points and end points. Thus, this technique can be useful 
for identifying which cognitive mechanisms are deployed 
under various conditions.

For the other behavioral measures, the conditional meas-
ures of accuracy and the confidence judgements assigned 
to each response were used. Confidence that discriminates 
between correct and wrong responses reflects awareness of 
one’s decisions (Fleming & Lau, 2014; Schwiedrzik et al., 
2011). Even if recognition responses are based on informa-
tion that is not subject to conscious processing, participants 
have to rely on information that is consciously processed 
when they report confidence judgments (how sure they are 
that their response is correct; Del Cul et al., 2009; Pasquali 
et al., 2010). Thus, confidence ratings can reveal the rela-
tive contribution of conscious content to correct decisions 
on words, phantoms, and nonwords. Perruchet and Pacton 
(2006) proposed two alternatives: Chunks might be formed 
as a result of unconscious processing, or conscious chunks 
may emerge at the beginning, but later be merged into larger 
units as a result of associative learning. If people are aware 
of chunks that comprise larger constituents, a large differ-
ence between confidence ratings for accepted and rejected 
phantoms—similar to the difference between accepted and 
rejected words—should be observed. Note that the small-
est difference in confidence ratings was expected between 
accepted and rejected nonwords, because in the case of non-
words, people have to report their confidence about some-
thing they have never learnt (they have not learnt nonwords, 
and hence cannot be consciously aware of nonwords as per-
ceptual units).
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Experiment 1

Methods (Experiment 1)

Experiment 1 focused on the recognition of holistic constitu-
ents from the familiarization stream, presented in isolation. 
Both experiments were approved by the ethical review panel 
of the Basque Centre on Cognition, Brain and Language 
(Ethics Approval Number: 17092018M).

Participants

The sample size was determined based on earlier studies 
conducted in a different (auditory) modality with different 
techniques (EEG and fMRI) but the same materials (N = 
34 in Ordin & Polyanskaya, 2021, and Ordin, Polyanskaya, 
Soto, & Molinaro, 2020b; N = 25 in Ordin, Polyanskaya, & 
Soto, 2020a). Despite important differences in modality and 
techniques, these studies provided important indications for 
the sample size necessary to obtain significant results—if 
there were any—in behavioral measures, including recog-
nition accuracy and confidence ratings. Forty participants 
with normal or corrected-to-normal vision were recruited for 
this study. All participants were students at the University 
of the Basque Country (age range: 18–35 years, M = 24, 
26 females). All had lived in a bilingual (Basque–Spanish) 
environment from birth and were fluent and regular users of 
both languages across all communication contexts. Relative 
proficiency in both languages was assessed by lexical access. 
Participants had to name 65 objects first in Basque, then in 
Spanish; all object names were noncognates, and partici-
pants received one point for each correctly named object. 
The difference between the scores achieved in Basque 
and Spanish was used as a proxy for any proficiency skew 
towards one of these languages. However, all participants 
achieved ceiling scores in both languages, reflecting high 
proficiency across both of their two languages. All par-
ticipants had at least school-based knowledge of English. 
Importantly, the core learning ability to extract and employ 
conditional and distributional statistical cues for segmen-
tation of continuous sensory input is known to be similar 
across speakers of different languages and is not affected 
by bilingualism (Ordin et al., 2017; Poepsel & Weiss, 2016; 

Yim & Rudoy, 2013); thus, the reported results are expected 
to generalize over native speakers of other languages and 
also over monolingual populations.

Material

A syllable inventory of 18 consonant–vowel (CV) syllables 
was used to construct 12 trisyllabic statistical nonsense 
words with a unique combination of consonants, each syl-
lable contributing to two statistical words. The positions of 
plosive, sonorant, and fricative consonants were counter-
balanced across words; each consonant was used an equal 
number of times. Twelve statistical words were randomly 
concatenated 68 times, with each word repeated only once 
per block. These 68 blocks of 12 words were then randomly 
concatenated, ensuring that no word was ever repeated 
twice consecutively (at the block boundaries). In the result-
ing stream of syllables, which was used as a familiarization 
stream, TPs between syllables within words were 50%, and 
TPs between syllables straddling statistical word bounda-
ries were around 15%. Higher TPs (between syllables within 
triplets) could be used to merge syllables as parts of the 
same constituent, while lower TPs would signal bounda-
ries between recurrent triplets (see Fig. 1). This network 
of TPs allowed for the emergence of perceptual units that 
will be referred to as phantoms (three-syllabic sequences 
that did not appear in the habituation sequence of syllables 
as whole triplets, yet had 50% TPs between syllables, and 
were composed of the same syllable pairs that constituted 
the words). For the recognition test, 12 nonwords were cre-
ated by concatenating the syllables randomly, so that none 
of the syllable pairs in nonwords occurred consecutively in 
the familiarization stream.

The list of words, phantoms, and nonwords is given in 
Table 1.

Procedure

The experiment consisted of two parts: a learning session, 
immediately followed by a recognition test. Participants sat 
in front of the computer 60 cm from a 19-in. CRT Views-
onic monitor with their head stabilized by a chin rest and 
forehead restraint bar. Eye-movements were tracked using 
an SR EyeLink 1000 machine. The experimental room was 

Fig. 1  TPs between adjacent syllables: TPs between syllables within triplets are higher; TPs between syllables straddling triplet boundaries are 
lower
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dimmed to provide better viewing and more efficient eye-
tracking. Calibration and validation were carried out using a 
standard 9-point procedure (9-point grid calibration, biquad-
ratic with corner correction). The stimuli were presented via 
Experiment Builder Software (SR Research, Ontario, Can-
ada). Participants were informed that they were going to see 
a text in an unfamiliar language, presented without pauses 
between the words. They were told that they should try to 
detect and memorize the words of this unfamiliar language.

