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A B S T R A C T

Background: SARS-CoV-2 test kits are in critical shortage in many countries. This limits large-scale population
testing and hinders the effort to identify and isolate infected individuals.
Objective: Herein, we developed and evaluated multi-stage group testing schemes that test samples in groups of
various pool sizes in multiple stages. Through this approach, groups of negative samples can be eliminated with a
single test, avoiding the need for individual testing and achieving considerable savings of resources.
Study design: We designed and parameterized various multi-stage testing schemes and compared their efficiency
at different prevalence rates using computer simulations.
Results: We found that three-stage testing schemes with pool sizes of maximum 16 samples can test up to three
and seven times as many individuals with the same number of test kits for prevalence rates of around 5% and
1%, respectively. We propose an adaptive approach, where the optimal testing scheme is selected based on the
expected prevalence rate.
Conclusion: These group testing schemes could lead to a major reduction in the number of testing kits required
and help improve large-scale population testing in general and in the context of the current COVID-19 pandemic.

1. Background

The COVID-19 pandemic is caused by the virus SARS-CoV-2 and
despite drastic measures taken to limit disease dissemination, this
pandemic will lead to a substantial death toll and an unforeseeable
impact on health-care systems and the world economy. This shows the
need for accurate data on prevalence to better inform political and
public health decision making and to broadly identify infected in-
dividuals. So far, 1.6 million cases and over 100,000 deaths have been
reported world-wide ([1], 10.4.2020). However, true prevalence rates
are unknown as in most countries large-scale population testing has still
not been introduced. Tests are often restricted to specific groups of
populations, such as healthcare workers, individuals with known SARS-
CoV-2 exposure, COVID-19 symptoms or with risk factors for severe
disease.

One reason for the limited testing is the shortage of PCR testing
reagents. This could be overcome by group testing, a method first
suggested by Dorfman for testing large populations of U.S. soldiers for
syphilis [2]. The idea of group testing involves the division of the

population into small groups. For each group a combined sample
(‘pool’) of its members is created and tested. If the pool tests negative, it
can be concluded that all group members are negative and no in-
dividual tests will be required. If the pool tests positive, further tests
will have to be performed to determine which group member(s) are
positive. One ad-hoc model of group testing, using pools of up to 10
samples, has recently been applied for SARS-CoV-2 PCR [6]. More re-
fined variants of group testing are for example used in HIV screening
[3,4]; but these pool sizes seem to exceed the sensitivity of current
SARS-CoV-2 testing methods [5].

Herein, we develop various group testing schemes and evaluate
their resource efficiency for different prevalence rates. We define
models that are presumed practical for SARS-CoV-2 testing applications
(small pool sizes, small number of steps) and best suited to minimize
the number of tests necessary.

2. Objectives

We developed and evaluated multi-stage group testing schemes that
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test samples in groups of various pool sizes in multiple stages. Through
this approach, groups of negative samples can be eliminated with a
single test, avoiding the need for individual testing and achieving
considerable savings of resources.

3. Study design

3.1. Design of testing schemes

Multi-stage group testing schemes PNSk (“pool size N, k stages”)
were designed on the basis of two integers x (divisor) and k (number of
stages). The initial pool size is =

−N xk 1, which is divided by x in each
subsequent stage, resulting in pool sizes =

− −x x x, , ..., 1k k1 2 0 in stages
k1,2, ..., . Two-stage group testing applies this construction with setting

=k 2.

3.2. Evaluation of testing schemes

To compare the performance of group testing schemes, we defined a
quantity called improvement factor. Mathematically, the improvement
factor is the ratio of the population size and the expected value of the
number of tests performed by the scheme. In other words, it is the
average number of samples that can be tested with a single test, when
the scheme is applied to a large population. Importantly, the im-
provement factor depends on the prevalence rate p.

Improvement factors of two-stage testing schemes PNS2 were cal-
culated using the formula + − −N N N p/(1 (1 ) )N [2]. A PYTHON
program was written to handle multi-stage testing schemes. PYTHON
was also used to implement a Monte-Carlo statistical method that
performs multi-stage and matrix group testing schemes on 1 M ran-
domly generated groups of samples and averages the improvement
factor over all groups. The two methods were compared and found to be
in agreement with one another.

The improvement factors for all two-/multi-stage schemes with pool
sizes up to 10,000 and for the (8 × 12) matrix scheme were calculated
with the above described methods for all prevalence rates p between
0% and 30% in steps of 0.05%. PYTHON was used to determine the
optimal testing scheme amongst these examples and MATPLOTLIB to
plot heatmaps visualizing the results.

