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Abstract: Tumor-associated macrophages (TAMs) promote tumor proliferation, invasion, angio-
genesis, stemness, therapeutic resistance, and immune tolerance in a protein-dependent manner.
Therefore, the traditional target paradigms are often insufficient to exterminate tumor cells. These
pro-tumoral functions are mediated by the subsets of macrophages that exhibit canonical protein
markers, while simultaneously having unique transcriptional features, which makes the proteins
expressed on TAMs promising targets during anti-tumor therapy. Herein, TAM-associated protein-
dependent target strategies were developed with the aim of either reducing the numbers of TAMs
or inhibiting the pro-tumoral functions of TAMs. Furthermore, the recent advances in TAMs asso-
ciated with tumor metabolism and immunity were extensively exploited to repolarize these TAMs
to become anti-tumor elements and reverse the immunosuppressive tumor microenvironment. In
this review, we systematically summarize these current studies to fully illustrate the TAM-associated
protein targets and their inhibitors, and we highlight the potential clinical applications of targeting
the crosstalk among TAMs, tumor cells, and immune cells in anti-tumor therapy.

Keywords: tumor-associated macrophages; tumor microenvironment; targeted therapy; protein

1. Introduction

Tumor-associated macrophages (TAMs), as an integral cellular component in the tumor
microenvironment (TME), promote the process involved in tumor progression, including
proliferation, infiltration, angiogenesis, metastasis, stemness, immune escape, and thera-
peutic resistance [1]. Previous studies have shown that TAMs can attenuate therapeutic
effects by expressing various pro-tumor cytokines and chemokines, etc., decreasing T-cell
infiltration, suppressing the function of immune cells, and fueling tumor cells, respec-
tively [1–3]. Blocking the positive effects of TAMs on tumors and/or reducing the number
of TAMs in the TME could suppress the tumor-promoting biological behaviors involved
in carcinogenesis, progression, invasion, recurrence, and metastasis. For instance, TAMs
would be beneficial for tissue remodeling and the construction of the tumor’s physical
barrier, which inhibit the infiltration of immune cells, such as CD8+ T cells [4].

Since the receptors in TAMs are less likely to undergo mutation, targeting their recep-
tors would be a promising therapeutic approach for anti-tumor therapy. To support this
notion, recently, in preclinical models, several special antibodies targeting their receptors
were used against TAMs, including ch14.18, duvelisib (IPI-145), and ipilimumab, which
were developed in neuroblastoma, T-cell lymphoma, and melanoma, respectively [5–7].
However, TAMs are highly plastic stromal cells [8], indicating that any therapeutic strategies
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developed to exploit the targeting proteins in TAMs should account for their heterogeneous
nature in order to optimize treatment efficacy.

Infiltrated and polarized TAMs promote tumor progression in a direct manner through
secreting multiple cytokines and/or chemokines, and an indirect manner, through recruit-
ing the surrounding immune cells or remodeling the extracellular matrix (ECM). For
instance, in a mouse model, Shono et al. provided evidence showing that Celecoxib in-
hibited the expression of the C–C motif chemokine ligand 2 (CCL2) and C–X–C motif
chemokine receptor 3 (CXCR3) to reduce the recruitment of TAMs [9]. In another study,
Chow et al. showed that T-cell immunoglobulin and mucin domain-containing protein 4
(Tim4+) macrophages (Tim4, a receptor for phosphatidylserine) combined directly with
CD8+ T cells to attenuate the anti-tumor immune response [10]. Although these findings
are promising, the many obstacles of targeting proteins in TAMs need to be further ex-
plored. For instance, the avenue for reducing the earliest recruitment of TAMs might not
affect those TAMs that have finished recruitment. Additionally, drug delivery methods
for targeting proteins in TAMs are constrained by vascular permeability, the ECM, and
the tissue osmotic pressure, for instance, which decrease drug affinity. Indeed, compared
with micromolecules, such as calcium ions, proteins, as the executors in many biochemical
procedures, are easy to collect and analyze when targeted by drugs. Notably, the three-
dimensional structures, intracellular locations, and phosphorylation states of proteins in
TAMs can affect the targeting efficacy. Thus, in this review, we systematically summarize
the therapeutic approaches for targeting proteins in TAMs with regard to recruitment,
polarization, crosstalk with tumor cells, and immune responses, highlighting potential
strategies for targeting proteins in TAMs for anti-cancer treatment.

2. Targeting Proteins in the Recruitment and Polarization of TAMs

To date, overwhelming evidence suggests that the main cellular source of TAMs is
recruitment and polarization [11,12]. Typically, monocytes or myeloid cells infiltrate from
the blood circulation and/or local tissue, and then differentiate into macrophages. Induced
by chemokines, cytokines and vascular endothelial growth factor (VEGF), for instance, in
the TME, TAMs polarize toward the M1 phenotype (with pro-inflammatory and anti-tumor
effects) and M2 phenotype (with anti-inflammatory and pro-tumor functions) to affect
tumor progression [13,14]. On the other hand, TAMs can also be directly recruited from the
surrounding tissue. Thus, to block TAMs’ pro-tumor efficacy, decreasing their recruitment
and attenuating their polarization have been extensively studied (Figure 1).

2.1. TAM Recruitment and Its Targeted Therapy Based on Proteins

TAM recruitment is mainly mediated by tumor cells and surrounding stromal cells
through the release of diverse chemokines, including CCL5 and CCL2, and stromal glyco-
proteins can promote tumor progression by facilitating TAM recruitment from the circu-
lation and/or local tissue to the tumor site (Table 1). For instance, Nie et al. showed that
CCL5 derived from breast phyllode tumors was involved in TAM recruitment by binding
with CCR5 on the membranes of TAMs, and the CCL5 inhibitor, maraviroc, was shown
to attenuate TAM recruitment and suppress malignant progression [15], indicating that
targeting CCR5 in TAMs might represent a potential strategy for decreasing recruitment
in malignant breast phyllode tumors. Furthermore, several studies have shown that the
expression of CCL2, followed by TAM recruitment, is positively correlated with the activa-
tion of NF-κB [16,17], suggesting that targeting the NF-κB/CCL2 signal might be beneficial
for blocking TAM recruitment. In agreement with this, in a mouse model, Shono et al. used
celecoxib to suppress NF-κB and found that the downregulation of CCL2 attenuated TAM
recruitment and increased the apoptosis of tumor cells in malignant glioma [9]. Collectively,
these findings demonstrate that CCL2 might be a key regulator in chemokine-induced TAM
recruitment and might exhibit great potential to be targeted in decreasing TAM recruitment.
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Figure 1. Targeting approaches for inhibiting TAM recruitment and polarization. TAMs are mainly 
recruited by the factors derived from stromal and tumor cells. These factors, including endosialin, 
chitinase 3-like protein (Chi3L1), C–C motif chemokine ligand 2 (CCL2), etc., could bind with their 
receptors in TAMs, then activating the downstream effectors to regulate the recruitment of TAMs 
through nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphoinositide 3-
kinase/protein kinase B (PI3K/Akt), mitogen-activated protein kinase (MAPK), etc. signaling path-
ways. Targeting inhibitors, including IgG78, celecoxib and GDC0623 block CD68, the NF-κB and 
MEK signaling pathways inhibit TAM recruitment or reduce the number of TAMs. The polarization 
of TAMs is mediated by interleukins, extracellular proteins and metabolite. Tumor-derived Inter-
leukin 4 (IL-4), IL-10, lactate and endothelial growth factor (EGF) could combine with IL4 receptor, 
IL-10 receptor, G-protein-coupled receptor 132 (Gpr132), and EGFR on TAMs to induce the polari-
zation of TAMs via downstream signals, including PI3K/Akt/mTOR and signal transducers and ac-
tivators of transcription 6 (STAT6) cascade. The chlorogenic acid, Let-7d, LY294002, mAb225 and 
YVAD could inhibit STAT6, IL-10 receptor, PI3K, EGFR and caspase-1 to attenuate TAM polariza-
tion. 
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Figure 1. Targeting approaches for inhibiting TAM recruitment and polarization. TAMs are mainly
recruited by the factors derived from stromal and tumor cells. These factors, including endosialin,
chitinase 3-like protein (Chi3L1), C–C motif chemokine ligand 2 (CCL2), etc., could bind with their
receptors in TAMs, then activating the downstream effectors to regulate the recruitment of TAMs
through nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphoinositide
3-kinase/protein kinase B (PI3K/Akt), mitogen-activated protein kinase (MAPK), etc. signaling
pathways. Targeting inhibitors, including IgG78, celecoxib and GDC0623 block CD68, the NF-κB and
MEK signaling pathways inhibit TAM recruitment or reduce the number of TAMs. The polarization of
TAMs is mediated by interleukins, extracellular proteins and metabolite. Tumor-derived Interleukin
4 (IL-4), IL-10, lactate and endothelial growth factor (EGF) could combine with IL4 receptor, IL-10
receptor, G-protein-coupled receptor 132 (Gpr132), and EGFR on TAMs to induce the polarization of
TAMs via downstream signals, including PI3K/Akt/mTOR and signal transducers and activators of
transcription 6 (STAT6) cascade. The chlorogenic acid, Let-7d, LY294002, mAb225 and YVAD could
inhibit STAT6, IL-10 receptor, PI3K, EGFR and caspase-1 to attenuate TAM polarization.