The screen was divided into seven interest areas (Fig. 2), 
and each region was populated with a syllable. The syl-
lables moved to the left every 500 ms, and the rightmost 
area of interest then displayed the following syllable in the 
learning sequence. The first and the last few syllables in the 

sequence were dimmed and gradually became obvious (at 
the beginning) or more obscure (at the end), preventing the 
participants from identifying the initial and final syllables 
as boundary markers for future segmentation. The syllables 
were presented in the Arial font (letter height: 2 cm, 4 cm 
between each syllable), in black (central position) or white 
(peripheral positions) against a grey background.

Following the learning session, participants performed a 
recognition test, during which eye-tracking data were col-
lected. The right eye was tracked for all participants. Partici-
pants had to look at the trisyllabic sequence—syllables were 
distributed linearly, with 8 cm between the consecutive syl-
lables—and respond whether the triplet was an actual word 
from the language they had learnt. They then had to assign a 
confidence rating—on a 6-point scale—to indicate how sure 
they were about their response. The syllables were presented 
for 2,000 ms, and the time for response was not limited. 
The responses were given using a mouse. The presented 
sequences could be either words (triplets that recurrently 
occurred during familiarization), or phantoms (triplets that 
never occurred during familiarization as whole constituents, 
but conformed to the same statistical regularities as words), 
or nonwords (novel triplets composed of syllable pairs that 
had never occurred consecutively during familiarization 
(i.e., in which TPs between adjacent syllables were zero). 
The position of yes/no buttons was counterbalanced, while 
the direction of the confidence scale was maintained for 
all participants because it is more natural to assign a lower 
value (e.g., “1”) to a lower confidence and a higher value 

Table 1  List of words, phantoms, and nonwords

Words Phantoms Nonwords

ROSENU
ROKAFA
PASETI
LEKATI
PAMONU
LEMOFA
PERIKO
MURIFO
PETASA
LUTAFO
MUNIKO
LUNISA

PASENU
LEKAFA
ROSETI
ROKATI
PAMOFA
LEMONU
MURIKO
LUTASA
PERIFO
PETAFO
MUNISA
LUNIKO

ROTIMO
SEPAKO
FALUSA
FOLERI
TAMUPE
NIKANU
NURIPE
FOLUKA
NIMUKO
MOPERO
LESATI
TASEFA

Fig. 2  Schematic illustration of the screen view presented to the par-
ticipants during the learning stage. The colors of the fonts and the 
background are similar to those used in the actual experiment. The 
syllables were displayed at 4-cm intervals along the central horizontal 
line. Each screen was presented for 500 ms, then the syllables were 

moved leftwards, so that the leftmost syllable disappeared and the 
subsequent syllable appeared on the right (in the example, the sylla-
ble “MO,” the next element in the PAMONU triplet, would appear on 
the right)
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(e.g., “6”) to a higher degree of confidence, and people are 
more used to tracking ascending numbers (representing the 
ascending degrees of confidence) from left to right. In sum, 
it was considered necessary to counterbalance yes/no posi-
tions, while counterbalancing the order of responses on the 
confidence scale was deliberately avoided.

For the test, 36 test tokens (12 words, 12 phantoms, 12 
nonwords) were randomized and sequentially presented to 
the participants three times (108 test trials in total). The 
eye-tracking machine was calibrated before the recognition 
test, and the calibration procedure was repeated after each 
block of 36 trials, using the same 9-point grid calibration-
validation procedure. Each trial was initiated as soon as the 
participant fixated the black square marking the place where 
the first syllable of a triplet would appear. The structure of 
the trial and the experimental interface are presented in 
Fig. 3. Although it might have been difficult for participants 
to hold the familiarization words in memory over 108 tri-
als (that were interrupted twice for recalibration), I did not 
observe any significant difference in performance between 
blocks for either type of test token (word, phantoms, non-
words). Afterwards, the numbers of endorsed and rejected 

words, phantoms and nonwords were averages across three 
blocks, to diminish any potential undetected effect of token 
repetitions.

Results (Experiment 1)

Accuracy and confidence analysis

Forty participants were tested and two excluded (for pressing 
the same response button on all 108 trials, both for recogni-
tion and confidence questions). Further screening of confi-
dence ratings and the number of “yes” and “no” responses 
in each category (words, phantoms, nonwords) revealed no 
outlying scores (defined as deviations exceeding two stand-
ard errors from the mean).

A series of one-sample t tests showed that the number of 
endorsed words, phantoms, and nonwords significantly dif-
fered from what would be expected by chance (50%, or 16 
responses). Participants accepted words, t(37) = 14.38, p < 
.0005, M (mean difference from chance) = 11.42, 95%CI of 
the difference [9.81, 13.03], and phantoms, t(37) = 4.39, p < 
.0005, M = 4.16, [2.24, 6.08], significantly above chance and 

Fig. 3  The schematic representation of the experimental trial during the recognition test, Experiment 1. The questions—in Spanish—were (1) Is 
it a word from the language? ( “yes” or “no”), and (2) How sure are you? (1 = not sure at all to 6 = very sure)
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rejected nonwords, t(37) = −11.65, p < .0005, M = −9.45, 
[−11.09, −7.8]. As performance at the group level was dif-
ferent from what would be expected by chance, I suggest 
that these responses were not given randomly. The pattern 
of responses is represented in Fig. 4a.

