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Abstract
The accurate and rapid detection of the novel coronavirus infection, coronavirus is very important to prevent the fast spread
of such disease. Thus, reducing negative effects that influenced many industrial sectors, especially healthcare. Artificial intel-
ligence techniques in particular deep learning could help in the fast and precise diagnosis of coronavirus from computed
tomography images. Most artificial intelligence-based studies used the original computed tomography images to build their
models; however, the integration of texture-based radiomics images and deep learning techniques could improve the diag-
nostic accuracy of the novel coronavirus diseases. This study proposes a computer-assisted diagnostic framework based on
multiple deep learning and texture-based radiomics approaches. It first trains three Residual Networks (ResNets) deep
learning techniques with two texture-based radiomics images including discrete wavelet transform and gray-level covari-
ance matrix instead of the original computed tomography images. Then, it fuses the texture-based radiomics deep features
sets extracted from each using discrete cosine transform. Thereafter, it further combines the fused texture-based radiomics
deep features obtained from the three convolutional neural networks. Finally, three support vector machine classifiers are
utilized for the classification procedure. The proposed method is validated experimentally on the benchmark severe respira-
tory syndrome coronavirus 2 computed tomography image dataset. The accuracies attained indicate that using texture-based
radiomics (gray-level covariance matrix, discrete wavelet transform) images for training the ResNet-18 (83.22%, 74.9%),
ResNet-50 (80.94%, 78.39%), and ResNet-101 (80.54%, 77.99%) is better than using the original computed tomography
images (70.34%, 76.51%, and 73.42%) for ResNet-18, ResNet-50, and ResNet-101, respectively. Furthermore, the sensitivity,
specificity, accuracy, precision, and F1-score achieved using the proposed computer-assisted diagnostic after the two fusion
steps are 99.47%, 99.72%, 99.60%, 99.72%, and 99.60% which proves that combining texture-based radiomics deep fea-
tures obtained from the three ResNets has boosted its performance. Thus, fusing multiple texture-based radiomics deep
features mined from several convolutional neural networks is better than using only one type of radiomics approach and
a single convolutional neural network. The performance of the proposed computer-assisted diagnostic framework allows
it to be used by radiologists in attaining fast and accurate diagnosis.
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Introduction
The novel coronavirus (COVID-19) is promoted by a
severe respiratory syndrome coronavirus 2 (SARS-
COV-2), resulting in this enduring pandemic.1 The rate of
infection is growing rapidly worldwide reaching over 190
million cases with mortality cases of over 4 million on 31
July 2021.2 The international fast propagation of this
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novel disease has set an enormous division of the world’s
residents into quarantine and has overwhelmed numerous
industrial sectors resulting in a worldwide financial crisis.
Currently, there are several vaccine choices, however, at
this time, these vaccine options would take a long time to
reach the corner of the globe, especially developing coun-
tries. The known symptoms of coronavirus are sore
throat, headache, myalgia, increase in temperature, chest
ache, and dry cough.3 These symptoms may completely
show on the infected person in almost 14 days.
Nevertheless, in various conditions, no symptoms are
apparent or asymptotic.4,5 Asymptotic persons might
affect other individuals which raise the risk to health care
organizations and other industrial sectors. Consequently,
it is extremely significant to precisely diagnose coronavirus
promptly to control the infection and death rates and avert
the threat to public health and industrial sections.

At present, the standard method to diagnose coronavirus
is the real-time reverse transcription-polymerase chain reac-
tion (RT-PCR) test, however, it has several drawbacks. This
test is susceptible to medical staff risks. Moreover, it is
expensive, takes time, and is sometimes inaccurate.6,7

Thus other alternative approaches are required. The
common sign of coronavirus is a lung infection that can
be visually inspected using chest imaging modalities espe-
cially computed tomography (CT).8 It has been proven that
the CT imaging modality has a greater ability to diagnose
coronavirus compared to the RT-PCR tests.9 Radiologists
manually analyze these images to recognize visual patterns
of the coronavirus infection which is a complex, exhaust-
ing, time-consuming process, and prone to error.
Therefore, there is a critical need to automate this process
to facilitate the coronavirus diagnosis procedure and
achieve more accurate, faster, and effective results.