Table 1. Targeting proteins for inhibiting TAM recruitment and polarization.

Target Inhibitor Tumor Study Design Anti-Tumor Mechanism Ref.

Inhibit recruitment of TAMs

CCL2 Celecoxib GBM C57BL/6 J mice + Eagle medium F-12 Decrease pNF-κB expression [9]

6-Shogaol BC
MDA-MB-231/A549/4T1
cell line + Leibovitz’s L-15,

F-12K, etc. medium

Decrease CCL2 by inhibiting
STAT3 activation [18]

CCR2 Losartan BC 4T1-Luc, etc. cell line + ICR, etc. mice Inhibit CCL2-induced p-ERK1/2 [19]

CXCL1 Aiduqing BC 4T1/293 T cell line + BALB/c
mice + DMEM/RPMI-1640

Decrease Tregs differentiation
and infiltration [20]

CCR5 Maraviroc BC MDA-MB-436/4T1.2 cell line + DMEM Inhibit TAM recruitment [21]
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Table 1. Cont.

Target Inhibitor Tumor Study Design Anti-Tumor Mechanism Ref.

CCL5 HuR BC MCF-7/MDA-MB-231 cell line + DMEM Inhibit CCL5 expression [22]

CCR1 J113863 FA NCTC 2472 cell line + NCTC 135
medium + C57BL/6, C3H/He mice Inhibit thermal hyperalgesia [23]

CXCR7 CCX771 BC 4T1 cell line + DMEM + BALB/c mice Reduce p-STAT3 activation [24]

CXCL8 IFN-γ PC BxPC-3, etc. cell line + C57BL/6 mice Inhibit macrophages traffic [25]

ACPP Antibody NPC C666-1 cell line + RPMI 1640 medium Inhibit PI3K/AKT pathway [26]

IL-1β Anakinra BC 4T1 cell line + α-MEM + BALB/c mice Inhibit CCL5, CXCX12 expression [27]

IL-6 Siltuximab OC
Tissue from ovarian cancer

patients + endotoxin-
free RPMI/DMEM medium

Reduce cytokine and chemokine,
inhibit IL-6 signaling [28]

S100B Duloxetine GLA GL261-Luc/KR158B
cell line + DMEM + CX3CR1

GFP mice Decrease CCL2 expression [29]

CSF-1R PLX3397 HCC Hep3B/HepG2/THP-1, etc.
cell line + OPN knockout C57BL/6 mice

Inhibit PPARγ activity to reduce
TAM numbers [30]

A2A SCH58261 HCC Tissue from HCC patients
Reduce Akt and ERK

phosphorylation to reduce
TAM numbers

[31]

MEK GDC-0623 PC PDA30364 cell line + pan monocyte
isolation kit Exterminate M2 macrophages [32]

Inhibit the polarization of TAMs

STAT6 Gefitinib LLC Cells from Chinese Academy of
Sciences + DMEM + C57BL/6 mice Inhibit IL-13/STAT6 pathway [33]

CSF-1R BLZ945 GLA
U-87 MG, etc.

cell line + RCAS-hPDGF-B/Nestin-Tv-a;
Ink4a/Arf−/− mice

Inhibit heterotypic signaling [34]

YAP Ovatodiolide CRC HT-29, etc. cell line + Serum-Free
Medium + NOD, SCID, BALB/c mice Suppress IL-6 induced pathway [35]

IL-6R CPEB3 CRC SW480/HCT116/LoVo,
etc. cell line + BALB/c mice

Inhibit epithelial-mesenchymal
transition [36]

Ang-2 AS16 SA Plasmid pPIC3.5K + BMMY + SD rat Inhibit M2 polarization [37]

Integrin β3 Sc-7312 BC 4T1/HEK293T cell line + RPMI-1640 and
DMEM + BALB/c mice

Inhibit integrin β3 induced
PPARγ activity [38]

EP4 TP-16 CRC CT26/4T1/HCT116 cell line + DMEM and
F12 medium + C57BL/6, etc. mice

Reprogram IMCs, enhance
tumor elimination [39]

CD206 RP-182 PC CD206high M2-like macrophages + KPC,
KP16 mice

Reduce M2-like TAMs, improve
antitumor immune responses [40]

PlGF HRG BT T241/Panc02 cell line + C57BL/6,
BALB/c mice

Promote vessel normalization,
improve tumor perfusion [41]

GLA: glioma; GBM: glioblastoma multiforme; HCC: hepatocellular carcinoma; PC: prostate cancer; CRC: colorectal
cancer; PDAC: pancreatic ductal adenocarcinoma; BC: breast cancer; BT: breast tumor; BPT: breast phyllodes
tumors; SC: squamous cancer; LC: lung cancer; LCC: Lewis lung cancer; SCLC: small cell lung cancer; NSCLC:
non-small cell lung cancer; NPC: nasopharyngeal carcinoma tumor; FA: fibrosarcoma; SA: sarcoma; OC: ovarian
cancer; CCL2: C–C motif chemokine 2; CXCL1: C–X–C motif chemokine 1; CXCR1: C–X–C motif chemokine
1; CCR2: C–C motif chemokine 2; IL-1β: interleukin 1 β: CSF-1R: colony-stimulating factor 1 receptor; YAP:
Yes-associated protein; AMPK: AMP-activated protein kinase; Ang2: angiopoietin-2; MEK: MAPK/extracellular
signal-regulated kinase; EP4: prostaglandin E2 (PGE2) receptor 4; HuR: human antigen R; CPEB3: Cytoplasmic
polyadenylation element binding protein 3; AS16: 16-kilodalton protein: HRG: histidine-rich glycoprotein; STAT:
signal transducer and activator of transcription.

In stromal cells, we found that the expression of IL-1β in periodontal inflammation
tissue was positively correlated with the production of both CCL2 and CCL5 in BC, and
performing anakinra, an IL-1β inhibitor, could reduce myeloid-derived suppressor cell
(MDSC) recruitment [27]. Yang et al. found that endosialin expressed by cancer-associated
fibroblasts (CAFs) can interact with the glycoproteins existing on the surfaces of TAM
membranes, such as CD68 (the major biomarker in TAMs), inducing both the recruitment
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and polarization of TAMs, and this process could be inhibited by IgG78 in hepatocellular
carcinoma (HCC) [42], suggesting that endosialin and CD68 might be targeted for TAMs
recruitment. However, there are few studies on targeting CD68 in TAM recruitment and
polarization. An alternative hypothesis is that CD68 is a kind of lysosomal/endosomal-
associated membrane glycoprotein with a smaller fraction on the cell surface, and an
anti-CD68 antibody can recognize the antigen, but not trigger the lysosomal/endosomal
cascades for functional properties. Another kind of secreted glycoprotein, chitinase 3-like
protein (Chi3L1), can also favor the recruitment of TAMs in cancers. To identify the stromal-
derived Chi3L1 in TAM infiltration, Cohen et al. found that CAFs-derived Chi3L1 could
induce pro-inflammatory signaling in tumor cells, promoting the release of chemokines,
such as CCL2, facilitating TAM recruitment and promoting tumor growth in BC [43]. In
sum, the above evidence shows that glycoproteins, especially Chi3L1 in stromal cells,
including CAFs and TAMs, have the potential to be commonly targeted for blocking
TAM recruitment.