We presumed that schemes are clinically feasible if their pool size is
less or equal than 16 and their number of stages is less or equal than 4.

A selection of presumed clinically feasible and optimal multi-stage
schemes P3S3, P9S3, P4S2 and P16S3 was made. Additionally, the
schemes P32S2, P10S2 and the matrix scheme were considered as they
appeared in earlier literature [5–7]. MATPLOTLIB was used to plot
their improvement factors for prevalence rates between 0% and 30%.
Data for prevalence rates over 30% were not plotted, since all testing
schemes performed worse than individual testing in these cases.

4. Results

4.1. Design of group testing schemes

We designed group testing schemes with the goal of testing large
numbers of samples more efficiently. Samples are not tested in-
dividually from the start but rather arranged into groups (‘pools’) and
then tested together. All samples in pools that are tested negative must
be negative and no individual testing is needed. All samples in pools
that are tested positive are further processed according to the design of
the testing scheme.

A commonly used approach is two-stage testing [2], where pools
containing for example 3 individual samples (P3, “pool of 3”) are tested
first, and in a second stage (S2, “2 stages”) samples in positive pools are
tested individually (Fig. 1A).

The resource efficiency of group testing stems from the fact that for
low prevalence rates it is likely that a group of samples will not contain

a positive sample and thus negative samples are eliminated in groups.
Group testing schemes can be refined in various ways. We expanded

the design to multi-stage testing schemes. Here, pools that are tested
positive are split in multiple stages into smaller pools before eventually
performing individual tests. We used integer powers xk (e.g. 4k: 1, 4, 16,
…) of pool sizes and divided them by the fixed number x (divisor) after
each stage. For example, a testing scheme that we call P16S3 (“pool of
16, 3 stages”) has the divisor =x 4, meaning that pool sizes are divided
by 4 at each stage: It uses pools of 16 samples in the first stage, pools of
4 samples in the second stage and individual testing in the third stage
(Fig. 1B).

There are obvious variants, which are more complicated, such as
using different divisors at each stage which we did not consider further.

4.2. Evaluation of different two- and multi-stage group testing schemes

We defined the improvement factor compared to individual testing to
evaluate and compare the performance of different group testing
schemes. The improvement factor describes how many more samples
can be tested using the same (limited) number of ressources.
Simplistically speaking, an improvement factor of 10 indicates that
20,000 tests are sufficient to test an average population of 200,000
individuals.

The improvement factor of each scheme depends on the prevalence
rate. A calculation shows that for a prevalence rate p and a pool size N
the improvement factor for two-stage testing is

+ − −N N N p/(1 (1 ) )N [2]. Hence, if the prevalence rate approaches
0, the improvement factor approaches the pool size N. Multi-stage
testing schemes have the same asymptotic behaviour although explicit
formulas for their improvement factor become more complicated.

We next compared the improvement factors of each testing scheme
assuming different prevalence rates up to 30%. Results for selected
prevalence rates (1%, 7.5% and 20%) are visualised in Fig. 2.

The data showed that group testing is more efficient than individual
testing for prevalence rates under 30%. As expected, large pool sizes
and more stages are preferable for lower prevalence rates, small pool
sizes and fewer stages are preferable for higher prevalence rates, in-
dicating that there is no group testing scheme that is optimal for all
prevalence rates.

For prevalence rates under 12%, multi-stage schemes had higher
improvement factors than two-stage schemes. For prevalence rates
around 1%, simple three-stage schemes such as P9S3 or P16S3 (Fig. 1B)
yielded improvement factors of around 7.

At prevalence rates of around 1%, group testing schemes with very
large pool sizes and many stages, for example P81S5, are optimal in the
mathematical sense but clinically impractical for several reasons: First,
PCR testing is not arbitrarily sensitive. Pooling positive with negative
samples dilutes the positive samples, which increases the risk of false
negative results. However, recent research indicates that pooling of 16
samples does not seem to substantially impact test sensitivity of SARS-
CoV-2 PCR tests [5]. Second, the number of stages should be reason-
able. Each additional stage increases the workload and the risk of
human error. Furthermore, stages have to be processed sequentially,
increasing the time to diagnosis. Therefore, we decreased complexity
and restricted our further analysis to schemes with pool sizes up to 16
samples and a maximum of 4 stages.

