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Abstract

Background: Self-incompatibility (SI) is a major barrier that obstructs the breeding process in most horticultural
plants including tea plants (Camellia sinensis). The aim of this study was to elucidate the molecular mechanism of
Slin tea plants through a high throughput transcriptome analysis.

Results: In this study, the transcriptomes of self- and cross-pollinated pistils of two tea cultivars ‘Fudingdabai’ and
Yulv' were compared to elucidate the SI mechanism of tea plants. In addition, the ion components and pollen tube
growth in self- and cross-pollinated pistils were investigated. Our results revealed that both cultivars had similar pollen
activities and cross-pollination could promote the pollen tube growth. In tea pistils, the highest ion content was potassium
(K", followed by calcium (Ca®*), magnesium (Mg?*) and phosphorus (P°*). Ca®* content increased after self-pollination but
decreased after cross-pollination, while K showed reverse trend with Ca®*". A total of 990 and 3 common differentially
expressed genes (DEGs) were identified in un-pollinated vs. pollinated pistils and self- vs. cross-pollinated groups after 48 h,
respectively. Function annotation indicated that three genes encoding UDP-glycosyltransferase 74B1 (UGT74B1),

Mitochondrial calcium uniporter protein 2 (MCU2) and G-type lectin S-receptor-like serine/threonine-protein kinase
(G-type RLK) might play important roles during SI process in tea plants.

Conclusion: Ca”* and K" are important signal for Sl in tea plants, and three genes including UGT74B1, MCU2 and
G-type RLK play essential roles during Sl signal transduction.
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Background

Self-incompatibility (SI) is a common phenomenon in plant
reproduction system, which prevents self-fertilization in
flowering plants. There are two classical known mecha-
nisms for SI, namely, homomorphic gametophytic self-
incompatibility (GSI) and homomorphic sporophytic
self-incompatibility (SSI). In GSI system, the pollen
incompatibility (haploid male gametophyte) is controlled
by the S allele, pollen and pistils bearing the same S allele
trigger an incompatible reaction [1]. While in SSI system,
incompatibility is determined by both S alleles of the
(diploid-sporophyte) pollen parents [2].
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GSI has been found in many plant species, such as
Solanaceae [3, 4] and Rosaceae [5—7], while SSI is typically
found in Brassicaceae [8]. Both GSI and SSI have male or
female determinate conditions which are regulated by
different prominent genes [9]. In GSI system, S locus-
encoded F-box (SLF/SFB) proteins control the pollen
recognition of S-RNase based SI [10-12]. In SSI systems,
S-locus receptor kinase (SRK) gene and S-locus cysteine-
rich protein (SCR)/S-locus protein-11 (SP11) function as a
receptor-ligand pair to recognize self-pollens at the
surface of stigma epidermal papilla cells [13]. The SRK
is a membrane-spanning receptor protein in stigma
containing an extracellular domain (S-domain) for recogni-
tion of SP11, a transmembrane domain, and an intracellular
serine/threonine kinase domain [14]. S-locus glycoprotein
gene (SLG) and SRK exhibit series characteristics which are
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associated with the female determinant of SSI in Brassica
[15]. The S domain of SRK is highly similar to the SLG,
which is the first S-locus gene to be identified and a soluble
glycoprotein secreted to the stigma surface [16, 17]. Besides,
the pollen coat protein SCR/ SP11 controls pollen deter-
minant of SSI in Brassica [8, 18], and many SP11, SRK, and
SLG alleles were inherited together to term different S
haplotypes.

Self-incompatibility mechanism remains unclear in tea
plant. Previous studies suggested that tea plant SI might
be in late-acting self-incompatibility system (LSI), in that
self-pollinated pollen tubes elongated through the style
but failed in fertilization [19, 20]. This has made it
almost impossible to obtain fruits in self-pollinated tea
plants (Camellia sinensis); thus, breeding process in tea
plant is not encouraged. LSI is a novel SI system in
plants, but the molecular mechanism of this system is
still unclear. Recently, Zhang et al. [21] found that tea
plant SI might be categorized to GSI through transcrip-
tome analysis. Therefore, the SI mechanism in tea plants
is still controversial and needs further exploration.