Due to the ongoing advancement of artificial intelligence
(AI) including machine and deep learning, such methods
have been extensively used in health and medical applica-
tions through computer-aided diagnostics systems.10,11

Recently, deep learning approaches have attracted several
researchers in the medical and health informatics fields. In
specific, recently convolutional neural networks (CNNs)
have demonstrated their great capacity for analyzing
medical images of several diseases.12–18 Lately, CNNs
have supported radiologists in the accurate diagnosis of cor-
onavirus.19,20 Several deep learning-based studies have
been conducted for coronavirus diagnosis through CT
images. For example, Soares et al.21 constructed an explain-
able deep learning model achieving an accuracy of 97.38%,
F1-score of 97.31%, precision of 99%, and sensitivity of
95.53%. The study22 proposed a deep learning-based
framework that fused bidirectional long short-term
memory (Bi-LSTM) with a mixture density network
(DBM) model reaching an accuracy of 98.37%, a sensitivity
of 98.87%, a precision of 98.74%, and an F1-score of
98.14%. Whereas, the authors of the study23 proposed a

deep learning model called CoviDenseNet that uses transfer
learning with DenseNet reaching an accuracy of 86.88%,
sensitivity 87.41%, specificity of 85.92%, F1-score of
89.52%, and precision of 91.76%. On the other hand, a cus-
tomized CNN was created reaching a 95% accuracy, 96%
sensitivity, 95% F1- score, and 95% precision. Similarly,
the study24 built a customized CNN paradigm and call it
“CTnet-10” attaining accuracy of 82.1%. Furthermore,
Zhao et al.25 proposed a modified version of ResNet
CNN achieving an accuracy of 99.2%. The major restriction
of the earlier studies is utilizing CNNs separately to carry
out classification, nonetheless, some research articles veri-
fied that merging features or predictions of numerous
CNNs can improve classification results.14,26–28

Alternatively, other studies used ensemble deep learning
models including,23,29,30 which used several CNNs archi-
tectures and combined their predictions with majority
voting or averaging techniques. While the authors of31

obtained deep features from several CNNs architectures
which were reduced using principal component analysis
(PCA). Then, these principal components were merged
reaching an accuracy of 94.7%, specificity of 93.7%, and
sensitivity of 95.6%%. On the other hand, other studies
incorporated handcrafted features with deep features, for
example, the study32 merged local binary pattern features
and deep learning features of Inception v3 CNN reaching
94.08% accuracy, 93.61% sensitivity of 93.61%, 94.56%
specificity, and 94.85% precision. While the study33 inte-
grated several handcrafted features with deep features.
Some of the previous studies suffer from the huge dimen-
sion of features used in the classification step which
raises the complexity and time of classification. Most of
the former studies are based only on spatial information
extracted from the original CT images to accomplish a diag-
nosis, nonetheless, textural information obtained from
radiomics images through texture analysis improves
medical diagnosis.34

Other studies used hybrid methods based on deep learn-
ing models.35 The study36 constructed a deep denoising
convolution autoencoder (DDCAE) model to diagnose cor-
onavirus from CT images in an unsupervised manner. The
authors obtained hidden representations from CT images
producing a target histogram. Then, they used a distance
metric to assess a test CT scan using a threshold. The
main advantage of this technique is that it has low compu-
tational complexity, however, it only considers spatial
information. Moreover, it is threshold dependent. This
means that its value is conditional on the dataset.
Changing the threshold value may affect the accuracy.
The other study37 proposed a framework for coronavirus
diagnosis based on the parallel integration and optimization
of deep learning models. The authors extracted deep fea-
tures from AlexNet and VGG-16 and then fused them in
a parallel manner and then selected significant features
using entropy controlled firefly approach. These features
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are then fed to an support vector machine (SVM) classifier
reaching an accuracy of 98%. Although this framework
selected a reduced number of features, the number of fea-
tures is redundant, and again the classification process
depends only on the spatial information extracted from
CT images. On the other hand, the study38 developed a self-
activated CNN based on 32 deep layers. The authors
employed transfer learning to extract deep features and
used several machine learning classifiers to perform diagno-
sis attaining a maximum accuracy of 99.4%. Even though
good performance was achieved using the study,38 it used
a huge number of features to train the classifiers. The
study39 proposed a fully automated and effective deep
learning-based approach, called LungINFseg, to segment
the coronavirus diseases in lung CT scans. LungINFseg is
based on a new module called the receptive-field-aware
(RFA) that could expand the receptive field of the segmen-
tation models and improve the learning capability of the
model with no information loss