Another strategy for decreasing TAM recruitment is to reduce their number directly
by the application of inhibitors, clodronate liposomes, among others. On the one hand,
since the granulocyte-macrophage colony-stimulating factor (GM-CSF) can upregulate
macrophages proliferation [44], Wang et al. showed that TAMs can autocrine GM-CSF
and recognize adenosine by the upregulation of A2A receptors, subsequently activating
PI3K/Akt and MEK/ERK cascades, increasing the proliferation of macrophages [31]. On
the other hand, given that the activity of the p38 MAPK cascade of M1 macrophages in-
duces these cells to be independent of the MEK/ERK pathway, Baumann et al. performed
a MEK inhibitor (MEKi), GDC-0623, to block the MEK/ERK pathway and found that
M2 macrophages were highly fragile to the MEKi, while the existence of the p38 MAPK
cascade can protect M1 macrophages from death induced by MEKi [32]. In our preliminary
study, we found that clodronate liposome could significantly reduce TAMs and splenic
macrophages, resulting in reduced squamous cell carcinoma volumes [45]. Mechanisti-
cally, clodronate liposome can be engulfed by TAMs via phagocytosis, and accumulated
clodronate can be released by lysosomal/endosomal systems; therefore, TAMs would be
eliminated at a certain intracellular concentration of clodronate [46]. In summary, these
studies demonstrate that suppressing TAM proliferation or promoting TAM ablation can
effectively reduce the number of TAMs in the TME, attenuating tumor progression.

2.2. TAM Polarization and Its Targeted Therapy Based on Proteins

Given that proteins, such as interleukins, can promote the polarization of TAMs
toward the M2 phenotype, targeting those interleukins might achieve good anti-tumor
efficacy. For instance, Su et al. found that blocking IL-10 by Let-7d was able to inhibit M2
polarization in renal cell carcinoma [47], and Rahal et al. found that exogenous IL-4 and
IL-13 induced the phosphorylation of signal transducers and activators of transcription
6 (STAT6) and increased M2 polarization in the radioresistance of BC [48]. Contrary
to this, Fu et al. found that STAT6 increased myeloid cells’ polarization to M2 by the
upregulation of IL-4 in lung cancer [49]. Similarly, Xue et al. used chlorogenic acid
(CHA) to promote STAT1 activation, while inhibiting the activation of STAT6, subsequently,
suppressing the polarization of M2 macrophages, and, as a result, inhibiting the tumor
growth of glioblastoma in vivo [50]. Indeed, TAM polarization has been demonstrated to
be modulated by the STAT6 signal cascade [51]. In sum, this evidence suggests that the
relationship between IL-4 and STAT6 might be bidirectional, and any targeted strategy
based on targeting STAT6 and IL-4 to block TAM polarization should be aware of their
interaction in order to optimize therapeutic efficacy.

Additionally, extracellular proteins, such as endothelial growth factor (EGF), can in-
duce M2 polarization by the activation of the EGF/PI3K/Akt/mTOR signaling pathway,
and the EGFR antibody mAb225 and PI3K inhibitor LY294002 have been shown to suppress
M2 polarization from monocytes in colon cancer [52,53]. However, recently, few studies
have shown the potential targets of PI3K in TAM polarization. One of the reasons for
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this is that the activation of the oncogenic PI3K pathway is achieved in diverse ways,
and inhibitors, such as LY294002, have shown limited therapeutic efficacy in preclinical
trials [54,55]. In addition to those extracellular factors, the proteins expressed on the surface
of cell membranes, such as S100A9, have been reported to be involved in TAM polariza-
tion [56]. Mechanistically, Fusobacterium nucleatum, a type of Gram-negative oral commen-
sal anaerobe, has been found to upregulate S100A9 in macrophages and then promote
M2 polarization through the TLR4/NF-κB signaling cascade [56]. Similarly, Kwak et al.
found that MDSC-derived macrophages could express the S100A9 protein persistently, and
S100A9 also promoted M2 polarization in metastatic melanoma [57]. Although the S100A9
inhibitor paquinimod has been extensively studied in inflammation [58,59], it is unknown
if S100A9 inhibitors, such as paquinimod, are effective in TAM polarization, as no such
data exist for cancers to date.

Lactate has worked as a direct regulator in TAM polarization [60]. Chen et al. found
that tumor-cell-derived lactate-induced M2 polarization of TAMs can be mediated by the
G-protein-coupled receptor 132 (Gpr132) in mouse models of BC [61], while no special
antibody-targeted Gpr132 protein has been developed for suppressing TAM polarization.
Further, Colegio et al. demonstrated that tumor-derived lactic acid promotes M2-like
protumoral macrophages through HIF-1α stabilization [60]; conversely, Liu et al. and
Tannahill et al. showed that glutamine-derived succinate promotes M1-like antitumoral
macrophages through HIF-1α stabilization [62,63]. Based on these last findings, the reduc-
tion in succinate levels and the increasing α-ketoglutarate (α-KG)/succinate ratio by the
blockade of the glutamine anaplerosis and gamma-aminobutyric acid (GABA) shunt path-
way might inhibit TAM polarization in the antitumoral phenotype. Fatty acid oxidation
(FAO) provides considerable energy for supporting macrophage polarization towards the
M2 phenotype [64]. FAO is transcriptionally induced by peroxisome proliferation-activated
receptor-gamma (PPARγ) [65,66]. However, Niu et al. showed that PPARγ plays a negative
role during the pro-tumorigenic polarization of TAMs in BC models, and the caspase-1
inhibitor YVAD, which inhibit the caspase-1 mediated cleavage of PPARγ, attenuated the
expression of markers specific for TAM polarization [65,67]. Furthermore, the activation
of PPARγ is also attributed to a RIPK3 deficiency in TAMs. The lack of RIPK3 reduces
ROS and significantly inhibits the caspase1-mediated cleavage of PPAR [68]. This indicates
the paradoxical role of PPARγ in tumor progression, and such a discrepancy might be
tissue specific or be controlled by unknown mechanisms in the downstream of the FAO
metabolism. That M1 macrophages produce energy mainly through glycolysis, while
M2 exhibits with a lower dependence on glycolysis and the TCA cycle occupies as the
main source of ATP in M2 macrophages [69,70] indicates that glucose metabolism has a
promising potential to be targeted for the conversion from M2 to M1 phenotype. To support
it, Wei et al. performed the mannose-modified macrophage-derived microparticles (Man-
MPs) loading metformin (Met@Man-MPs, a kind of intervener in the glucose metabolism)
to target the M2-like macrophages, subsequently converting TAMs from the M2 to M1
phenotype [71]. Taken together, targeting metabolic methods for the inhibition of TAM
polarization or the conversion the TAMs from the M2 to M1 phenotype is a promising
approach in anti-tumor therapy.