To understand the mechanism of SI in tea plant, the
ion components and pollen tube growth in self- and
cross-pollinated pistils were investigated. Furthermore,
the transcriptome of self- and cross-pollinated pistils of
two tea cultivars ‘Fudingdabai’ and ‘“Yulv’ was compared
to figure out the DEGs which may be involved in SI of
tea plant. ‘Fudingdabai’ is a national superior clone and
cultivated widely in China because of its good quality,
high yield, and excellent stress resistance, while “Yulv’ is a
high-quality cultivar selected from the hybrid offsprings of
‘“Yabukita’. Both cultivars are self-incompatible and show
high fruiting rates after cross-pollination. This study will
provide reference for understanding SI mechanism of tea
plant.

Methods

Plant materials and treatments
Two ten-year-old tea cultivars, namely, C. sinensis cv.
Fudingdabai and C. sinensis cv. Yulv, cultivated in tea
germplasm repository of Tea Research Institute of Fujian
Academy of Agricultural Sciences were used in this study.
Flowers from both of the two tea cultivars have three
petals and trifid stigmas. The stigmas of ‘Fudingdabai’
divided at the base but “Yulv’ at the upper part (Fig. 1).
Flower buds of the two tea cultivars were harvested at
4:00 pm for pollens collection. Besides, the remaining
flower buds of two cultivars were emasculated and used
for artificial pollination next morning. A total of four
pollination combinations were conducted: ‘Fudingdabai’
(3) x ‘Fudingdabai’ (?), Yulv’ (3) x ‘Yulv’ (?), Fudingdabai’
(&) xYulv' (?), and Yulv' (&) x Fudingdabai’ (?), as
shown in Fig. 2. The un-pollinated and pollinated pistils at
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Fig. 1 Morphology of flowers from ‘Fudingdabai’ and *Yulv' cultivars
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8, 24, 48 and 72 h were picked from each combination and
frozen quickly in liquid nitrogen and stored at - 80 °C
for RNA extraction. Three biological replicates were
conducted with at least five pistils for each replicate.

Pollen culture in vitro

Pollen culture medium was prepared with the following
substances: 0.59 g MES, 0.02 g H3BO3, 0.05 g Ca(NOs3)
4H,0, 5 g sucrose and 5 g polyethylene glycol 4000
(PEG 4000), diluted with distilled water to 100 mL. Pollens
were cultured in the medium in the dark and observed
by Olympus light microscope (Olympus, Tokyo, Japan).
Pollen germination rate and mean pollen tube length at 1,
2, and 4 h were calculated based on eight visual fields.
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Fig. 2 The flow diagram of the experiment design. Red and green
indicate pollination combination of the two tea cultivars in this
study. The color dots mean pollens from the corresponding cultivars
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Fluorescence activity of pollen tube

Fresh un-pollinated and pollinated styles were fixed in
FAA fixative buffer (5 mL formalin, 6 mL acetic acid,
and 89 mL 50% ethanol) for 24 h [19]. The styles were
washed with deionized water and then softened by 2 M
NaOH overnight. The softened styles were stained by 0.1%
aniline blue solution dissolved with 0.15 M Ky;HPO,.
Finally, the styles were observed under Leica DM6B
fluorescence microscope (Leica, Bannockburn, USA)
after 15 min staining. At least five styles were observed
for each sample.

lon components of pistils

Un-pollinated and pollinated styles were dried at 80 °C
for 4 h. A total of 0.1 g dried samples (at least 15 pistils)
were ground and digested in 5 ml nitric acid by ETHOS
One high performance microwave digestion system
(Milestone, Bergamo, Italy) for 1 h. The digested samples
were diluted with nitric acid to 25 mL and analyzed by
inductively coupled plasma-optical emission spectrometer
(PerkinElmer Optima 2100DV, Massachusetts, USA). A
total of nine ions were detected, including potassium (K*),
calcium (Ca®*), magnesium (Mg>*), phosphorus (P°),
zinc (Zn**), boron (B**), Ferrous (Fe**), aluminium (AI**),
and manganese (Mn?*). The contents of the ions were
quantified by establishing standard curve.