A repeated-measures ANOVA on the number of endorsed 
words, phantoms, and nonwords showed a significant effect 
of category, F(2, 74) = 184.09, p < .0005, ηp

2 = .83 (λ = 
368.18, noncentrality parameter). Pairwise tests (all pair-
wise tests are reported after Bonferroni correction) showed 
that differences between the number of accepted words and 
phantoms, t(37) = 6.96, p < .0005, M = 7.26, [5.15, 9.38], 
the number of accepted words and nonwords, t(37) = 16.13, 
p < .0005, M = 20.87, [18.25, 23.49], and the number of 
accepted phantoms and nonwords, t(37) = 14.39, p < .0005, 
M = 13.61, [11.69, 15.52], were significant. The difference 
between correct endorsements and correct rejections (i.e., 
between accepted words and rejected nonwords) was insig-
nificant, t(37) = 2.131, p = .12.

For the confidence analysis (Fig. 4b), the difference in 
confidence assigned to accepted and rejected items in each 
category was compared. Two-tailed t tests showed that 
accepted words, t(37) = 9.87, p < .0005, M = 1.47, [1.17, 
1.77], and accepted phantoms, t(37) = 2.88, p = .007, M 
= 7.26, [.11, .64], received higher confidence ratings than 
the corresponding rejected words and phantoms. Accepted 
nonwords were assigned lower confidence ratings, t(32) = 
3.472, p = .002, M = .57, [.23, .9], than rejected nonwords. 
Please note that five participants did not endorse a single 

nonword, and this explains the lower degrees of freedom in 
the last test.

The differences in confidence ratings assigned to 
accepted and rejected tokens per category were subjected 
to a repeated-measures ANOVA with Greenhouse–Geiser 
correction (ε = .775) for sphericity violations. This anal-
ysis showed that the difference in confidence assigned to 
accepted and rejected tokens of different categories was 
significant, F(2, 64) = 12.41, p < .0005, ηp

2 = .279 (λ = 
24.817) (corrected p values and uncorrected degrees of free-
dom are reported). Further pairwise comparisons (Bonfer-
roni correction applied in all pairwise t-tests in the manu-
script) showed that the difference in confidence assigned to 
endorsed and rejected words was significantly larger than 
that for accepted and rejected phantoms, t(37) = 6.85, p < 
.0005, M = 1.1, [.77, 1.42], or for accepted and rejected 
nonwords, t(32) = 4.04, p < .0005, M = .87, [.43, 1.31]. The 
difference in confidence assigned to accepted and rejected 
phantoms and accepted and rejected nonwords was not sig-
nificant, t(32) = .542, p = .591, M = .15 [−.7, .4].

Saccade analysis

Prior to the fixation sequence analysis, the eye-tracking data 
were subject to a multi-stage fixation cleaning algorithm, 
which allows for refined data pre-processing and is recom-
mended for analysis of eye movements in reading, imple-
mented in the EyeLink software. At the first stage, fixations 
shorter than 80ms were merged with any neighboring fixa-
tion exceeding 80 ms as long as the distance between them 

Fig. 4  a Experiment 1: Accepted words, phantoms, and nonwords 
out of 36 trials per category of tokens. Error bars represent 95% CI. 
The horizontal line represents a chance-level response. b Experiment 
1: Averaged confidence on accepted (acc) and rejected (rej) words, 

phantoms, and nonwords. Error bars represent 95% CI. The scale is 
cropped. The range for confidence ratings is from 1 (minimum confi-
dence) to 6 (maximum confidence)
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did not exceed 0.5 degrees. At the second stage, the remain-
ing shorter fixations (up to 40 ms) were merged with neigh-
boring fixations at a distance of up to 1.25 degrees. At the 
next stage, fixations shorter than 100 ms and longer than 800 
ms within a single interest area were deleted. The fixation 
sequence analysis was performed in the 2,000 ms time win-
dow, during which the syllabic triplet was presented.

After preprocessing, the saccades between interest areas 
(IAs) were split into pairwise forward saccades (from IA1 to 
IA2, from IA2 to IA3, and from IA1 to IA3), boundary-wise 
forward saccades (from IA1 to IA3), pairwise backward sac-
cades (from IA3 to IA2 and from IA2 to IA1), and backward 
boundary-wise saccades (from IA3 to IA1). A single syllable 
fit one IA (see Methods section). Mean numbers of each 
saccade type for trials with words, phantoms, and nonwords 
were calculated and are plotted in Fig. 5a.

Forward pairwise saccades (from IA1 to IA2 and from 
IA2 to IA3) were the most frequent, while backward pair-
wise saccades, representing the cases when participants 
looked back at the preceding syllable, probably to verify 
their decisions, were less frequent. Of the latter, the back-
ward saccades from the last to the middle syllable in the 
triplet were more frequent. Saccades between the boundary 
syllables were exceptionally rare. This pattern suggests that 
participants were making recognition decisions based on 
pairwise syllable combinations.