3. Targeting Proteins in the Crosstalk between TAMs and Cancer Cells

Generally, plenty of clinical and experimental studies have suggested that tumorigen-
esis is promoted in a macrophage-dependent manner [4,72,73]. TAMs, which abundantly
surround most solid tumors, could facilitate tumor progression through stimulating tumor
proliferation, invasion, angiogenesis, and stemness, or by providing a physical barrier that
attenuates anti-tumor immune responses (Figure 2). TAM-mediated tumor progression has
been found to be highly dependent on the activity of various pathways and the phospho-
rylation of diverse proteins (Table 2). Thus, to suppress tumor progression, a number of
studies have extensively focused on protein-targeted therapies in inhibiting the crosstalk
between TAMs and tumor cells.
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phosphorylates phosphoglycerate kinase 1 (PGK1) to promote proliferation by pyruvate generation. 
TAM-derived IL-6 and IL-10 activate the JAK2/STAT3 cascade, then upregulate reactive oxygen 
species (ROS), SNHG17 and DUXAP8, to promote proliferation, while the S3I-201 and Tyr1022 
could inhibit α5β1 integrin and MMP2, respectively, to inhibit this process. Similarly, TAM-derived 
CCL18 could activate the Akt signal, then prolong the S phase and reduce the G1 phase of cell cycle, 
and promote the expression of Raf and Lin28. LY294002 and Let-7a could inhibit the activity of the 
Akt cascade. (B) Grow factors and cytokines, such as transforming growth factor-beta (TGF-β), com-
bine with their reporters in tumor cells, then activate the downstream effector, including cAMP and 
ROS, to promote the invasion and metastasis of tumor cells. The application of inhibitors, such as 
LY2109761, could block the invasion and metastasis of tumor cells. (C) Angiogenesis is regulated by 
several major signals, such as the PTEN/PI3K/Akt and mammalian target of rapamycin (mTOR) 
signaling pathways, and the TAM-derived vascular endothelial growth factor (VEGF) is also 

Figure 2. Targeting proteins in the crosstalk between TAMs and tumor cells. (A) In tumor cells,
3-phosphoinositide-dependent protein kinase 1 (PDPK1) is activated by TAMs derived IL-6, then
phosphorylates phosphoglycerate kinase 1 (PGK1) to promote proliferation by pyruvate generation.
TAM-derived IL-6 and IL-10 activate the JAK2/STAT3 cascade, then upregulate reactive oxygen
species (ROS), SNHG17 and DUXAP8, to promote proliferation, while the S3I-201 and Tyr1022 could
inhibit α5β1 integrin and MMP2, respectively, to inhibit this process. Similarly, TAM-derived CCL18
could activate the Akt signal, then prolong the S phase and reduce the G1 phase of cell cycle, and
promote the expression of Raf and Lin28. LY294002 and Let-7a could inhibit the activity of the Akt
cascade. (B) Grow factors and cytokines, such as transforming growth factor-beta (TGF-β), combine
with their reporters in tumor cells, then activate the downstream effector, including cAMP and ROS, to
promote the invasion and metastasis of tumor cells. The application of inhibitors, such as LY2109761,
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could block the invasion and metastasis of tumor cells. (C) Angiogenesis is regulated by several
major signals, such as the PTEN/PI3K/Akt and mammalian target of rapamycin (mTOR) signaling
pathways, and the TAM-derived vascular endothelial growth factor (VEGF) is also involved in
this process. Bevacizumab, sorafenib, and sunitinib can neutralize VEGFR and VEGFR2 in tumor
cells. The PTEN and beta-aminopropionitrile (BAPN) in tumor cells inhibit lysyl oxidase (LOX)
dependent β1-integrin expression. Rapamycin (RAPA), Apigenine, and PF4691502 could block the
mTOR signaling pathway to attenuate angiogenesis. (D) The cancer stemness would be mediated
by LSECtin and the activity of β-Catenin/Akt pathway, while the β-Catenin/Akt pathway exhibits
with a paradoxical role in the stemness of tumor cells. The IGF1 and CCL2 could bind with their
receptors on tumor cells and then activate the PI3K/Akt/mTOR pathway to acquire the resistance
of BLZ945 and Tamoxifen. Moreover, the metabolite of bevacizumab could interact with the Fc γ

receptor to induce the production of TNF-α and indoleamine 2,3-dioxygenase 1 (IDO1) by interacting
with TLR4 to acquire the resistance of bevacizumab. The bindarit would inhibit CCL2 to attenuate
the generation of drug resistance.

3.1. Effects of TAMs on Cancer Cell Proliferation and Their Targeted Therapy Based on Proteins

In addition to inducing TAM polarization, interleukin families, including IL-6 and
IL-10, could promote cancer cell proliferation directly. For instance, in glioblastoma mul-
tiforme (GBM), Zhang et al. found that macrophage-derived IL-6 induced the phospho-
rylation of threonines (T243) in phosphoglycerate kinase 1 (PGK1), which was integral
in GBM proliferation and the application of an anti-IL-6 antibody could abrogate this
efficacy [74]. By Western blotting data, Mano et al. showed that TAM-derived IL-6 can
promote HCC cell proliferation by inducing STAT3 phosphorylation and S3I-201 (a STAT3
inhibitor) could decrease IL-6-induced STAT3 phosphorylation for inhibiting HCC cell
proliferation [75]. IL-6/STAT3 signaling has been found to be able to be mediated by inte-
grin, a kind of membrane-spanning protein, and Kesanakurti et al. also provided findings
illustrating that α5β1 integrin regulated IL-6/STAT3 signaling via interacting with matrix
metallopeptidase 2 (MMP2) and Tyr1022, an α5β1 integrin inhibitor, can downregulate the
activation of IL-6/STAT3 signaling and attenuate the proliferation of glioma [76], However,
the targeting of the integrins of TAMs to inhibit tumor cell proliferation remains largely
unexplored. Indeed, STAT3 can be activated by not only IL-6, but also IL-10. For instance,
Yuan et al. reported that M2 macrophage secreted IL-10 could promote the proliferation
of intrahepatic cholangiocarcinoma (ICC) cells through the STAT3 signaling pathway [77].
In sum, these studies suggest that TAM-associated tumor cell proliferation occurs in an
IL-6 or IL-10/STAT3 signal cascade dependent manner and targeting proteins in the IL-6
or IL-10/STAT3 signaling pathway to attenuate tumor cell proliferation is promising in
anti-tumor therapies.

Small-size secreted proteins, such as chemokines, are also involved in TAM-dependent
tumor-cell proliferation. For instance, Wang et al. showed that M2 macrophage expressing
CCL18 was associated with the activation of the FAK/PI3K/AKT pathway to promote
the proliferation of esophageal squamous cell carcinoma (ESCC) cells, and that inhibiting
PI3K by LY294002 to block the above pathway could impede the M2-induced proliferation
of ESCC cells [78]. In another study, Wang et al. found that TAM-derived CCL18 could
interfere with the cell cycle of BC cells by prolonging the S phase and reducing the G1
phase [79]. In detail, they used Let-7a to attenuate TAM-derived CCL18 induced prolif-
eration of BC cells by downregulating the Lin28 and Raf-protein expression to prolong
the G2/M phase and reduce the S phase [79]. By contrast, in T-cell lymphoma (CTCL),
Günther et al. found that CCL18, which is derived from CD209+ macrophages in mycosis
fungoides (MF), the most frequent form of cutaneous T-cell lymphoma (CTCL), did not
induce proliferation in CTCL cell lines, including Hut78, SeAx, and MyLa; rather, CCL18
was found to inhibit the proliferation of both SeAx and MyLa [80]. These data suggest
that the biochemical function of CCL18 for proliferation in solid tumors and hematoma
might be divergent or tumor/tissue specific. Although its underlying mechanisms are
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still unclear, future anti-tumor treatment should be informed by the contradictory role of
CCL18 in tumor progression in order to obtain good therapeutic efficacy.

3.2. Effects of TAMs on Cancer Cell Invasion and Their Targeted Therapy Based on Proteins

Tumor invasion, an integral step in distant metastasis, is typically induced by proteins
dependent on the crosstalk between TAMs and tumor cells. For instance, Liu et al. found
that TAM-derived transforming growth factor-β (TGF-β) could upregulate HIF-1α to
increase the tribbles pseudokinase 3 (TRIB3) expression of colorectal cancer (CRC) cells,
subsequently activating the β-catenin/Wnt signaling pathway, and as a result, facilitating
the invasion of CRC cells [81]. Similarly, by transwell assay, Fan et al. showed that CD68+

TAMs mainly exhibited the M2 phenotype with a higher expression of TGF-β1, and could
induce the EMT process and promote the invasive capability of HCC, while performing
TGF-β1 neutralizing anti-body could attenuate TGF-β1 induced EMT, migration, and
invasion of HCC [82]. Additionally, in a ESCC model, Okamoto et al. demonstrated that the
TAM-derived growth differentiation factor 15 (GDF15) increased the phosphorylation of
TGF-βRII in ESCC and promoted ESCC invasion, while LY2109761 (a TGF-βRI/II inhibitor)
could suppress GDF15 dependent reinforcement of ESCC invasion [83]. Together, TGF-β
and its super family-like GDF15 play a pivotal role in tumor invasion, and the EMT is
regarded as an important mechanism in TGF-β induced tumor invasion.