RNA extraction, library construction and sequencing
Total RNA was extracted using Plant RNA extraction kit
(Bioteke, China) according to the manual. RNA quality
and concentration were assessed by 1% agarose gels,
Qubit"2.0 Fluorometer (Invitrogen, Carlsbad, USA), and
Agilent Bioanalyzer 2100 system (Agilent, Palo Alto,
USA). A total of 3 pg RNA per sample was used for
sequencing libraries preparation by NEBNext’Ultra™
RNA Library Prep Kit for Illumina® (NEB, USA) following
manufacturer’s instructions and library quality was
assessed on the Agilent Bioanalyzer 2100 system (Agilent
Technologies, Palo Alto, CA). The clustering of samples
was performed using TruSeq PE Cluster Kit v3-cBot-HS
(lumina) according to the manufacturer’s instructions.
Finally, sequencing analysis was carried out with an
Ilumina Hiseq 2500 platform to generate pair-end
reads.

Genome alignment and gene annotation

Raw data of fastq format were processed, and then were
cleaned by trimming the adapter sequences, ploy-A con-
taining reads and low quality reads. The clean reads were
aligned to the reference genome (http://www.plantking-
domgdb.com/tea_tree/) by TopHat2 using the default
parameters [22]. The mapped reads were assembled into
possible transcripts by Cufflinks [23]. The unannotated
transcripts were annotated by BLAST [24] based on the
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following databases: NR (NCBI non-redundant protein
sequences) [25], COG (Clusters of Orthologous Groups
of proteins) [26], Swiss-Prot (A manually annotated and
reviewed protein sequence database) [27], KEGG (Kyoto
Encyclopedia of Genes and Genomes) and GO (Gene
Ontology) [28].

Identification of differentially expressed genes

Fragments per Kilobase of transcript per Million mapped
reads (FPKM) estimates produced by RNA-Seq by
Cuffquant and Cuffnorm of Cufflinks was used to evaluate
the expression of transcripts [29]. The transcriptome com-
parisons of un-pollinated vs. pollinated groups and self-
pollinated vs. cross-pollinated groups were conducted to
find the differentially expressed genes (DEGs). Differential
expression analyses were performed using the DESeq R
package 1.10.1 [30], which provides statistical routines to
determine DEGs based on a negative binomial distribution
model. The P values were adjusted by the Benjamini and
Hochberg’s approach for controlling the false discovery
rate [31]. False discovery rate <0.01 and fold change >2
was considered to be significantly differentially expressed.
Pearson’s Correlation Coefficient was used to evaluate the
correlation of biological repeats [30].

Quantitative real time PCR verification

The first-strand cDNA was synthesized from 1 pg of total
RNA by using the RevertAid™ First Strand cDNA Synthesis
Kit (Thermo Scientific, MA, USA) according to the manual.
Quantitative real time PCR (QRT-PCR) was performed
using SYBR Premix EX Taq (Takara, Japan) on Roche
LightCycler® 48011 (Switzerland) as instruction specified.
The qRT-PCR primers (Table 1) were designed by using
Primer Premier 5.0 (Premier Biosoft International, Palo
Alto, CA). The GAPDH (GenBank: GE651107) from tea
plant was used as the reference gene. All of the PCR reac-
tions were conducted in triplicate and the average expres-
sion values were calculated. The relative expression level of
each gene was calculated with the 2728CT method [32].