Further analysis was performed to identify whether sac-
cades differed between words, phantoms, and nonwords. 
A repeated-measures ANOVA on each saccade type with 
category (words, phantoms, and nonwords) as a three-level 
factor showed that only the mean number of forward and 
backward saccades between IA2 and IA3 differed across 

categories (see Table  2), with phantoms eliciting more 
pairwise saccades than words. The numbers of endorsed 
phantoms and words differed, so that the fixation sequence 
could potentially be associated with the response. Thus, 2 
× 2 repeated-measures ANOVAs, with category (words vs. 
phantoms) and response (accept vs. reject) as factors, were 
run. These tests showed that the effect of the response type 
(accept vs. reject) was significant neither for forward sac-
cades from IA2 to IA3, F(1, 37) = 2.47, p = .25 (corrected), 
ηp

2 = .063, nor for backward saccades from IA3 to IA2, 
F(1, 37) = 3.42, p = .146 (corrected), ηp

2 = .085. Also, the 
interaction between response and token category (words vs. 
phantoms) was significant neither for backward (p = .958) 
nor for forward (p = .152) saccades. This suggests that the 
significant difference in the number of saccades between 
words and phantoms was not modulated by response type. 
The ANOVAs revealed that phantoms elicit more backward, 
F(1, 37) = 13.08, p = .002 (corrected), ηp

2=.261, and for-
ward, F(1, 37) = 14.03, p = .004 (corrected), ηp

2=.275, sac-
cades between the second and the third syllables compared 
with words. The number of backward saccades elicited by 
nonwords and phantoms was not significantly different (p 
= .836). The number of forward saccades elicited by non-
words, however, was significantly higher than that elicited 
by phantoms (p = .021) and by words (p = .008).

Discussion (Experiment 1)

The results show that overall recognition performance was 
substantially above chance: words were endorsed, while non-
words were rejected as legal constituents; phantoms tended 
to be accepted at above-chance levels, yet the likelihood of 

Fig. 5  a Experiment 1: Mean number of saccades per trial between adjacent and boundary syllables in triplets split by token category. Note. nw 
= nonwords; ph = phantoms; w = words. Error bars represent 95% CI
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endorsing phantoms was lower than that of endorsing words. 
Importantly, an earlier study (Orbán et al., 2008) showed 
that in the visual modality, people fail to distinguish fre-
quent pairs of symbols embedded in larger combinations 
of symbols from infrequent pairs that straddle boundaries 
of these combinations, once these combinations have been 
successfully extracted from a continuous visual input and 
committed to memory. Indeed, once constituents are learnt, 
knowledge of subelements of these constituents is also atten-
uated in linguistic material (Fiser & Aslin, 2005; Giroux & 
Rey, 2009). This phenomenon—referred to as the embed-
dedness constraint—might suggest that the phantoms in our 
experiment were recognized based on general adherence to 
learned statistical structure rather than on recognition of fre-
quently co-occurring pairs, because the knowledge of pairs 
is supposedly attenuated by the end of the exposure. Con-
sequently, it may be suggested that nonwords were rejected 
because they violated learnt statistical regularities, phantoms 
were endorsed based on statistical congruency with learnt 
regularities, while the higher acceptance rate for words than 
phantoms can be explained by the facilitatory effect of mem-
ory representations of whole triplets as words, presumably 
extracted and committed to memory as discrete constituents 
during the learning stage. This interpretation is in line with 
recent fMRI evidence (Ordin, Polyanskaya, & Soto, 2020a), 

where activation differences in the neural memory network 
were reported for presentation of both old and novel—but 
statistically congruent—triplets.

Although statistical learning is often considered to occur 
incidentally, cognitive processes typical of both implicit and 
explicit learning are activated as learning progresses (see 
discussion in Dienes et al., 1991; Perruchet & Pacton, 2006; 
Reber et al., 1991). As people learn regularities and constitu-
ents, they may become increasingly aware of them. If so, 
extracting those constituents from continuous sensory input 
that has already been presented multiple times and commit-
ted to memory is likely to be more conscious than extract-
ing such constituents when they are first encountered at the 
initial stages of learning and still need to be memorized. 
Researchers have tested both explicit and implicit learning, 
and some studies have specifically examined the differences 
between tasks and underlying cognitive processes. As a rule, 
statistical learning has been shown to be more efficient when 
instructions are explicit (Kahta & Schiff, 2016; Laasonen 
et al., 2014; Reber et al., 1991; Schiff et al., 2017), but 
some researchers (Arciuli et al., 2014; Dienes et al., 1991) 
have reported that statistical learning performance does 
not vary with explicit versus implicit instructions. In this 
experiment, explicitly reporting feelings of confidence on 
each trial meant participants had to evaluate the likelihood 

Table 2  ANOVAs (repeated measures) on the number of saccades between different syllables in the triplets, with token category (words, phan-
toms, nonwords) as the main factor

Saccade F(2,64) puncorrected pcorrected ηp
2 λ ε (G.-G.)