Of note, a few targeting GDF15 inhibitors are available and further explorations are
still needed to address the underlying mechanisms of GDF15 dependent on tumor invasion.

Further, tumor necrosis factor-α (TNF-α), a pro-inflammatory cytokine secreted by
TAMs in the TME, has been found to support tumor invasion. Hagemann et al. observed
that the co-culture between macrophages and ovarian or BC cells could induce the activation
of the JNK and NF-κB pathways in a TNF-α-dependent manner, subsequently increasing
the invasion of tumor cells; further, blocking the activation of JNK and NF-κB pathways
by neutralizing antibodies can abrogate tumor cell invasiveness [84]. Additionally, Cho
et al. found that M1 macrophages could secret TNF-α, and that the implementation
of TNF-α inhibitor, TPCK, could suppress ovarian cancer invasion [85], indicating that
M1/M2 macrophage-derived TNF-α promoting cancer invasion is a common event in
tumor progression. To support this, in another study, Singh et al. found that macrophage-
derived TNF-α induced the secretion of TGF-β1 in BC cells and then caused the DNA
damage in BC cells by activating a survival pathway to deregulate DNA damage and ROS,
subsequently leading to an increasing EMT by the upregulation of CREB phosphorylation
and vimentin expression, while the neutralization of TNF-α by GolgiPlug (555029) could
abrogate BC cell invasion and migration [86]. Interestingly, Watanabe et al. showed that
exogenous recombinant TNF-α could induce the secretion of IL-8 in oral squamous cell
carcinoma (OSCC) cells to increase OSCC cell invasion with the degradation of ECM via
promoting the release of MMP2/7/9 [87]. In sum, the recombinant and TAM-derived
TNF-α plays a promotive role in tumor invasion by various signaling pathways.

Table 2. Targeting proteins in the crosstalk between TAMs and cancer cells.

Ligand Effector Tumor Inhibitor Anti-Tumor Mechanism Ref.

Inhibit the proliferation of cancer cells

IL-10 PD-L1 NSCLC BFD Decrease IL-10 induced PD-L1
expression [88]

IL-10 STAT3 RCC N/A Inhibit BMP-6 induced M2
polarization [89]

MCAD Lipid BC Sc-98926 Reduce LD accumulation in TAMs [67]
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Table 2. Cont.

Ligand Effector Tumor Inhibitor Anti-Tumor Mechanism Ref.

MIF IL-2 CRC NIHIII.D.9 Decrease Treg generation
and IL-2 production [90]

EGFR ILT4 NSCLC Human ILT4 antibody Inhibit TAM recruitment
and M2 polarization [91]

MK2 IL-1, IL-6, TNF-α CRC PF364402 Inhibit IL-1β, IL-6,
and TNF-α, expression [92]

Inhibit the invasion of tumor

Lactate Gpr132 BC N/A Inhibit lactate uptake and M2
macrophages activity [61]

IGFBP2 FcγRIIB GBM Bs-1108R
Increase CD8+ T and p-CD19+ B

cells and decreases M2
macrophages

[93]

S100A8/A9 MMP2, MMP9 LCC N/A Decrease MMP2 and MMP9 [94]

GS Glutamine N/A MSO Suppress M2 macrophages, induce
T-cell recruitment [95]

ATM ATR BC Clone 10H11.E12 Decrease pCREB expression [86]

Inhibit the angiogenesis of tumor

IL-10/IL-13 N/A RCC Let-7d Inhibit intratumoral macrophage
M2 polarization [47]

S100A7 JAB1 ESCC N/A Inhibit S1007A induced
phosphorylation of ERK and FAK [96]

N/A PI3K/Akt/mTOR HCC Apigenin Inhibit PI3K/Akt/mTOR pathway [97]

S1PR1 NLRP3 BC N/A Inhibit S1PR1 dependent
IL-1β expression [98]

LOX β1 integrin/PYK2 GBM BAPN Decrease TAM-derived SPP1 [99]

Inhibit the stemness of tumor

α-KG Jmjd-3 N/A BPTES Suppressed IL-4-induced STAT6
phosphorylation [62]

LSECtin BTN3A3 BC 5E08 N/A [100]

CCL8 Erk1/2 GBM SCH772984 Attenuate pseudopodia formation [101]

IL-8 STAT3 OC IL-8 Ab Inhibit STAT3 and increase IL-12,
NO [102]

CBX8 H3K4me3 CRC N/A Increased the chemosensitivity of
CRC cells [103]

RCC: renal cell carcinoma; CRA: cervical cancer; ESCC: esophageal squamous cell carcinoma; EGF: endothelial
growth factor; IGFBP2: insulin-like growth factor binding protein 2; Gpr132: G-protein-coupled receptor 132;
PPARγ: peroxisome proliferation-activated receptor-γ; α-KG: α-ketoglutarate; GS: glutamine synthase; TNF-α:
tumor necrosis factor-α; TGF-β: transforming growth factor-β; CHA: chlorogenic acid; MMP: matrix metallopro-
teinase; ERK: extracellular regulated protein kinase; mTOR: mechanistic target of rapamycin; MIF: macrophage
migration inhibitory factor; MK2: MAPK-activated protein kinase 2; S1PR1: sphingosine-1-phosphate receptor
1; LOX: lysyl oxidase; LSECtin: liver sinusoidal endothelial cell lectin; CBX8: chromobox protein homolog 8;
H3K4me3: histone H3 lysine 4 trimethylation; jmjd-3: Jumanji domain-containing protein D3; Gpr132: G-protein
coupled receptor G2A; FcγRIIB: Fc gamma receptor IIB; PYK2: proline-rich tyrosine kinase 2; NLRP3: NOD-,
LRR- and pyrin domain-containing protein 3; MSO: methionine sulfoximine; BPTES: bis-2-(5-phenylacetamido-
1,3,4-thiadiazol-2-yl)ethyl sulfide; BAPN: beta-Aminopropionitrile monofumarate; BFD: bu fei decoction; MCAD:
medium-chain acyl-CoA dehydrogenase; ATM: ataxia telangiectasia mutated; ATR attenuated total reflectance;
N/A: not applicable.

3.3. Effects of TAMs on Angiogenesis and Their Targeted Therapy Based on Proteins

Tumor angiogenesis refers to abnormal blood vessel formation involving the migration,
proliferation, and differentiation of endothelial cells, which is regulated by an extensive
variety of angiogenic stimulators and inhibitors. It has been found that TAM-derived VEGF
and its receptor are significant factors in promoting tumor angiogenesis. For instance, Joshi
et al. provided evidence that revealed that the PTEN/PI3K/AKT signaling pathway could
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increase the hypoxia-induced HIF-1α and HIF-2α stability of macrophages to induce the
secretion of VEGF for promoting tumor angiogenesis in Lewis lung carcinoma [104]. By
the establishment of the BC model, Dong et al. showed that M2 macrophage derived VEGF
could enhance the expression of prostate cancer-associated transcript 6 (PCAT6) and upreg-
ulate VEGFR-2 expression simultaneously by sponging miR-4723-5p, therefore reinforcing
the tumor angiogenesis through the activation of VEGFR-2/Akt/mTOR signal axis [105]. In
our preliminary study, we depleted macrophages in SCC models and found downregulated
TGF-β1 and VEGFA in tumor cells [63], demonstrating that TGF-β1 reduction could be
sufficient to reduce VEGFA-dependent angiogenesis after TAM ablation. Recently, the ap-
plications of VEGF and VEGFR inhibitors, including bevacizumab, sorafenib, and sunitinib,
have been found to attenuate tumor angiogenesis by inducing endothelial cell apopto-
sis [106]. Tumor vasculature is surrounded by less smooth muscle cells, sinusoidal vessel
plexuses and pericytes, missing lymphatic drainage and adrenergic innervation, erratically
basal membrane, and interrupted endothelial lining, it also exhibits complex branching
patterns and negatively influences drug delivery [107–111]; therefore, the exploring of the
downstream pathway after VEGF stimulation might be a promising strategy for exploiting
many more targets in order to overcome the above barriers in anti-tumor therapies.