Statistical analysis

The statistical analysis was conducted using Excel 2016
and GraphPad Prism 5.0 (San Diego, USA). The signifi-
cance analysis of difference between two samples was
evaluated with Student t-test and multiple comparisons
were analyzed using One-way ANOVA and P < 0.05 was
considered to be statistically significant. The results were
displayed as mean + standard deviation.

Results

Pollen germination in vitro and fluorescence of pollen tubes
In order to evaluate the pollen vitality, pollen germination
rate and tube growth between ‘Fudingdabai’ and “Yulv’
were assessed and compared. As shown in Additional
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Table 1 The primers used for gRT-PCR verification

D Forward (5-3") Reverse (5'-3"

CSA006398 GGCGTATCCAACAATCTTATCG  CCAAACCCAATCATCATCCA
CSA005891 GAACGTGTGTTGGTCATTGAT ~ CATAAATTGTCTACTGGCGAG
CSA028406 GAGATTCAGTTGTCGCTTTG — AGAGCCACCATTTCATTAGC
CSA024717 CCACTGCCACTTGTCGTTGTT — GAGTTTGCCACCGTGAATTCG
CSA002728 GTCGTTCCACTGGCTTCCTAC  GGCAGTAGTTGITCATAGAGA
CSA026098 GGCTCCCTCTTTCTTTATATG  CCACCATCAATTTCTCCCTTG
CSA024379 TCCCATCATTAGCCTGCCAAC — ATCCCATCTCAGCCCATAAC
GAPDH TTGGCATCGTTGAGGGTCT CAGTGGGAACACGGAAAGC

file 1: Figure S1A, the pollen appearance between two
cultivars has no significant difference. Pollen germination
rate and mean length of pollen tubes of the two cultivars
were similar and increased gradually with prolongation of
the growth time (Additional file 1: Figure S1B).

The fluorescence of pollen tube was observed to exam-
ine the growth of pollens in pistils (Additional file 2:
Figure S2). After 8 h self-fertilization of ‘Fudingdabai; the
pollens germinated at stigma but no fluorescence was seen
in styles. After 24 h, a few pollen tubes entered styles and
the fluorescence on the base of styles was observed firstly
after 48 h. Pollen tubes of ‘Yulv’ (J) x ‘Fudingdabai’ (?)
cross-fertilized pistils showed higher growth rate than
‘Fudingdabai’ self-fertilization. The pollen tubes arrived at
the base of styles after 24 and 8 h in self-fertilized “Yulv’
pistils and ‘Fudingdabai’ (J) x ‘Yulv’ (Q) cross-fertilized
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pistils, respectively. Taken these results together, pollens
from other cultivars would grow faster in pistils than
that from themselves. This result was similar to that by
Zhang et al. [21]. In addition, reciprocal cross-pollination
showed that the pollen tube growth was slower when
‘Fudingdabai’ was used as maternal parent. However,
pollen tubes in all of the self- and cross-pollinated samples
reached the base of styles after 48 h.

lon components in self- and cross-fertilized pistils

Ion components, especially Ca®*, are an indicator of
self-incompatibility [33]. In tea pistils, the highest level
of ion component observed in the tea pistil was K,
followed by Ca®*, Mg>* and P°* in sequence (Fig. 3a).
Pistils of ‘Fudingdabai’ contained more K* but less Ca**
than those in ‘Yulv’. Ca®* content in self-pollinated pistils
of “Yulv’ (YLS) was higher than that in cross-pollinated
pistils of “Yulv’ (YLC), but no apparent difference between
self- (FDS) and cross-pollinated pistils of ‘Fudingdabai’
(FDC). In FDS pistils, the K* content was higher than in
EDC pistils, suggesting that Ca®* and K* may be involved
in potential signal transduction in SIL