IA1 from IA3 1.5 .231 1.0 .045 3.0 n/a

IA3 from IA1 .455 .636 1.0 .014 .911 n/a

IA2 from IA1 3.35 .041 .246 .095 6.71 n/a

IA3 from IA2 17.48 <.0005 <.0005 .353 34.95 n/a

IA1 from IA2 1.11 .335 1.0 .034 2.23 n/a

IA2 from IA3 7.411 .001 .018
corrected both for 
sphericity and 
mul�ple tests

.188 12.27 .828
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of an error each time they decided whether the test token 
was a word. This suggests that they needed to consciously 
evaluate how aware they were of what they were assess-
ing (what they had learnt). Larger differences between cor-
rect and incorrect responses reflect better ability to evaluate 
the likelihood of an error (Fleming & Lau, 2014; Pasquali 
et al., 2010; Schwiedrzik et al., 2011), and hence indicate 
the degree of conscious awareness of the learnt constituent. 
The data show that participants were more aware of having 
learnt words than phantoms, yet recognition of phantoms 
was still based on information that was subject to conscious 
processing to a higher degree than information needed to 
reject nonwords. Recognition of words was likely supported 
by memory representations of extracted triplets as holistic 
units from the sensory input. These units could be retrieved 
from memory as discrete constituents and consciously com-
pared with statistically congruent tokens, raising the degree 
of conscious awareness when a presented token matched one 
of the memory representations. On trials where nonwords 
were presented as test tokens, a correct decision would have 
to be based on the absence of memory representations and/
or violations of statistical structure. In this case, participants 
had to report their confidence in what they did not know 
or had not learnt, and it is not possible to have conscious 
awareness of a token or structure that has not been learnt. 
This could explain why the difference in confidence ratings 
assigned to correct versus incorrect trials with nonwords was 
the lowest difference found. Importantly, conscious aware-
ness of what is being learnt is not required for successful 
statistical learning because, despite differences in the degree 
of conscious contributions to decisions, the proportion of 
correct responses on nonwords and words did not differ. 
At the same time, I cannot exclude the possibility that dif-
ferences in the degree of conscious awareness in different 
types of recognition trials was due to the instructions given 
before familiarization rather than to differences in conscious 
awareness of what can be learnt. Participants were explicitly 
told to search for word-like units, and this could have tuned 
the relevant cognitive systems for detecting and memoriz-
ing holistic constituents at the expense of paying attention 
to structure (statistical regularities) or subconstituent units 
(frequently co-occurring syllabic pairs), raising conscious 
awareness of words during the familiarization phase. Both 
of these hypotheses could explain why the largest difference 
in confidence between correct and incorrect responses was 
found for word trials.

The eye-tracking data suggest that people check sequences 
of syllables in a pairwise fashion, with backward saccades 
made to verify that the two syllables are indeed parts of 
the same constituent. Saccades between boundary sylla-
bles were almost nonexistent, providing no evidence that 
boundaries were checked for consistency. In fact, overall, 
no evidence was observed for the use of boundary-finding 

mechanisms, at least at the recognition stage, where tokens 
were presented in isolation. Saccades between the second 
and the third syllables were more frequent for phantoms than 
words, signaling that participants found this transition more 
cognitively challenging and sought additional verification 
on phantom trials. By contrast, participants often made deci-
sions on words without seeking additional verification. It 
seems that when activation of memory representations failed 
in the case of phantoms, participants felt obliged to verify 
that the penultimate–final syllables were indeed a frequently 
co-occurring pair. Again, it was not observed that people 
checked initial syllables on the backward saccades. It is pos-
sible that recognition of tokens presented in isolation and 
embedded into longer sequences of syllables may call for 
different cognitive mechanisms. Thus, a second experiment 
was set up to explore the cognitive mechanisms for online 
segmentation of holistic triplets, as opposed to the offline 
recognition of such units.

Experiment 2

Methods (Experiment 2)

Experiment 2 focused on extracting already learnt con-
stituents embedded in longer sequences of seven syllables. 
Unlike Experiment 1, this paradigm encouraged partici-
pants to detect boundaries between discrete constituents in 
the sequence of syllables. In Experiment 1, all TPs between 
syllables within triplets were either equal to 0.5 (words and 
phantoms), or equal to 0 (nonwords) throughout all syl-
lables presented on the screen. This could potentially dis-
courage the use of bracketing mechanisms, which are based 
on detecting transitions that have relatively lower TPs than 
other transitions in a stream. In Experiment 2, whenever 
a word or a phantom was embedded in a longer sequence 
of seven syllables, the TP between the syllables straddling 
the word boundary was lower than the TP between sylla-
bles within phantoms and words. This created the necessary 
conditions to promote the use of a boundary-finding mecha-
nism—that is, calculating relative TP differences between 
syllables, and aligning the word boundary with the TP that 
is lower than the neighboring intersyllabic transition.

Participants

Forty-three participants (age range: 18–35 years, M = 28, 31 
females), who had not taken part in Experiment 1 but had 
the same profile, were recruited.
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Material

The same material was used as in Experiment 1.

Procedure

The experiment consisted of two parts. The learning ses-
sion was identical to that in Experiment 1. For the recog-
nition test, seven syllables were presented on-screen along 
the central horizontal line, with 4 cm distance between syl-
lables. Participants were told that the words from the novel 
language were embedded in some, but not all, of the seven-
syllable sequences. They had to report whether the syllabic 
sequence contained a word from the language they had been 
exposed to, and then indicate (on a 6-point scale) how sure 
they were about their response.

Each word was embedded in three test sequences, in the 
syllabic positions 2-3-4, 3-4-5, and 4-5-6. Each phantom 
and nonword was also embedded three times in the test 
sequences, again in three different positions within test 
sequences (108 trials in total). The order of trials was rand-
omized for each participant. The eye-tracking machine was 
recalibrated before the recognition test, and the same 9-point 
grid calibration-validation procedure was repeated after each 
block of 36 trials. Each trial was initiated as soon as the par-
ticipant fixated a black square marking where the first sylla-
ble of a seven-syllable sequence would appear. The sequence 
of syllables was displayed for 2,500 ms. There were no limits 
on response times. The structure of the trial and the experi-
mental interface are presented in Fig. 6.