Macrophage-derived secreted phosphoprotein 1 (SPP1) could also promote tumor
angiogenesis in the phosphatase and tensin homolog (PTEN) deficiency GBM model [99].
In another study, Wenes et al. found that regulated in development and DNA damage
1 (REDD1), a negative regulator of mTOR, was upregulated in hypoxic TAMs, and that
mTOR inhibition in TAMs could reduce an excessive angiogenic response, while blocking
glycolysis by reducing glucose uptake, consequently inducing the formation of abnormal
vascular [112]. To further explore the underlying mechanism, they provided evidence show-
ing that REDD1 depletion could rescue the activation of mTOR and increase the glycolysis
and/or glucose uptake of TAMs, subsequently competitively suppressing endothelial cells
in a glucose-dependent manner and promoting the tumor vessel normalization [112]. Con-
versely, in HCC, Chen et al. reported that, when mTOR in macrophages was inhibited,
STAT3 decreased the secretion of both IL-10 and IL-12 and could impede angiogenesis
in vivo [113]. This suggests the dual role of mTOR in tumor angiogenesis; therefore, tar-
geted mTOR strategies for attenuating tumor angiogenesis should be based on the further
exploration of the underlying mechanism and the optimization of the anti-tumor function.

3.4. Effects of TAMs on Cancer Stemness and Drug Resistance, and Their Targeted Therapy Based
on Proteins

Stemness, which confers proliferative ability on tumor cells, allows few tumor cells
to develop and form visible tumors, and could promote tumorigenesis, therapeutic resis-
tance, tumor recurrence, and dissemination [114,115]. TAM-mediated cancer stemness
could be modulated by diverse proteins and related signaling pathways. For example,
Liu et al. found that the LSECtin expressed on TAMs could interact with its receptor
butyrophilin subfamily 3, member A3 (BTN3A3) and enhance the stemness of BC cells;
further, when applying the anti-BTN3A3 antibody, 5E08, the stemness of BC cells could be
attenuated [100]. Meanwhile, the activation of the Akt and β-catenin signaling pathway
could induce macrophage-derived soluble glycoprotein NMB (GPNMB), which could bind
with the CD44 receptor and then trigger crucial survival pathways, followed by increasing
the IL-33, IL-1RL1 expression, p38, STAT3, STAT5 phosphorylation, and NF-κB activation,
which would ultimately promote cancer stemness [116,117]. In our preliminary study,
we found that targeting CD44 could decrease macrophage-associated PI3K/4EBP1/SOX2
signal for suppressing cancer stemness in head and neck cancer [118]. Similarly, when de-
creasing CD44 expression by the application of foretinib, the stemness of gastric cancer cells
would be attenuated [119]. These data suggest that the activation of the β-catenin signaling
pathway might be the key step in TAM-dependent tumor stemness, while both membrane
proteins and soluble proteins are involved in this process. Other proteins, such as GPNMB
and LSECtin, also exhibit potential to be used as targeted proteins in anti-tumor therapies.
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Recently, new findings indicate that TAMs could mediate the therapeutic resistance of
tumors in a protein-dependent manner. For instance, Li et al. provided evidence demon-
strating that TAM-derived CCL2 could activate the PI3K/Akt/mTOR signaling pathway,
subsequently promoting the acquirement of tamoxifenresistance in BC cells, and when
applying Bindarit, a CCL2 synthesis inhibitor, the secretion of CCL2 and the phospho-
rylation of both Akt and mTOR could be significantly attenuated [120]. Additionally, in
the CSF-1R inhibition therapy of GBM, Quail et al. found that the PI3K cascade can also
be activated by TAM-derived insulin-like growth factors1 (IGF-1), as a result, promoting
tumor cells to be resisted to BLZ945, a type of CSF-1R inhibitor, and the application of
PI3K inhibitor (BKM120) could rescue the chemosensitivity of GBM in CSF-1R inhibition
therapy [121]. These data suggest that PI3K might play a pivotal role in generating the
drug resistance of tumors during therapies. Interestingly, the source of biomolecules that
contribute to drug resistance is not always from TME; some side effects of the drugs in
tumor therapies also induce drug resistance directly or indirectly. To support this, in the
BC model, Liu et al. showed that bevacizumab-induced Fcγ receptor could interact with
TLR4 and induce the M2b macrophages polarization; subsequently, the upregulation of
indoleamine 2,3-dioxygenase 1 (IDO1) could be mediated in a TNF-α-dependent manner.
Finally, the macrophage-derived TNF-α and IDO1 could induce drug resistance, and the
neutralization of TNF-α could reverse bevacizumab resistance significantly [122]. Taken
together, TAMs engage in crosstalk with tumor cells via diverse proteins and pathways to
promote the proliferation, invasion, angiogenesis, stemness, and drug resistance of tumor
cells, and these proteins hold great potential to be targeted in anti-tumor therapy (Table 3).

Table 3. TAM-associated factors and their targeted roles in cancers.

Factor Cancer Recipient Influence on Tumor Biochemical Mechanism Ref.

Cytokines

IL-1β HCC Tumor Promote tumor migration NLRP3 dependent
FAO/ROS/IL-1β axis [123]

IL-6 CRC Tumor Promote tumor
invasion and migration

Regulate
JAK2/STAT3/miR-506-3p/FoxQ1

axis
[124]

CRC Tumor Promote tumor invasion
and migration

Activate the Wnt/β-catenin
pathway [125]

BC TAMs Promote tumor development Activate the gp130/STAT3 pathway [126]

HCC Tumor Promote tumor invasion
and metastasis

Activate IL-6/ERK and STAT3
pathway [127]

IL-8 OC Tumor Promote tumor stemness Activate the IL-8/STAT3 pathway [102]

IL-10 PC Tumor Promote tumor migration Activate TLR4/IL-10 to express
MMP2 and MMP9 [128]

NSCLC Tumor Promote tumor invasion Induce PD-L1 expression [88]

BC DC Attenuate CD8+ T-cell cytotoxicity Decrease IL-12 expression [129]

IL-23 KC Treg Promote tumor immune evasion Increase IL-10, TGF-β expression,
and Treg activity [130]

BC TAMs Promote tumor angiogenesis Increase IL-10, TGF-β, VEGF
expression [131]

IL-34 CRC TAMs Promote tumor growth Increase IL-6 expression [132]
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Table 3. Cont.

Factor Cancer Recipient Influence on Tumor Biochemical Mechanism Ref.

Chemokines

CCL2 BC Tumor Promote drug resistance Activate the PI3K/Akt/mTOR
pathway [120]

CCL5 CRC Tumor Promote tumor immune escape Activate the
p65/STAT3-CSN5-PD-L1 pathway [133]

CCL8 GBM Tumor Promote tumor invasion
and stemness Activate the ERK1/2 pathway [101]

CXCL12 CRC Tumor Promote tumor angiogenesis Activate the MK2 pathway [134]

CCL18 BC Tumor Promote tumor invasion
and metastasis

Activate the
AnxA2/PI3K/Akt/GSK3β/Snail

pathway
[135]

BC Tumor Promote tumor metastasis Activate the PKCδ/STAT3, NF-κB
pathway [136]

CCL20 CRC Treg Promote Treg recruitment CCL20/CCR6 couple [137]

CCL22 NSCLC Treg Promote Treg recruitment Increase IL-8 expression [138]

Others

TNF-α BC Tumor Promote tumor EMT and migration Increase cAMP and CREB
expression [86]

TGF-β CRC TAMs Promote tumor proliferation Increase RGC-32, COX2 expression [139]

LSECtin BC Tumor Promote tumor stemness N/A [100]

MIF CRC N/A Promote tumor growth Increase Tregs generation [90]

PDAC N/A Promote tumor metastasis Activate AKT, ERK, and express
cyclin-D1, MMP2 [140]

Xist BC TAMs Promote tumor proliferation
lncRNA-Xist/miR-101-

3p/KLF6/C/EBPα
axis

[141]

ROS CRC N/A Promote tumor proliferation Activate NF-κB, AP-1, EGR-1 [142]

MCP-1 CRC Tumor Promote tumor growth, invasion Activate the MK2 pathway [92]