Transcriptome assembly and function annotation

A total of 18 samples were sequenced and 122.75 Gb
clean data were obtained. The percentages of clean reads
having a base quality greater or equal than Q30 were
above 85.01% indicating that the data produced by
sequencing are of high quality. The clean reads from the

a
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Fig. 3 lon components in self- and cross-pollinated pistils of tea plants. a 1 un-pollinated ‘Fudingdabai’ pistils; 2-5 self-pollinated ‘Fudingdabai’
pistils at 8 h, 24 h, 48 h and 72 h; 6=9 "Yulv/(3) x ‘Fudingdabai'(?) at 8 h, 24 h, 48 h and 72 h; 10 un-pollinated ‘Yulv' pistils; 11-14 self-pollinated
"Yulv' pistils at 8 h, 24 h, 48 h and 72 h; 15-18 'Yulv(Q) x 'Fudingdabai'(@) at 8 h, 24 h, 48 h and 72 h. b The Ca’" and K" content during self- and
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18 samples showed alignment ratios between 47.77%
and 54.96% (SRA accession: SRP110788, Table 2). Based
on the alignment with the reference genome of tea, 8136
unannotated genes were found, and 6621 of these genes
were annotated after BLAST, with 1481 unigenes in COG
database, 3465 in GO database, 2301 in KEGG database,
4285 in Swissprot database and 6588 in Nr database.

Differentially expressed genes analysis

Correlation analysis showed that T02 of self-pollinated
‘Fudingdabai’ at 48 h (FDS48) revealed low correlation
to other two FDS48 samples (T07 and T12) with R of 0.
33 and 0.43, respectively. T15 of self-pollinated ‘Yulv’
pistil sample at 48 h (YLS48) deviated from other two
replicates (T05 and T10) with R* of 0.46 and 0.52,
respectively. These two samples (T02 and T15) were
therefore removed in further DEG analysis. All replicates
of remaining samples showed high correlation (Fig. 4).

A total of 1948, 3399, 3927, 3682, 145, 2061, 1343, 600
and 1859 genes were found to be differentially expressed
between each of un-pollinated ‘Fudingdabai’ pistils (FDO)
vs. FDS48, FDO vs. cross-pollinated ‘Fudingdabai’ (?) pistils
after 48 h (FDC48), un-pollinated ‘Yulv’ pistils (YLO) vs.
YLS48, YLO vs. cross-pollinated ‘Yulv’ (?) pistils after 48 h
(YLC48), FDS48 vs. FDC48, FDS48 vs. YLC48, YLS48 vs.
FDC48, YLS48 vs. YLC48 and FDC48 vs. YLC48, respect-
ively (Fig. 5a). By comparing the pollinated groups with
un-pollinated groups, 990 common DEGs were found
(Fig. 5b). COG classification of these DEGs showed that

Table 2 The alignment of transcriptomic reads on genome
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‘General function prediction only’ enriched most of DEGs,
followed by “Transcription; ‘Signal transduction mechanisms;
‘Replication, recombination and repair’ and ‘Secondary
metabolites biosynthesis, transport and catabolism’ (Fig. 5c).
GO enrichment analysis revealed that metabolic process in
biological process, cell part in cellular component and cata-
lytic activity in molecular function enriched the most DEGs
(Additional file 3: Figure S3).

Differentially expressed genes between self- and
cross-pollinated groups

In comparison of self- and cross-pollinated groups, only
three common DEGs were found (Fig. 6a). The 1160
common DEGs identified at least in two comparisons
were therefore considered in further analysis. COG func-
tion classification revealed that ‘General function predic-
tion only’ contained the most common DEGs followed by
‘Replication, recombination and repair, ‘Transcription’
and ‘Signal transduction’. This result shows that cross-
fertilization caused a series of responses in transcriptional
level. In addition, the three common DEGs in all compari-
sons were UDP-glycosyltransferase 74B1 (UGT74B1,
CSA001819), Mitochondrial calcium uniporter protein
2 (MCU2, CSA014152) and G-type lectin S-receptor-
like serine/threonine-protein kinase RLK1 (G-lecRLK,
Camellia_sinensis_newGene_13508). These genes showed
similar expression patterns in un-pollinated and pollinated
pistils. They also expressed at same levels during reciprocal
cross-pollinations, but adversely expressed during self-