Results (Experiment 2)

Accuracy and confidence analysis

Of 43 participants, two were excluded from further analyses 
for not following the task. A series of one-sample t tests 
showed that reporting whether the sequence contained a 
word, t(40) = 11.16, p < .0005, M = 7.59, [6.21, 8.96], or 
not, t(40) = −5.77, p < .0005, M = −5.66, [−7.64, −3.68], 
differed from what would be expected by chance. On tri-
als with embedded phantoms, participants reported that the 
presented syllabic sequences did contain a word with a fre-
quency significantly above that expected by chance, t(40) 
= 3.67, p = .001, M = 3.2, [1.44, 4.95]. As performance at 
the group level was different from what would be expected 
by chance, I suggest that the responses were not given ran-
domly. The pattern is represented in Fig. 7a.

A repeated-measures ANOVA on the number of 
sequences, in which participants reported they detected 
embedded words, showed that whether the trial contained 
a word, a phantom or a nonword had a significant effect, 
F(2, 80) = 88.32, p < .0005, ηp

2 = .688 (λ = 176.64); 

Greenhouse–Geiser (ε = .855) was applied to correct for 
sphericity violations (corrected p values and uncorrected 
degrees of freedom are reported). Pairwise tests showed 
that the number of trials accepted differed significantly for 
embedded words and phantoms, t(40) = 5.28, p < .0005, 
M = 4.39, [2.71, 6.07], trials with and without embedded 
words, t(40) = 11.11, p < .0005, M = 13.24, [10.83, 15.65], 
and embedded phantoms and nonwords, t(40) = 8.96, p < 
.0005, M = 8.85, [6.86, 10.85]. The difference between cor-
rect endorsements on trials with words and correct rejections 
on trials with nonwords was insignificant, t(40) = −1.74, p 
= .18.

For the confidence analysis (see Fig. 7b), I first tested for 
significant differences in confidence assigned to accepted 
and rejected sequences (a) with embedded words, (b) with 
embedded phantoms, and (c) without words/phantoms. 
Two-tailed t tests showed that endorsed sequences received 
higher confidence than rejected sequences, if they contained 
words, t(40) = 12.58, p < .0005, M = 1.3, [1.01, 1.5], or 
phantoms, t(40) = 8.09, p < .0005, M = .93, [.7, 1.17]. No 
significant differences were observed between confidence 
ratings assigned to endorsed and rejected sequences that did 
not contain words or phantoms, t(40) = 1.0, p = .323, M = 
.13, [−.13, .34] (i.e., sequences in which nonwords were 
embedded).

The differences in confidence ratings assigned to accepted 
and rejected tokens per category were subject to a repeated-
measures ANOVA with the Greenhouse–Geiser (ε = .781) 
for sphericity violations. This showed that the difference in 
confidence assigned to accepted and rejected tokens from 
different categories was significant, F(2, 80) = 76.32, p 
< .0005, ηp

2 = .279 (λ = 152.65), corrected p values and 
uncorrected degrees of freedom are reported. Further pair-
wise comparisons showed that the difference in confidence 
assigned to endorsed and rejected words was significantly 
larger than that for accepted and rejected phantoms, t(40) = 
3.701, p = .002, M = .36, [.16, .56], as well as for accepted 
and rejected nonwords, t(40) = 9.63, p < .0005, M = 1.43, 
[1.13, 1.72). The difference in confidence assigned to 
accepted and rejected phantoms and to accepted and rejected 
nonwords was also significant, t(40) = 1.06, p < .0005, M 
= 1.06, [.86, 1.28].

Saccade analysis

The protocol for data preprocessing was identical to that 
implemented in Experiment 1. To analyze the trials con-
taining words and phantoms, syllable (and IA) positions 
were recoded. IA1 was the position preceding the initial 
syllable of the triplet, IAs 2, 3, and 4 contained corre-
spondingly the first, second and third syllables of the tri-
plets, while IA5 contained the syllable following the tri-
plet. The mean numbers of saccades per trial between the 
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recoded positions were calculated and plotted in Fig. 8a 
(pairwise saccades between adjacent syllables) and Fig. 8b 
(long-distance saccades between the item boundary syl-
lables and beyond the boundary syllables). Forward pair-
wise saccades are more frequent than backward pairwise 
saccades. ANOVAs on each type of saccade with category 
(words and phantoms) as a factor did not reveal any differ-
ences in frequency of saccades for words and phantoms, 
suggesting a similar fixation sequence—mostly pairwise 
fixations—irrespective of the embedded token type. All 
tests yielded insignificant results (p > .4 before correc-
tions for multiple tests and p = 1.0 after corrections). This 
pattern replicates that observed in Experiment 1, where 
participants saw the triplets in isolation. The figures show 

that long-distance saccades are very rare, while long-dis-
tance forward saccades are almost nonexistent. However, 
whenever backward saccades between nonadjacent syl-
lables do occur, they tend to happen between syllables 
straddling the boundaries syllables (i.e., attracted to the 
low-TP transitions), providing some (albeit weak) support 
for some involvement of boundary-finding mechanisms. 
Short-distance saccades, however, were more frequent 
between syllables within triplets than between syllables 
straddling the triplet boundaries, suggesting that clustering 
mechanisms were dominant in extracting already learnt 
constituents from longer syllabic sequences, which is line 
with the interpretation of Experiment 1 data.