BMP-6 PC TAMs Promote tumor angiogenesis and
growth

Increase IL-1a expression through
Smad1, NF-κB [143]

GPR35 CRC Tumor Promote tumor angiogenesis
and growth

Na/K-ATPase-dependent ion
pumping [144]

CD206 CRC N/A Attenuate CD8+ T-cell cytotoxicity Inhibit CD45 phosphatase activity [145]

Oct4 LC TAMs Promote tumor growth Increase M-CSF expression [146]

Chi3L1 BC Tumor Promote tumor metastasis Activate the
CHI3L1/IL-13Rα2/ERK/JNK axis [147]

RACK1 OSCC TAMs Promote tumor development Regulate NF-κB pathway [148]

GPNMB BC Tumor Promote tumor stemness Increase IL-33, CD44 expression [116]

S100A9 HCC Tumor Promote tumor stemness Activate AGER/NF-κB axis [149]

OSCC: oral squamous cell carcinoma; KC: kidney cancer; COX2: cyclooxygenase 2; CtsZ: cathepsin Z; FRβ: folate
receptor-beta; LCN-2: lipocalin 2; Xist: X inactive-specific transcript; VEGFR: vascular endothelial growth factor
receptor; ROS: reactive oxygen species; MCP-1: monocyte chemoattractant protein-1; BMP-6: bone morphogenetic
protein 6; GPR35: G protein-coupled receptor 35; Oct4: octamer-binding transcription factor 4; CTHRC1: collagen
triple helix repeats containing 1; Chi3L1: chitinase 3-like protein 1; CD206: mannose receptor; RACK1: receptor
for activated C kinase 1; GPNMB: glycoprotein NMB; IL-37: interleukin 37; αmβ2: αmβ2 integrin; CREB: cAMP
response-binding protein; N/A: not applicable.

4. Targeting Proteins of TAMs in the Regulation of Tumor Immune Responses

TAMs serve an integral role in the alternation of the TME immune landscape and
the establishment of anti-tumor immunity suppression. TAMs could engage in crosstalk
with multiple immune cells, including CD8+ T cells, B cells, Tregs, dendritic cells (DCs),
and natural killer (NK) cells, in a protein- and/or signaling-pathway-dependent manner
(Figure 3). Therefore, to inhibit the immunosuppressive functions of TAMs, an extensive
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variety of studies have focused on targeting the effective proteins and pathways in the
crosstalk between TAMs and immune cells.
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Figure 3. Targeting the crosstalk between TAMs and immune cells. (A) Tim4 and fasL expressed on
the surface of TAMs could bind with phosphatidylserine and Fas on T cells, respectively, then inducing
the apoptosis of T cells and suppressing the function of T cells. Apoptotic T cells could be phagocyted
by TAMs, subsequently releasing pipetide to activate Treg, as a result, inhibiting the function of T
cells. (B) TAM-derived chemokines and cytokines, such as TGF-β, CCL22, CXCL1, and IL-33, could
upregulate the activity of Treg via the NF-κB and PI3Kδ signaling pathways, then suppressing the
function of T cells. (C) The SIRPα, PD-1, LILRB1, and siglec-10 expressed on the surface of TAMs
could bind with CD47, PD-L1, β2M, and CD24, respectively, then attenuating the phagocytosis of
TAMs. Applying SN3 and B6H12 to block SIRPα/CD47 axis and siglec-10/CD24 axis, respectively,
could reverse the inhibition of phagocytosis. (D) TAM crosstalk with other immune cells, such as B
cells and natural killer cells, via the release of IL-6, IL-10, and the binding between HLA-3 and CD94.
Even the DC-SIGN+ macrophages could express a high level of IL-10 to upregulate Tregs. BCL2:
B-cell lymphoma 2; LFA-1: lymphocyte function-associated antigen-1; MARCO: macrophage receptor
with collagenous structure; c-Fos: a proto-oncogene regulating the transcription of many genes.

4.1. Effects of TAMs on T-Cell Immunity and Their Targeted Therapy Based on Proteins

TAMs, especially M2 macrophages, are characterized by an impaired antigen pre-
sentation ability in the TME, the expression of associated proteins, the upregulation of
immunosuppressive mediators, and the downregulation of proinflammatory cytokines; as
a result, they can attenuate T-cell-mediated adaptive immune response [150,151]. More-
over, Miller et al. showed that Fas expressed on CD8+ T cells, binding with the FasL in
macrophages, could activate intratumoral macrophages via the interferon-gamma (IFN-
γ) and Fas/FasL axis, leading to a limitation of the immunosurveillance of intraocular
tumors [152]. However, in another study on colorectal cancer with liver metastases, Yu
et al. found that the hepatic CD11b+/F4/80+ macrophages express FasL highly when
bearing liver tumors and tumor-specific T cells were siphoned into the liver in an integrin-
dependent manner, subsequently leading to the activation of the extrinsic apoptosis of
Fas+ T cells by the Fas–FasL pattern for promoting tumor progression [153]. This suggests
the paradoxical role of the Fas/FasL axis in tumor-associated immune and relevant target-
ing therapies; the biochemical function of the Fas/FasL axis might be tissue specific. An
alternative hypothesis, which is supported by the observation that studies on colorectal
cancer without liver metastases have not reported altered T-cell numbers [153], is that
liver metastasis might mediate immune function by the Fas/FasL axis, which prevents
systemic anti-tumor immunity, and this effect should be recognized in anti-tumor therapies,
especially for cancers with or without liver metastasis.
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Another special protein expressed on the TAMs’ membrane is Tim4. For instance,
Chow et al. found that TAMs in ovarian carcinoma can be divided into two subsets, includ-
ing Tim4+ TAMs (F4/80highMHC-IIlow) and Tim4- TAMs (F4/80lowMHC-IIhigh) [10]. Fur-
ther, they suggested that Tim4+ on TAMs could combine directly with the phosphatidylser-
ine in CD8+ T cells, subsequently attenuating its cytotoxicity and proliferation for pro-
moting metastasis [10,154]. In another ovarian model, Xia et al. found that the immuno-
suppressive function of Tim4+ TAMs was mainly mediated by autophagy and the FAK
family-interacting protein of 200 kDa (FIP200); further, they found that a deficiency in
FIP200 could both result in Tim4+ TAMs’ death in the TME and promote T-cell-mediated
anti-tumor immune response via the upregulation of ROS [155]. Similar to these findings,
in our preliminary data, we also found that TAM ablation inhibited tumor growth, and that
clodronate treatment for TAM depletion could increase the number of CD8+ T cells in SCC
tumors [45]. In summary, this evidence suggests that TAMs could affect T-cell function by
the membrane proteins; however, only a few inhibitors, such as targeting Tim4, have been
made available to date. One of the reasons for this is that TAMs are highly heterogeneous
stromal cells and their membrane proteins, such as Tim4, not only express on TAMs, but
also on dendritic cells [156], B cells [156] and fibroblasts [157]; thus, the discovery of the
heterogeneity of TAMs has revealed a remarkably complex and diverse portrait.

4.2. Effects of TAMs on Regulatory T Cells (Tregs) and Their Targeted Therapy Based on Proteins

Tregs, a specialized subset of CD4+ T cells identified as CD3+/CD4+/CD25+/FoxP3+

cells, act to suppress the immune response in maintaining immune homeostasis and
self-tolerance. TAMs engage in crosstalk with Tregs by an extensive variety of proteins
and associated pathways (Figure 3B). For instance, Fleur et al. provided evidence that
applying a neutralizing antibody to inhibit the macrophage receptor with a collagenous
structure (MARCO) in TAMs could downregulate the activation of Tregs [158]. In another
study, Li et al. found that the CXCL1 expressed by TAMs could be recognized by CXCR2
of peripheral naive CD4+ T cells, subsequently recruiting those cells into the TME and
inducing their differentiation into Tregs via the NF-κB/FoxP3 pathway in BC [20]. Using
aiduqing can inhibit Tregs activity induced by TAM-derived CXCL1 and partly reverse the
immunosuppressive TME [20]. Importantly, Wang et al. provided data that demonstrated
that autocrine TGF-β stimulates TAMs to secret CCL22 via c-Fos to promote the recruitment
of Tregs, and that the anti-CCL22 antibody could attenuate the recruitment of Tregs [138].
As feedback, the recruited Tregs could secrete IL-8 into the TME, and the exogenous IL-8
could induce the production of TGF-β in TAMs [138]. It suggests that there is positive
feedback in the TAM-dependent recruitment of Tregs and that the establishment of the
immunosuppressive TME might be not only induced by the biochemical function of TAMs,
but also reinforced by the interaction between TAMs and immune cells, such as Tregs.