Radiomics is a growing area in medical image ana-
lysis.40 The incorporation of radiomics and AI methods
have enabled the precise diagnosis of several diseases.41

The main privilege of radiomics rises from its ability to
obtain textural and other essential components of disease
or tumor patterns from medical images.42 This information
could assist the AI techniques to accurately diagnose the
disease.43 Thus, in this study, radiomics images are utilized
instead of the original CT images to diagnose coronavirus.
The proposed computer-assisted diagnostic (CAD) frame-
work uses two types of radiomics images based on
texture analysis including discrete wavelet transform
(DWT) and gray-level covariance matrix (GLCM). These
images are initially used separately to train three CNNs
architectures. Afterward, deep features are extracted from
each of these CNN and fused using DCT. Their dimension
is also diminished using DCT. These reduced features are
further combined altogether (for the three CNNs). Finally,
three machine learning classifiers are employed to classify
these images into coronavirus and non-coronavirus.

Most previous studies used the original CT images to
build their models based on only the spatial information of
such images. In other words, they trained deep learning
models with only the original CT images. However, the inte-
gration of spectral-temporal information extracted from
wavelet techniques could improve the diagnostic accuracy
of novel coronavirus diseases.44 Although previous papers
used wavelet transform for coronavirus diagnosis, they
used it as a feature extractor. However, in the proposed
method, the coefficients of the wavelet decomposition are
converted to heatmaps images and used as input images to
train CNN’s deep learning models. Furthermore, most
studies that analyzed medical images using radiomics
methods extracted radiomics texture features from images
and use them directly to train machine learning classifiers.
Nevertheless, in this study, the grey level covariance matrix

(GLCM) is used to obtain textural information from CT
images and these textural features are also converted to heat-
maps images and employed as input images to train the
CNNs instead of the original CT images.

In this study, we aimed to investigate if using the radio-
mics images (heatmaps of GLCM and DWT) is better than
employing the original CT images to train deep learning
models for coronavirus diagnosis. Furthermore, we investi-
gate if fusing the spatial-temporal information of DWT
heatmap images and textural information of GLCM
heatmap images is capable of boosting the diagnostic accur-
acy of each ResNet independently. Finally, we examine if
fusing deep features obtained from the spatial-temporal infor-
mation of DWT heatmap images and textural information of
GLCM heatmap images of the three Residual Networks
(ResNets) altogether could improve the performance of the
three classifiers. To achieve these aims we used ResNets as
they are commonly utilized in the literature.45–48 In future
work more deep learning models could be employed.

Materials and methods

Coronavirus dataset description

The dataset used in this study is called SARS-COV-2 CT.21 It
is a benchmark 2D CT dataset that is commonly used in the
literature. This dataset contains a sum of 2482 CT images.
Among these images, 1252 are labeled as positive for corona-
virus infection, and the remaining 1230 scans are labeled as
non-coronavirus infection. The aspect of CT scan available
in the dataset differs from 119× 104 to 416× 512. Figure 1
exhibits samples of CT scans of the SARS-COV-2 CT
dataset.

CNNs

Deep learning methods have numerous architectures, among
them, the CNN structure is the most used for medical applica-
tions especially those analyzing medical images,49.50 CNN is
a perceptron neural network consisting of multiple different
layers, the major ones are convolutional, pooling, and fully
connected layers.51 The convolutional layer is responsible
for extracting attributes from the input images. The process
of extraction is done by convolving each input image with
numerous filters followed by a non-linear activation function.
Whereas the pooling layer lowers the dimension of attributes
resulting from the convolutional layer, which facilitates
making the demonstration invariant to small interpretation
at the entrance. Lastly, the fully connected layer score the
class labels. In this study, three CNNs architectures are
used including ResNet-18, ResNet-50, and ResNet-101.
ResNets are the most common deep learning model utilized
in the literature. ResNets are also employed as they are able
to converge effectively with adequate computation load
even with expanding the layers’ number in contrast to
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AlextNet and Inception CNN’s.52,53 The reason is that the
study conducted by Het et al.53 provided a novel module to
the CNN relying on residual learning. This module contains
shortcuts (known as residuals) to skip some convolutional
layers at a time which correspondingly quickens and smooth-
ens the CNN convergence as well as enhances its perform-
ance.31 In future work, more deep learning models could be
employed.