Fig. 6  The schematic representation of a trial during the recognition 
test in Experiment 2. The questions—in Spanish—were (1) Is it a 
word from the language? ( “yes” or “no”), and (2) How sure are you? 

(scale from 1 = not sure at all to 6 = very sure). The embedded tri-
plets were NOT highlighted in the actual experiment—they are high-
lighted here for the reader’s convenience
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Discussion (Experiment 2)

Accuracy results were similar to the pattern of results 
observed in Experiment 1. Sequences with embedded words 
were endorsed more frequently than sequences with embed-
ded phantoms, although both sequences were endorsed sig-
nificantly above chance. Sequences without embedded words 
and phantoms were rejected. No significant difference in 
accuracy was observed between rejected sequences without 
words and phantoms and accepted sequences with words.

This analysis of confidence ratings largely supports 
the interpretation of the data in Experiment 1. Conscious 
awareness of words as discrete constituents contributed 
to decisions on the word trials, responses on trials with-
out embedded words or phantoms were made without con-
scious awareness. However, the degree of conscious con-
tribution to decision-making did not modulate cognitive 
performance. This again suggests that statistical learning 
is possible without consciousness. Conscious awareness 
of words is grounded on explicit instructions given during 
the familiarization phase. Explicit instructions encouraged 
participants to pay attention to embedded sequences, mak-
ing it more likely that people consciously processed these 
sequences. Conscious awareness was further strengthened 
by memory representations of these triplets when they 
were committed to memory in the course of familiariza-
tion. Unlike Experiment 1, Experiment 2 did not reveal 
any contribution from conscious awareness in recognition 
of phantoms. This likely resulted from differences between 

the two experiments. In Experiment 1, participants had to 
decide whether the syllable pairs within the phantoms were 
chunks. This decision could have been based either on the 
frequency of syllable co-occurrence or on the TPs between 
syllables within triplets. But since the triplets were presented 
in isolation, they did not provide information about relative 
differences between TPs that straddled triplet boundaries and 
those located within triplet boundaries. This meant that par-
ticipants, in addition to frequency cues (the frequency with 
which two syllables had been encountered consecutively 
in the familiarization input), were forced to rely on some 
internal threshold to decide that TPs were overall high and 
should be located within triplet boundaries. By contrast, in 
Experiment 2, when the triplets were embedded into longer 
syllabic sequences, participants could rely on additional sta-
tistical cues—that is, relative differences in TPs (lower for 
syllabic pairs straddling the triplet boundaries and higher for 
within-triplet pairs). This increased information that can be 
extracted from TPs. Statistical regularities, which carried 
more information in Experiment 2 than in Experiment 1, 
were learnt without conscious awareness, and this resulted 
in a different pattern in confidence ratings on trials with 
phantoms in Experiments 1 and 2.

Analysis of the saccades showed that gaze transitions 
between adjacent syllables were more frequent than between 
nonadjacent syllables. Among all pairwise saccades, forward 
transitions were more frequent than backward transitions. No 
differences were observed in the saccades between syllables 
straddling triplet boundaries (i.e., low-probability transitions) 

Fig. 7  a Experiment 2: Accepted words, phantoms, and nonwords out 
of 36 trials per category of tokens. Error bars represent 95% CI. The 
horizontal line represents a chance level response. b Experiment 2: 
Averaged confidence on accepted (_acc) and rejected (_rej) words, 

phantoms, and nonwords. Error bars represent 95% CI. The scale is 
cropped. The range for confidence ratings is from 1 (minimum confi-
dence) to 6 (maximum confidence)
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and syllables within triplet boundaries (i.e., high-probability 
transitions). As low TPs did not attract a higher proportion of 
saccades than high TPs, the support for boundary-finding mech-
anisms (albeit weak) could only have been reflected in (relatively 
rare) long-distance saccades. However, whenever long-distance 
saccades were made, they tended to be backwards, going from 
the area marking the transition between the triplet-final and 
following syllables towards the transition between triplet-pre-
ceding and triplet-initial syllables. Although this can be viewed 
as evidence that the boundary-finding mechanism was at play, 
pairwise transitions were substantially more frequent, primarily 
implicating clustering segmentation mechanisms. It appears that 

boundary-finding mechanisms were employed rarely and only 
provided additional support. Absence of significant differences 
in saccades on trials with phantoms and words suggests that 
both types of tokens were extracted from a continuous speech 
based on the same cognitive segmentation mechanisms.

General discussion

In Experiment 1, people had to evaluate the overall pre-
dictive strength between syllables, basing their decisions 
on high versus low TPs between the syllables presented 