4.3. Performance of presumed clinically feasible group testing schemes

We calculated the improvement factor of P3S2, P9S3, P4S2 and
P16S4 for prevalence rates up to 30% (Fig. 3 A + B) and compared
results with previously described schemes, namely the two-stage testing
schemes with pool sizes of 10 (P10S2, [6]), or 32 (P32S2, [5]). We also
assessed the matrix testing scheme [7] using a matrix of 96 samples (12
× 8) that groups samples in rows (8 pools comprising 12 samples) and
columns (12 pools comprising 8 samples), a method that has also been
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used for epitope mapping in immunology research application [8].
We summarized the optimal testing schemes for different pre-

valence rates (Table 1).
For low prevalence rates (0–3.5%), P16S3 is optimal among all the

schemes we considered feasible, with improvement factors between 16
down to 3.8. For medium prevalence rates (3.5−12%), it becomes
advantageous to reduce the pool size to 9 and perform 3 stages (P9S3),
giving an improvement factor from 3.8 down to 1.5. For high pre-
valence rates between 12% and 30%, the pool size should be further
reduced to three samples with 2 stages (P3S2), yielding an improve-
ment factor from 1.5 down to 1. Once the prevalence rate is 30% and
above, individual testing should be performed.

In summary, we showed that among all presumed clinically feasible
testing schemes multi-stage schemes are more suitable than two-stage

schemes for prevalence rates of under 12%. For prevalence rates up to
3.5% P16S3 is preferable and from 3.5% up to 12% the scheme P9S3.
For prevalence rates above 12% the two-staged testing scheme P3S2
performs best.

5. Discussion

We introduced multi-stage group testing schemes which are highly
efficient methods to test large numbers of samples and assessed their
improvement factor depending on different prevalence rates. We found
that three-stage schemes performed optimally for prevalence rates up to
12%, that initial pool sizes of 16 were best for prevalence rates up to
3.5% (P16S3, improvement factor 16 to 3.8) and pools of 9 samples for
rates between 3.5% and 12% (P9S3, improvement factor 3.8 to 1.5). For

Fig. 1. Schematic visualization of different group testing approaches.
Scheme P3S2 (left) is applied to 18 samples (circles) with 16 negative (white) and 2 positive (red) samples. The spatial arrangement of the tests is irrelevant. Stage 1:
6 groups of 3 samples each are combined into pools (rectangles) and tested (blue for negative, red for positive). Stage 2: all samples belonging to a negative pool are
considered negative and not further tested (grey). All samples from positive pools are tested individually.
In total, 18 samples were tested with 12 tests (1.5 samples per test). With lower prevalence rates, P3S2 can, on average, test up to 3 samples with 1 test.
Scheme P16S3 (right) is applied to 32 samples, one of which is positive. Stage 1: 2 groups of 16 samples are pooled and tested. Stage 2: All samples in the negative
group must be negative and are hence not tested further. Samples in the positive group are pooled into 4 subgroups of 4 samples and each pool is tested. Stage 3: The
remaining 4 samples in the one positive pool are tested individually.
In total, 32 samples were tested with 10 tests (3.2 samples per test). With lower prevalence rates, P16S3 can, on average, test up to 16 samples with 1 test.
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prevalence rates between 12 and 30%, two-stage testing with pools of 3
samples performed best (P3S2, improvement factor 1.5 to 1). This
suggests that an adaptive approach is necessary where the scheme is
chosen depending on the estimated prevalence rate. The multi-stage
group testing schemes defined in this paper outperform other ap-
proaches to group testing in the literature [2,5–7].

The high efficiency of multi-stage group testing allows for large-
scale testing of populations. To estimate the potential savings of tests
we can use real-world data [1] (dated 10.04.2020). In order not to
overestimate the prevalence rate, we considered data from countries
which have performed large-scale population testing, namely South
Korea and Germany. In South Korea a total of 503,051 people have

been tested, of which 10,450 were positive. This gives an estimate for
the underlying prevalence rate of 2%. At this prevalence rate the multi-
stage testing scheme P16S3 is optimal and would allow for testing about
five times as many individuals with the same number of tests. In Ger-
many, a total of 1,317,887 people were tested, of which 118,235 were
positive. This gives a higher prevalence rate of around 9%. In this case
the multi-stage scheme P9S3 is optimal; it would enable the testing of
an additional 80% of individuals (compared to only 30% improvement
based on the P10S2 scheme suggested in [6]). Note that these numbers
have a selection bias, as individuals with COVID-19 symptoms were
more likely to be tested. By introducing large-scale testing, established
true prevalence rates will probably be lower, which would

Fig. 2. Performance of various multi-stage schemes under prevalence rates of 1%, 7.5% and 20%.
Each square represents a multi-stage scheme PNSk with pool size =