Radiomics based on texture analysis

Radiomics, in general, is an image analysis technique that
aims to mine large volumes of quantitative information or
features from radiological scans utilizing a range of compu-
tational approaches.54 These obtained image features
involve measurements of shape, intensity, and texture.55

In particular, texture analysis characterizes a group of
methods to enhance the representation of the abnormality
heterogeneity that includes mining texture indicators from
several imaging techniques such as magnetic resonance
imaging (MRI), mammogram, X-ray, and CT.56 The
textual information extracted from medical images helps
in clinical decision-making and reveals significant informa-
tion that facilitates the diagnosis of the illness or abnormal-
ity. Among textural analysis techniques, the DWT, and
GLCM are widely adopted in several medical and health
domains. These techniques usually boost the performance
of the diagnosis process, especially when combined.57–59

Thus, radiomics based on these two textural analysis
methods are employed in this study.

GLCM is a second-order histogram approach that counts
the gray-level allocation among couples of pixels. It mea-
sures the common frequencies of the entire pairwise
blends of the gray-level arrangement of every pixel in the
left hemisphere (at distinct orientations) with every adjacent
pixel in the right hemisphere. Consequently, numerous
covariance matrices are created equivalent to the combina-
tions of pairwise pixels. Subsequently, each covariance
matrix is normalized by the summation of its elements to
define the covariance relative frequency within the gray
levels of common pixels.60

DWT is another textural analysis approach that conveys
the time–frequency representation of an image utilizing a
collection of perpendicular basis functions. DWT simply
analyzes images by convolving the input image by low
and high pass filters obtaining four groups of coefficients.
These groups are the approximation coefficients and three
detailed coefficients consisting of the horizontal, vertical,
and diagonal coefficients, respectively.58,61

Proposed CAD framework

The proposed CAD framework consists of four phases
involving image preprocessing and radiomics images gener-
ation phase, ResNets training and feature extraction phase,
feature fusion and reduction phase, and finally classification
phase. In the first phase, radiomics images are generated
using DWT and GLCM methods. They are then resized
and augmented. In the second phase, three ResNets CNNs
are constructed and trained using the original and two

Figure 1. Samples of COVID-19 and non-COVID-19 images of SARS-COV-2 CT dataset.
CT: computed tomography; COVID-19: coronavirus; SARS-COV-2: severe respiratory syndrome coronavirus 2.
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types of radiomics images separately. Then deep features are
extracted from these CNNs. Next, in the third phase, deep
features extracted from each CNN trained with each type
of radiomics method are fused using DCT. These fused fea-
tures are also reduced using the DCT. Then, these reduced
features of the three CNNS are further combined altogether.
Finally, three machine learning classifiers are used to
perform the classification procedure. Figure 2 shows the
flowchart of the proposed CAD framework.

Image preprocessing and radiomics images generation. In
this phase, images are analyzed using two texture-based
radiomics approaches including GLCM and DWT. For
the GLCM, four angles are applied including 0, 45, 90,
and 135, respectively. Next, the heatmaps of the output of
the GLCM and DWT approximation coefficients are
plotted representing the radiomics images. Afterward,
these images, as well as the original CT images, are
resized to 227× 227× 3 to be the same size as the input
layer of the ResNets. Finally, the training data is augmented
using shearing (0, 50), scaling (0.85, 1.2), random transla-
tion (−35, 35), and rotation methods (−20, 20). Samples
of texture-based radiomics images are shown in Figure 3.

ResNets training and feature extraction. In this step, three
pre-trained ResNets including ResNet-18, ResNet-50, and
ResNet-101 are constructed using transfer learning.62

Transfer learning is first used to alter the output layer
sizes of three ResNets previously trained on the ImageNet
dataset to 2 equivalent to the number of classes of the
SARS-COV-3 CT dataset. Next, some parameters are
adjusted which will be discussed later in the parameter
setup section. Then, these ResNets are trained using the sto-
chastic gradient momentum techniques. These CNNs are
trained independently using the original and the two types
of radiomics images. Afterward, deep features are extracted
using transfer learning from the last pooling layer of each
CNN. The deep features extracted are of size 2048 for
ResNet-50 and ResNet-101 and 512 for ResNet-18.