To further investigate the bilateral association between TAMs and Tregs, Gyori et al.
showed that the depletion of either CSF1R+ TAMs or PI3Kδ-driven Foxp3+ Tregs in the im-
munosuppressive TME of colorectal cancer could induce the upregulation of the other and
limit the therapeutic effect [159], suggesting that TAMs and Tregs serve as a couple of com-
pensatory factors and maintain number homeostasis. Furthermore, after being recruited
into the TME, Tregs could suppress the IFN-γ secretion of CD8+ T cells and attenuate the
inhibition of sterol regulatory element-binding protein 1 (SREBP1) in immunosuppressive
M2 macrophages, subsequently facilitating fatty acid synthesis in M2 macrophages [160],
which indicates that Tregs maintain the metabolic fitness and survival of M2 macrophages
indirectly. Of note, the SREBP1 inhibitor (Fatostatin) failed to elicit an effective anti-tumor
response effectively [160], suggesting that the inhibition of SREBP1 might not affect Tregs,
which have already been recruited into TME and permanently exert an immunosuppressive
function. Taken together, Tregs serve as TAM-mediated immunosuppressive cells in TME,
and the feedback between TAMs and Tregs, especially the IL-8/TGF-β axis, plays a pivotal
role in the establishment of the immunosuppressive TME.
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4.3. Effects of TAM-Mediated Phagocytosis and Their Targeted Therapy Based on Proteins

Macrophage-mediated phagocytosis, characterized by the uptake of macromolecules
and larger particles through the membrane protrusions, can be triggered by diverse
receptor–ligand interactions to clear pathogens, cellular fragments, and even dead cells
for the initiation of innate immune response [161,162]. Interestingly, various signaling
pathways and proteins in tumor cells could attenuate the innate immune function of TAMs
(Figure 3C). For instance, Majeti et al. found that cluster of differentiation 47 (CD47), a
kind of “do not eat me single”, expressed on the surface of tumor cells can protect tumor
cells from phagocytosis by binding to signal regulatory protein alpha (SIRPα) in TAMs
and that its inhibitor (B6H12.2) could enable the phagocytosis of acute myeloid leukemia
cells in a mouse model [163]. Furthermore, Willingham et al. held that CD47 was a com-
monly expressed marker on all kinds of cancer cells, and that each human solid tumor
cell requires CD47 to be expressed on the surface in order to evade phagocytic innate im-
mune surveillance [164]. Of note, the inhibition of the CD47-SIRPα signaling pathway by
rituximab alone in patients of follicular lymphoma led to anemia, and this side effect could
be mitigated by 5F9 (a macrophage immune checkpoint inhibitor) [165,166], illustrating
that combining rituximab for blocking CD47 and 5F9 for attenuating anemia could be an
example of optimized antibody-dependent cellular phagocytosis. Since the swallowed
tumor cells might be degraded by lysosomes in TAMs, to keep tumor cells alive, we pre-
viously hypothesized that TAMs phagocytize tumor cells via semi-phagocytosis to evade
elimination by the immune system and avoid degradation by the endosomal/lysosomal
system for distant metastasis [167].

Additionally, other proteins, including programed cell death receptor-1 (PD-1), leuko-
cyte immunoglobulin-like receptor B1 (LILRB1), and CD24, expressed on the surface of
TAMs and their receptors, could suppress TAM-mediated phagocytosis (Figure 3C). For
instance, Gordon et al. found that the PD-1 expressed on the surface of TAMs could bind
with the PD-L1, which exists on the membrane of colon carcinoma cells, subsequently at-
tenuating the phagocytosis ability of TAMs [168], suggesting that the PD-1/PD-L1 axis not
only suppresses the anti-tumor function of cytotoxic T cells, but also inhibits the phagocy-
tosis of macrophages. In another study, Barkal et al. verified that cancer cells could express
MHC class I component β2-microglobulin (β2M) on their surface and β2M could bind with
leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1), which exists
on the surfaces of TAMs, subsequently protecting cancer cells from the phagocytosis of
TAMs [169]. Specifically inhibiting the MHC class I/LILRB1 axis has been found to improve
the phagocytosis of TAMs, subsequently exerting an anti-tumor effect [169,170]. Moreover,
CD24 derived from tumor cells can interact with the inhibitory receptor sialic-acid-binding
LG-like lectin 10 (siglec-10), which is highly expressed on the surface of TAMs, as a result,
promoting the immune evasion and attenuating the phagocytosis of TAMs [171]. Inhibiting
CD24 via clone SN3 increased the phagocytosis of TAMs and suppressed triple-negative
BC progression [171]. In summary, the phagocytic inhibition of TAMs might be mediated
by various proteins, and the targeting of one of them alone could exert a limited anti-tumor
effect for the existence of alternative mechanisms, and combining with two or more kinds of
drugs to target multiple proteins simultaneously might be an effective anti-tumor strategy.

4.4. Effects of TAMs on Other Immune Cells and Their Targeted Therapy Based on Proteins

Other immune cells, including B cells and NK cells, also engage in crosstalk with
TAMs, and the proteins involved in the crosstalk have the potential to be targeted for
anti-cancer therapy (Figure 3D). For instance, in a mouse model, Wong et al. provided
evidence showing that IL-10 secreted by B cells promoted M2 polarization of TAMs via
the downregulation of the NF-κB signaling pathway and the upregulation of the STAT1
signaling cascade in TAMs, subsequently promoting B16 melanoma progression [172]. Fur-
thermore, human leukocyte antigen (HLA)-E expressed on the surface of TAMs could bind
with CD94 on the membrane of NK cells to promote the release of IL-10 [173]. Although
there is little evidence regarding the crosstalk between TAMs and DC cells, Liu et al. found
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that gastric cancer cells could induce TAMs to become DC-SIGN+ macrophages and express
a high level of IL-10 in order to upregulate Tregs [174]. Together, this evidence suggests
that IL-10 plays a pivotal role in the crosstalk between TAMs and immune cells during
the tumor-associated immune response, and IL-10 maintains a potent target potential in
anti-tumor therapies.

5. Conclusions and Future Perspectives

Currently, as summarized above, promising strategies targeting the proteins of TAMs
have been developed in both in vitro and in vivo studies. Since TAMs play a paradoxical
role in the TME, blocking TAM-maintained tumor promotion and taking advantage of their
anti-tumor effect might be promising target strategies. Targeting TAMs in order to decrease
the number of interleukins, including IL-4, IL-10, and IL-13, and the number of chemokines,
such as CCL2 and CCL5, is a potential candidate for inhibiting TAM polarization and
recruitment [175–177]. The selective elimination of tumor-promoting TAM subsets, such as
M2 macrophages, or their repolarization from M2 to M1 to become anti-tumor elements
might be effective therapeutic approaches. A direct anti-tumor strategy for targeting
proteins in TAMs is blocking their crosstalk with tumor cells. For instance, IL-6 and IL-10
could promote cancer cell proliferation directly or indirectly [89,178] and TGF-β plays a
pivotal role in tumor invasion [179]. Another strategy based on the receptor–ligand pattern
aims at increasing immune responses through T cells, Tregs, and B cells, for instance.
However, because of the highly heterogeneous nature of TAMs, the same or different
types of proteins that are commonly targeted in TAMs and tumor cells might optimize the
therapeutic efficacy and attenuate side effects. Macrophage-associated targeted approaches
have already entered clinical practice [180]. Further works are also needed to explore the
heterogeneity of TAMs in the TME, and they should aim at discovering novel immune
cascades and nanomaterials based on the proteins of TAMs for therapeutic targets to
produce superior antitumor effects and fewer side effects.
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