Sample Total Reads Mapped Reads (%) Unique Mapped Reads Multiple Map Reads
FDO-1 41,191,716 21,483,151 (52.15%) 49.14% 3.01%
FDO-2 47,556,326 22,717,253 (47.77%) 43.74% 4.03%
FDO-3 42,082,490 22,243,075 (52.86%) 49.41% 3.44%
FDS48-1 42,900,034 22,929,028 (53.45%) 49.59% 3.86%
FDS48-2 47,034,306 23,852,770 (50.71%) 46.94% 3.77%
FDS48-3 45,609,388 23,605,185 (51.76%) 48.43% 3.33%
FDC48-1 48,440,032 25,869,526 (53.41%) 50.72% 2.68%
FDC48-2 41,896,840 21,354,194 (50.97%) 47.74% 323%
FDC48-3 49,373,892 25,641,271 (51.93%) 49.57% 2.37%
YLO-1 46,464,662 23,481,565 (50.54%) 47.86% 2.68%
YLO-2 43,549,168 23,651,982 (54.31%) 52.27% 2.04%
YLO-3 41,549,084 21,639,699 (52.08%) 49.26% 2.82%
YLS48-1 53,246,958 26,180,870 (49.17%) 46.35% 2.82%
YLS48-2 50,605,784 27,367,119 (54.08%) 51.17% 291%
YLS48-3 40,743,908 21,133,266 (51.87%) 45.29% 6.57%
YLC48-1 45,900,260 25,068,461 (54.62%) 51.87% 2.74%
YLC48-2 53,049,730 ,157,364 (54.96%) 52.29% 267%
YLC48-3 47,106,846 24,086,169 (51.13%) 48.49% 2.64%
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Fig. 4 Correlation analysis of the samples for differential expression analysis. Different sample numbers represent un-pollinated ‘Fudingdabai’ pistils
(FDO), self-pollinated ‘Fudingdabai’ pistils at 48 h (FDS48), 'Yulv'() X 'Fudingdabai'(?) at 48 h (FDC48), un-pollinated "Yulv' pistils (YLO), self-pollinated
Yulv' pistils at 48 h (YLS48) and "Yulv/(Q) x ‘Fudingdabai'(3) at 48 h (YLC48), respectively. Bold values are R? for replicates of each sample

pollinations of the two cultivars (Fig. 6b). Function
annotation found that G-lecRLK was functioned on ‘Signal
transduction mechanisms’. MCU2 worked on ‘Energy pro-
duction and conversion’ and ‘Carbohydrate transport and
metabolism’. Finally, UGT74B1 was annotated to ‘General
function prediction only’.

In order to compare our results to the previous study
[21], the data from self-pollinated (FDS48-1, SRR3290055)
and cross-pollinated ‘Fudingdabai’ samples (FDC48-1,
SRR3290084) at 48 h were downloaded and re-analyzed
based on genome of tea plants. A total of 4262 DEGs were
identified between FDS48-1 and FDC48-1 comparison.
According to the large number of DEGs, we suggested that
‘Fudingdabai’ should be used as the paternal parent in the
study of Zhang et al. [21]. As shown in Fig. 7, in compari-
son of self- and cross-pollinated groups (FDS48 vs. FDC48,
FDS48 vs. YLC48 and FDS48-1 vs. FDC48-1), only five
common DEGs were filtered. Therefore, the common
DEGs identified at least in two comparisons were con-
cerned. COG function classification revealed similar result
to the four groups comparisons in our study (Fig. 7).