−N xk 1, divisor x (x-axis) and k stages (y-axis). Color intensity represents the improvement factor,
i.e. the average number of subjects tested with a single test (darker is higher). Dashed lines indicate the cut-off with respect to the maximal initial pool size of 16.
Dotted lines indicate the cut-off with respect to the maximal number of stages of 4.
A: For 1% prevalence rate, among all schemes, P81S5 performs best (improvement factor 8.4). Among schemes with a pool size limited by 16, P16S5 performs best
(improvement factor 7.3). Finally, among schemes which are additionally limited to less than 5 stages, P16S3 performs best (improvement factor 7.1) testing 7.1
subjects with just one test, while still being practical. B: For 7.5 % prevalence rate, P9S3 performs best (improvement factor 2). C: For a 20 % prevalence rate, it is
preferable to use a low number of stages. P3S3 performs best (improvement factor 1.22).

Fig. 3. Improvement factors of different schemes for prevalence rates below 30%.
A: Improvement factors of the different schemes for prevalence rates below 5%. For prevalence rates below 3.5%, scheme P16S3 is favorable, leading to an
improvement factor of between 3 to 16-fold. Above 3.5% prevalence, scheme P9S3 becomes favorable, giving improvement factors of around 3-fold. Note that for
very low prevalence rates the improvement factors of multi-level schemes converge towards the maximum pool size, making schemes such as P10S1, P16S3 and
P32S2 highly efficient. P32S2 is shown with a dashed line since its large maximum pool size may affect the reliability of the tests. For prevalence rates< 0.5% it
rapidly converges towards an improvement factor of 32-fold.
B: Improvement factors of the different schemes for prevalence rates between 5-30%. The data shows that for prevalence rates below 12% scheme P9S3 gives the
largest improvement rate, whereas above 12% scheme P3S2 becomes favorable. For prevalence rates of 30% and above all schemes considered here do not offer an
advantage over individual testing. Schemes with a large maximum pool size (P10S2, P32S2, Matrix) offer lower improvement rates and are hence unfavorable in this
regime.
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automatically yield even better improvement factors of the testing
schemes.

Our analysis and predictions are in silico observations and have to be
confirmed in real life. In particular, these testing schemes will have to
be established in a similar fashion as other novel individual laboratory
testings with the aim of assessing and limiting potential false positive or
negative results. The practical feasibility of our methods is supported by
observations of Yelin et al. which indicate that pooling up to 16 samples
for SARS-CoV-2 PCR testing could potentially not affect test sensitivity
[5]. If further laboratory analyses show that the scheme P16S3 is not
implementable and that pool sizes of 16 samples increase the false
negative rate significantly, the scheme P9S3 presents a viable alter-
native. Here, improvement factors are comparable (7.2 vs. 6 for 1%
prevalence rate) while almost halving the pool size.

It has been described that the viral load depends on the disease
stage and is high during the early phase [9]. Thus, larger pool sizes
could be used for this subpopulation. Additionally, individuals with
higher and lower likelihood of infection could be combined into dif-
ferent pools to improve testing efficiency by choosing the appropriate
testing scheme.

As these group-testing schemes are agnostic towards practical ap-
plication, they can be used in different settings. In the course of the
current COVID-19 pandemic and in view of the shortage of PCR testing
kits, these multiple-stage schemes would allow for large-scale popula-
tion testing and prevalence estimation. Also, efforts are made to de-
termine sero-prevalence of anti-SARS-CoV-2 antibodies as potential
markers of previous infection and immunity and broad population
testing will soon become necessary. Here, multiple-stage testing could
be employed and it has been shown for anti-HIV antibody testing that
ELISA tests of pooled serum samples can be performed without a sig-
nificant decrease in sensitivity or specificity [10].

In summary, we identified group testing schemes that are more ef-
ficient than individual testing methods most laboratories currently
employ under different prevalence rates. These findings can have the
potential to significantly increase the mass testing efficiency in the
context of the current COVID-19 pandemic.
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Table 1
Detailed summary of testing schemes and improvement factors for various prevalence rates.

Scheme Maximum pool size Minimum number of samples Number of stages Best for prevalence rates of (Improvement factor)

Individual Testing 1 1 1 30% and above
P3S2 3 3 2 12−30% (1.5−1)
P9S3 9 9 3 3.5−12% (1.5−3.8)
P4S2 4 4 2 –
P16S3 16 16 3 0.−3.5% (16−3.8)
P10S2 10 10 2 –
Matrix 12 96 2 –
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