Feature fusion and reduction. The deep features extracted
from each CNN trained with each type of radiomics image
are fused using the DCT approach. The fusion process is
done in two stages. In the first stage, the deep features
extracted from each ResNet trained with radiomics images
(heatmaps images of DWT and GLCM are fused. They are
first combined in one feature vector and fed as an input to
DCT which integrates them and reduces their dimension.
In the second fusion stage, the reduced ResNet deep features
generated after DCT are then combined altogether in a con-
catenated manner. DCT is a method that decomposes input
data into its low and high-frequency components.63 The
DCT does not perform a reduction step on its own.
Though, it can compress the majority of the input’s signifi-
cant information in a reduced set of coefficients by a

further reduction step where a few coefficients are selected
to create feature vectors.64 Thus, DCT is used to fuse deep
features extracted from each CNN trained with each type
of radiomics approach, and then a reduced set of DCT coef-
ficients is chosen using zigzag scanning. Finally, the reduced
DCT coefficients (fused deep features using DCT) obtained
for all CNN are further fused and used to train the three
SVM classifiers.

Classification. In the last phase of the proposed CAD
framework, three SVM classifiers are constructed to iden-
tify coronavirus cases. These classifiers include
linear-SVM (L-SVM), cubic SVM (C-SVM), and quad-
ratic SVM (Q-SVM). Fivefold cross-validation is used
to validate the results of the proposed approach. The clas-
sification phase is accomplished through three experi-
ments. In the first experiment, an end-to-end deep
learning classification is done to test the significance of
radiomics images on the classification performance com-
pared to the original CT images. In the second experi-
ment, deep features extracted from the three CNNs
trained with either the original or radiomics images are
used individually to train the three SVM classifiers. In
the third experiment, the fused deep features (using
DCT) extracted from used CNN are used to train the
three SVMs. Then, these fused features obtained from
the three CNNs are further combined altogether and
used to train the three SVM classifiers.

Validation metrics
The results of the proposed CAD framework are validated
using several statistical validation metrics including
F1-score, precision, accuracy, specificity (true positive
rate (TPR)), and sensitivity. Equations (1) to (5) are used
to compute these measures. Also, the confusion matrices
and area under the curve (AUC) are employed.

Accuracy = TP+ TN

TN + FP+ FN + TP
(1)

Sensitivity = TP

TP+ FN
(2)

Specificity = TN

TN + FP
(3)

Precision = TP

TP+ FP
(4)

F1− Score = 2 × TP

2 × TP+ FP+ FN
(5)

where TN is equivalent to the amount of non-coronavirus
images wrongly diagnosed. TP is equivalent to the
amount of coronavirus pictures that are well recognized.
FN is equivalent to the amount of coronavirus pictures
wrongly considered as non-coronavirus. FP is equivalent
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to the amount of non-coronavirus scans mistakenly detected
as coronavirus.

Parameters setup
The CNN’s hyperparameters utilized are the minibatch size
which is the quantity of data involved in each sub-epoch
weight change. It was noticed in,65 that in practice while util-
izing a bigger batch size, there is a decrease in the quality of
the CNN model, as evaluated by its capability to generalize.
Big batch sizes have a tendency to converge to sharp minimi-
zers of both the training and testing tasks. Sharp minima

result in a weaker generalization. Conversely, small batch
sizes regularly converge to smooth minimizers, and usually
achieve the best generalization performance.66 Therefore, it
is selected to be 10. The learning rate determines the step
size at each iteration while moving toward a minimum of a
loss function. Normally, larger learning rates permit the
model to learn more rapidly, at the expense of reaching a sub-
optimal final set of weights. On the other hand, smaller learn-
ing rates can permit the model to learn a further optimal or
even globally optimal set of weights but result in a longer
training time. In addition, too large learning rates will lead
to large weight updates and the performance of the model

Figure 2. Flow chart of the proposed computer-assisted diagnostic (CAD) framework.
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(e.g. the model loss on the training dataset) will fluctuate over
training epochs. Fluctuating performance is a result of the
divergence of weights. On contrary, too small learning
rates might never converge or could become trapped on a
suboptimal resolution. Thus in the experiments, the learning
rate is chosen to be 0.001 which is not too small or large.