Except for ‘general function prediction only, the classes
of ‘Replication, recombination and repair;, “Transcription’
and ‘Signal transduction’ enriched most of the DEGs. In
addition, G-lecRLK, MCU2 and UGT74B1 were found in
these common DEGs, suggesting that these DEGs played
vital roles during SI process. In the five overlapping genes,
MCU2 and UGT74B1 were found. G-lecRLK was only
expressed in the comparisons in our study because it was
annotated by database blast but not genome mapping.

DEGs between reciprocal cross-pollinations

In the present study, 1859 DEGs were identified in FDC48
vs. YLC48 comparison. Except for ‘General function predic-
tion only;, most of these DEGs were involved in “Transcrip-
tion’ and ‘Replication, recombination and repair’ (Fig. 8a).
KEGG pathway enrichment analysis showed that ‘Galactose
metabolism’ possessed the highest rich factor and ‘Phe-
nylpropanoid biosynthesis’ had the most DEGs (Fig. 8b).
This result suggests different responses between reciprocal
cross-pollinations in tea cultivars.
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Verification of differentially expressed genes

In order to verify the reliability of RNA-Seq data, eight
DEGs were selected for qRT-PCR analysis. As shown in
Fig. 9, most of the DEGs showed similar expression
trend compared to the RNA-Seq analysis. Therefore, the
RNA-Seq analysis is credible.

Discussion

Self-incompatibility is a common phenomenon in angio-
sperm. In order to understand the SI mechanism of tea
plants, we studied the ion components and pollen growth
in self- and cross-pollinated pistils from two tea cultivars.
The results showed that pollen tubes grew faster in
cross-pollinated pistils than those in self-pollinated pistils.
Furthermore, Ca®* in pistils increased after self-pollinations
but decreased after cross-pollinations. In addition, compara-
tive transcriptome analysis showed that G-type LecRLK,
UGT74BI1 and MCU?2 genes might contribute the SI signal
transduction mechanism in tea plant.

Signal transduction during self-incompatibility in tea plants
Self-incompatibility is genetically regulated by a multi-
allelic S-locus which links pollen and pistil S-determinants

and resulting in self-recognition. Interactions between
pollen and pistil in the same haplotype triggered a SI
response, which inhibits pollen tube growth and leads to
failure of fertilization [34]. During SI process, a series of
signal changes occurred in plants. The earliest identified
physiological event caused by SI recognition is the
increase of Ca>* in incompatible pollen tubes or stigma
papilla cells [35, 36]. In the present study, Ca®* changes
suggest a potential correlation between pollen tube
growth and Ca®* content. Furthermore, the opposing
trend of Ca>* ion content of the two cultivars between
self- and cross-pollinated pistils reveals that Ca** may
be an important signal for SI in tea plants.

In the present study, a DEG MCU2 was identified
between self- and cross-pollination, which undertook
the mitochondrial Ca®* uptake [37]. In animals, Ca*"*
uptake could regulate the mitochondrial energy production
that is a stimulation of sperm-induced Ca®" release [38].
There is evidence that the Ca®* uptake also occurred at
fertilization in mammalian eggs [39]. Inhibition of the
mitochondrial function also disrupted the sperm-induced
Ca®* oscillatory pattern and intracellular Ca®* homeostasis,
and resulted in low developmental competence in mammals
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[40]. Unlike in animals, the functional mechanism of
MCU in tea plants has been less studies, and; therefore,
needs verification except for Ca®*, K* is also sensitive to
SL. In Papaver rhoeas, conductance of some monovalent
cations, such as K" and NH," were also stimulated by SI
[41]. Interestingly, content of K" changes was opposite to

Ca®* after pollination (Fig. 3). We can therefore propose
that SI activates a nonspecific ion channel in tea plants.

Role of self-incompatibility related genes in tea plants
LecRLK family has been classified to three subfamilies:
L-type, G-type and C-type LecRLKs. This classification
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is supported by the structure analysis of these proteins.
L-type LecRLK contains a legume lectin-like extracellular
domain, and G-type LecRLK has a a-mannose binding bulb
lectin domain, while C-type LecRLKs are characterized
due to the presence of calcium-dependent carbohydrate-
binding domain [42]. G-type LecRLKs were historically
known as SRKs, since they hold the D-mannose binding
lectin (B_lectin) and catalytic domain of the serine/threo-
nine kinases.