Fig. 8  a Experiment 2: Mean number of saccades per trial between 
adjacent syllables (syllables 2-3-4 contain the words or phantoms). 
Error bars represent 95% CI. b Experiment 2: Mean number of sac-

cades per trial between non-adjacent syllables (syllables 2-3-4 con-
tain the words or phantoms). Error bars represent 95% CI
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on-screen or on whether adjacent syllables had frequently 
co-occurred in the familiarization input. In Experiment 2, 
people could additionally rely on the relative predictive 
strength of TPs between syllables. Regardless of whether 
people could rely on such relative relations (Experiment 
2) or not (Experiment 1), words were recognized and 
endorsed at a higher rate than phantoms, while nonwords 
were rejected at the same rate as words were accepted. 
On trials in which words were presented, decision-making 
activated a higher degree of conscious awareness, yet con-
scious processing and awareness of test tokens is not a 
requirement for efficient statistical learning. As statistical 
learning can easily progress without conscious process-
ing of information, building conscious representations 
of words appears to be a natural by-product in the evo-
lution of representations: percepts of frequent syllable 
pairs become attenuated, and representations of triplets 
as holistic constituents are strengthened. This view of con-
structing conscious representations of words as a natural 
self-organization of percepts that emerge at earlier stages 
of exposure is in line with theoretical and computational 
models of statistical learning (Perruchet, 2005; Perru-
chet & Tillmann, 2010; Perruchet & Vinter, 1998, 2002; 
Poulin-Charronnat et al., 2016), which present statistical 
learning as extraction and accumulation of chunks based 
on associative learning principles and results in further 
merging of these chunks into larger constituents.

The saccade analysis clearly showed that the domi-
nant cognitive mechanisms involved in statistical learn-
ing are based on clustering; only in Experiment 2 was 
there some weak evidence for engagement of boundary-
finding mechanisms. This is surprising given that several 
earlier studies, including one of our own (e.g., Endress 
& Bonatti, 2007; Ordin, Polyanskaya, Soto, & Molinaro, 
2020b), have shown that boundary-finding mechanisms 
underlie segmentation of continuous linguistic inputs. 
Importantly, most of these studies were performed in 
the auditory modality. Statistical learning is not a single 
mechanism, but rather an ability that is based on a set 
of mechanisms (Conway, 2020; Frost et al., 2015; Frost 
et al., 2019), and the combination of engaged mechanisms 
differ depending on sensory modality (Conway & Chris-
tiansen, 2006; Emberson et al., 2011). It is possible that 
in the auditory modality, detecting boundaries is more 
important than in the visual modality. Notably, speech 
segmentation in the auditory modality is modulated by 
pitch modifications (Ordin & Nespor, 2013, 2016; Shukla 
et al., 2007; Toro et al., 2009), lengthening of phrase-final 
syllables (Ordin et al., 2017), and inserting pauses between 
some constituents words (Buiatti et al., 2009; Endress & 
Mehler, 2009b). These cues facilitate boundary detection 
because they are often aligned with the initial or final syl-
lables of constituents (the effect of prosodic cues that are 

not aligned with the boundaries of discrete constituents 
is either neutral or even impedes segmentation; Ordin & 
Nespor, 2013). Natural speech always contains prosodic 
cues, which facilitate detecting boundaries, especially 
when statistical and prosodic cues provide mutual sup-
port for boundary-finding mechanisms. By contrast, the 
current experiments were conducted in the visual modal-
ity, such that supplementary cues to constituent bounda-
ries were not present in the familiarization input. This is 
likely to modulate the relative importance of clustering 
and boundary-finding mechanisms for segmentation pur-
poses. The data suggest that clustering mechanisms prevail 
in segmentation of visual input.

It has been claimed by many researchers that statistical 
learning arises from a set of memory processes (McClel-
land et al., 1995; Perruchet & Vinter, 1998; Thiessen, 2017). 
Endress and Langus (2017), for example, argue that TPs are 
used to detect boundaries between constituents in continu-
ous input, while memory is used to remember and recollect 
extracted constituents. This study suggests that memory 
mechanisms underlying segmentation might also differ 
depending on the perceptual modality engaged. Two classes 
of memory mechanisms were proposed: chaining memory 
(i.e., encoding which elements follow a given element within 
a sequence) and ordinal memory (i.e., encoding the posi-
tion of smaller elements relative to the edges of a larger 
unit). Although humans use both memory mechanisms (see 
Endress & Wood, 2011; Henson, 1998, for a review; Mar-
chetto & Bonatti, 2013; Ng & Maybery, 2002), the repre-
sentation of linguistic sequences in the auditory modality 
has been shown to largely rely on positional mechanisms 
(Endress et al., 2005; Endress & Hauser, 2010). However, 
the results in the visual modality lead to the opposite con-
clusion. If the position of syllables within the triplets (the 
ordinal mechanism) mattered more than the chaining mem-
ory mechanism, no difference in accuracy would have been 
observed between words and phantoms. Compare, for exam-
ple, the phantoms PASENU and ROSETI and the words 
ROSENU and PASETI. The syllable SE was always used in 
the intermediate position, while syllables RO and PA marked 
the triplet-initial, and syllables TI and NU marked the tri-
plet-final position in both words and phantoms. Each sylla-
ble was used twice and always in the same ordinal position 
within statistical words and phantoms. If the participants 
had relied exclusively on an ordinal memory mechanism, the 
words and phantoms would have been encoded similarly, and 
the accuracy of responses on words and phantoms would not 
differ. Hence the tentative conclusion is that in the current 
experiment, sequencing of syllables within triplets was val-
ued more than the position of syllables relative to the edges, 
which allowed words to be differentiated from phantoms. By 
contrast, in auditory material, ordinal memory mechanisms 
are probably evoked since the boundaries of the higher-order 
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constituents are emphasized by prosodic cues that attract a 
listener’s attention to constituent edges.

To conclude, the data show that in the visual modality, 
segmentation of syllabic sequences relies mostly on clus-
tering mechanisms. Differences between empirical results 
across studies are likely due to different underlying cogni-
tive mechanisms and the differences in available cues in the 
auditory and visual modalities.
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