The maximum number of epochs is chosen to be 20 as
increasing the number of epochs did not improve the per-
formance, but it only increased the computational load.
The validation frequency is chosen to be 173 to calculate
the validation error once by the end of each epoch. The
three ResNets networks are trained with stochastic gradient
descent with momentum techniques as it can improve the
rate of convergence and avoid local minima during conver-
gence.67–69 Some network parameters are selected to avoid
overfitting including batch normalization which can reduce
overfitting.70,71 Moreover, augmentation is utilized to
enlarge the training dataset size and avoid overfitting.72

Furthermore, we used DCT to reduce the dimension of fea-
tures as the large number of features used to train machine
learning classifiers may lead to overfitting. Thus feature
reduction techniques are essential to avoid overfitting.

Results and discussion

Experiment I results

This section discusses the results of the end-to-end deep
learning classification procedure of the three ResNets as
shown in Table 1. This table reveals the accuracy of the
ResNets trained with radiomics images of DWT (heatmaps
of the approximation coefficients) of four mother wavelets

including Haar (Daubechies-1), Symlets (Sym2), and dis-
crete Myer (Dmyer). It also includes the accuracy of the
ResNets trained with radiomics images of GLCM (heat-
maps of the GLCM values) with several gray levels includ-
ing 4, 8, 12, and 16. Table 1 indicates that the ResNets’
accuracies attained using texture-based radiomics images
are higher for the three ResNets than that of the original
CT images. This is obvious as for ResNet-18, the highest
accuracy is achieved using DWT-Haar (80.81%) and
GLCM-8 (83.22%) which is higher than the 70.34%
obtained with the original CT images. Similarly, for
ResNet-50, the highest accuracy of 78.39% and 80.94%
is attained using DWT-Haar and GLCM-8. This accuracy
is greater than the 76.5% achieved using the original CT
images. Likewise, for ResNet-50, the highest accuracy is
accomplished using DWT-Haar (77.99%) and GLCM-8
(80.54%) which is better than the 73.42% achieved with
the original CT images. It can be concluded from Table 1
that the highest accuracies are attained using GLCM-8
and DWT-Haar radiomics images.

Experiment II results

As mentioned before, Table 1 indicated that the highest per-
formance is achieved when the three ResNets are trained
with radiomics images of GLCM with 8 gray levels
(GLCM-8) and DWT with Haar mother wavelet
(DWT-Haar), therefore deep features of these ResNets are
extracted and used in this experiment. In this section, the
results of the three SVM classifiers trained with deep fea-
tures extracted from each CNN trained with radiomics
images of GLCM-8 and DWT-Haar are illustrated in

Figure 3. Samples of texture-based radiomics images for COVID-19 and non-COVID-19 images of SARS-COV-2 CT dataset. (a) Original
image, (b) heatmaps image of the GLCM, (c) heatmap image of the approximation coefficients of DWT.
COVID-19: coronavirus; CT: computed tomography; GLCM: gray-level covariance matrix; SARS-CoV-2: severe respiratory syndrome
coronavirus 2.
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Table 2. It can be noted from the table that deep features
extracted from the three CNNs and used to train the
SVMs have enhanced the classification performance com-
pared to the end-to-end classification results shown in
Table 1. Also, Table 2 shows that the deep features of the
DWT-based radiomics images have better performance
than the GLCM-based radiomics images. For the L-SVM
classifier trained with the deep features of the DWT-based
radiomics images, the accuracy attained is 95.4%, 98.6%,
and 98.3% which is higher than 94.8%, 98.3%, and 98%
obtained by the deep features of the GLCM-based radio-
mics images extracted from ResNet-18, ResNet-50, and
ResNet-101, respectively. Similarly, the accuracy attained
using the Q-SVM classifier trained with the deep features
of the DWT-based radiomics images is 97.1%, 99.4%,
and 98.8% which is greater than the 95%, 98.9%, and
98.9% obtained by the GLCM-based radiomics images
extracted from ResNet-18, ResNet-50, and ResNet-101,
respectivel,y expect for the ResNet-101 which is almost
the same. Likewise, for the C-SVM classifier, an accuracy
of 97%, 99.6%, and 99.3% is achieved using the deep fea-
tures of the DWT-based radiomics images. This accuracy is
superior to the 95.2%, 99.1%, and 99% reached by the
GLCM-based radiomics images extracted from
ResNet-18, ResNet-50, and ResNet-101, respectively. The
confusion matrices of the C-SVM classifier trained with

the deep features extracted from the ResNet-18,
ResNet-50, and ResNet-101 CNNs learned with the
DWT-based radiomics images are shown in Figure 4.