SRK genes have a S domain which is responsible for SI
in Brassicaceae [15, 43]. Recently, these genes were also
reported to confer abiotic stress tolerance and delay
dark-induced leaf senescence in rice [44]. Here, we screened

a similar SRK gene (Camellia_sinensis_newGene_13508)
from tea plant which differently expressed between self- and
cross-pollinated pistils and might contribute to the signal
transduction of SI in tea plant. In general, the SRK genes
function in SI through the diversity of S domain. Therefore,
the S domain of the SRK gene should be identified in
different tea cultivars to explore the role of SRK on SI
process of tea.

The previous studies have identified a LSI or an ovarian
sterility (OS) type controlling self-incompatibility in tea
plants [19, 20]. The same phenomenon was also observed
in our study. However, the molecular mechanism of this
SI system remained unclear until Zhang et al. [21, 45]
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proposed a gametophytic SI mechanism based on S-
RNase control in tea plant. Unexpectedly, S-RNase
gene was not found in tea plant in the present study,
but three DEGs were identified in comparison between
self- and cross-pollinated pistils: G-type LecRLK, MCU?2
and UGT74B1. Pollen tube reception, the crosstalk be-
tween the male and female gametophytes when pollen
tubes arrive at the synergid cells of the ovule in flower-
ing plants, mutation of TURAN(TUN) and EVAN(EVN)
genes led to overgrowth of the pollen tubes inside the
female gametophyte and inhibited the rupture of pollen
tubes. TUN encodes a UGT superfamily protein and is
required for pollen tube growth and integrity by affecting
the stability of the pollen-specific FERONIA RLKs [46, 47].
In this work, whether the UGT74B1 and G-type RLK
genes work together on fertilization in tea plant

remains unknown. Nevertheless, we can suggest that
both of the genes may codetermine the SI mechanism
in tea plant.

It is difficult to explain that G-type LecRLK, MCU2 and
UGT74B1 showed so different expression patterns be-
tween self-pollinations. It may be due to the variety differ-
ence of tea plants. More cultivars should be adopted to
detect the expression of these genes in self- and cross-
pollinations to interpret their roles in SI. Besides, function
analysis through transgenic test to clarify the mechanism
of these two genes in SI will be a good way in the future if
more studies can be conducted to overcome the barriers
in tea plant transformation. Our study suggests a dis-
tinctive mode of action of SI in tea, and the results
therein provide new guidance and reference for exploration
of SI mechanism in tea.
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Conclusion

The present study revealed that cross-pollination could
promote the growth of pollens in styles and Ca** and K*
are involved in signal transduction in SI process of tea
plants, and also G-type LecRLK and UGT74B1 may
function together in controlling SI in tea plants. However,
the specific role of these genes in SI process needs further
identification. Our study will help understand the SI
mechanism of tea plant further.

Additional files

Additional file 1: Figure S1. Pollen appearance and activity between
‘Fudingdabai” and ‘Yulv' in vitro. A Pollen germination and phenotype of
‘Fudingdabai’ and ‘Yulv'. B Pollen germination rate and average length of
pollen tubes of ‘Fudingdabai’ and ‘Yulv'. (TIF 1137 kb)

Additional file 2: Figure S2. Fluorescence of pollen tubes in self- and

cross-pollinated pistils of tea plants at 48 h. “Top” and “Base” means the

stigma and the base of the style of tea flower, respectively. Arrows indicate
the pollen tubes with fluoresce. (TIF 4517 kb)

Additional file 3: Figure S3. Gene Ontology enrich analysis of DEGs
between unpollinated and pollinated samples. (TIF 755 kb)
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