Experiment III results

After texture-based radiomics (DWT-Haar and GLCM-8)
deep features are extracted from each CNN, they are
fused for every CNN using DCT. Then, these fused deep
features are reduced using a zigzag scan. Figure 5 shows
the classification accuracy of the three SVM classifiers
trained with the fused radiomics based deep features
versus the number of DCT coefficients. This figure shows
that the highest accuracy is attained using around 500
DCT coefficients for ResNet-18 and ResNet-50 and 700
DCT coefficients for ResNet-101. Next, a further fusion
process is done to combine all these DCT coefficients
obtained from the three CNNs. These fused DCT features
are concatenated and then used to train the three SVM clas-
sifiers. The results after this second fusion step are also
shown in this section. Table 3 shows the results after
fusion with the DCT approach and compares them with
the results obtained with deep features extracted from the
CNNs trained with the original CT images. Table 3 verifies
that fusing deep features of both GLCM-8 and DWT-Haar
radiomics images using DCT has superior performance to

Table 1. End-to-end deep learning classification accuracy (%) for the three ResNets trained with the original CT images and texture-based
radiomics image (DWT and GLCM).

Model Original GLCM-4 GLCM-8 GLCM-12 GLCM-16 DWT-Haar DWT-Sym DWT-Dmyer

ResNet-18 70.34 71.41 83.22 73.02 71.41 80.81 79.33 77.72

ResNet-50 76.51 74.5 80.94 75.44 73.42 78.39 76.51 74.90

ResNet-101 73.42 73.15 80.54 78.12 73.29 77.99 74.77 75.97

CT: computed tomography; DWT; discrete wavelet transform; DWT-Haar: DWT-Haar: discrete wavelet transform with Haar mother wavelet; Dmyer: discrete
Myer; GLCM: gray-level covariance matrix; GLCM-8: GLCM with 8 gray levels; Sym: Symlets.

Table 2. Classification accuracy (%) for the three SVM classifiers trained with the deep features extracted from the three CNNs learned with
the original CT images and texture-based radiomics images (DWT and GLCM).

L-SVM Q-SVM C-SVM

Model GLCM-8 DWT-Haar GLCM-8 DWT-Haar GLCM-8 DWT-Haar

ResNet-18 94.8 95.4 95 97.1 95.2 97

ResNet-50 98.3 98.6 98.9 99.4 99.1 99.6

ResNet-101 98 98.3 98.9 98.8 99 99.3

CT: computed tomography; CNNs: convolutional neural networks; DWT: discrete wavelet transform; DWT-Haar: DWT-Haar: discrete wavelet transform with
Haar mother wavelet; GLCM: gray-level covariance matrix; GLCM-8: GLCM with 8 gray levels; SVM: support vector machine.
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Figure 4. The confusion matrices of the C-SVM classifier trained with the deep features extracted from the ResNet-18, ResNet-50, and
ResNet-101 CNNs. These CNNs are learned with the DWT-Haar-based radiomics images.
CNNs: convolutional neural networks; C-SVM: cubic SVM; DWT-Haar: DWT-Haar: discrete wavelet transform with Haar mother wavelet;
SVM: support vector machine.
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Figure 5. The classification accuracies for the three SVM classifiers trained with deep-based radiomics features versus the number of DCT
coefficients after the first fusion step; (a) ResNet-18, (b) ResNet-50, and (c) ResNet-101.
DCT: discrete cosine transform; SVM: support vector machine.

Table 3. Classification accuracy (%) and SD for the three SVM classifiers trained with fused deep features extracted from the three CNNs
learned texture-based radiomics images (DWT-Haar and GLCM-8) compared to those trained with deep features of the original images.

L-SVM Q-SVM C-SVM

Model Original Fused Radiomics Original Fused Radiomics Original Fused Radiomics

ResNet-18 94.98 (0.097) 96.70 (0.19) 96.48 (0.15) 97.82 (0.075) 96.68 (0.19) 97.60 (0.19)

ResNet-50 98.2 (0.06) 98.30 (0.13) 98.8 (0.06) 99.34 (0.16) 99.00 (0.06) 99.44 (0.08)

ResNet-101 97.44 (0.14) 98.32 (0.04) 98.22 (0.04) 98.96 (0.14) 98.46 (0.11) 99.2 (0.11)

CNNs: convolutional neural networks; C-SVM: cubic SVM; DWT-Haar: discrete wavelet transform with Haar mother wavelet; GLCM-8: GLCM with 8 gray levels;
L-SVM: linear SVM; SVM: support vector machine; Q-SVM: quadratic SVM.

Table 4. Performance measures (%) and SD for the three SVM classifiers trained with the second fusion process.

Model Accuracy Sensitivity Specificity Precision F1-score

L-SVM 99.00 (0.074) 99.28 (0.087) 98.74 (0.108) 98.75 (0.109) 99.00 (0.074)

Q-SVM 99.54 (0.06) 99.45 (0.031) 99.63 (0.13) 99.63 (0.13) 99.54 (0.06)

C-SVM 99.60 (0.016) 99.47 (0.039) 99.72 (0.044) 99.72 (0.039) 99.60 (0.016)

C-SVM: cubic SVM; L-SVM: linear SVM; SVM: support vector machine; Q-SVM: quadratic SVM.
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using deep features obtained from the original CT images.
This is obvious as for ResNet-18, the accuracy achieved
using the fused deep features obtained with radiomics
images is 96.70%, 97.82%, and 97.60% for the L-SVM,
Q-SVM, and C-SVM classifiers. Likewise, for ResNet-50,

the accuracy reached 98.30%, 99.34%, and 99.44% for
the L-SVM, Q-SVM, and C-SVM classifiers. Similarly,
for ResNet-101, the accuracy attained for the same classi-
fiers is 98.32%, 98.96%, and 99.20% using the fused
deep features of radiomics images. These accuracies are

Figure 6. The ROC curves and the corresponding AUCs that were obtained using the three SVMs after the second fusion step. (a) L-SVM, (b)
Q-SVM, and (c) C-SVM.
AUCs: area under the curve; C-SVM: cubic SVM; L-SVM: linear SVM; SVM: support vector machine; Q-SVM: quadratic SVM.
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greater than those obtained by the same classifiers trained
with the deep features of the original CT. This table also
proves that using the fused deep features obtained from
CNNs trained with texture-based radiomics images is
better than using an individual deep feature set obtained
from a single type of texture-based radiomics images
(DWT or GLCM) as shown in Table 2.

The performance measures calculated after the second
fusion process are shown in Table 4. This table indicates
that the second fusion process has improved the classifica-
tion accuracy of the three SVM classifiers. This is because
they obtained higher accuracies than those achieved with
the fused deep features of the two texture-based radiomics
images (DWT-Haar+GLCM-8) shown in Table 3. This
is clear as the accuracies obtained after the second fusion
procedure have increased to 99.00%, 99.54%, and

99.60% for the L-SVM, Q-SVM, and C-SVM classifiers
respectively. These accuracies are superior to those
achieved using the first fusion step that used the DCT
method to combine deep features obtained from the two
texture-based radiomics images for each ResNet as well
as those obtained by deep features mined from the original
image (Table 3). The receiving operator characteristic
(ROC) curves and the corresponding AUCs obtained
using the three SVMs after the second fusion step are
shown in Figure 6. As noted from Figure 6, the AUCs
achieved using the three SVM classifiers are equal to 1.

Table 4 also shows that the proposed CAD framework
obtained a sensitivity of (99.28%, 99.45%, and 99.47%),
specificity of (98.74%, 99.63%, and 99.72%), precision of
(98.75%, 99.63%, and 99.72%), and F1-score of
(99.00%, 99.54%, and 99.60%) using the L-SVM,

Figure 7. The final architecture of the proposed framework.

Table 5. Results (%) comparison between the proposed CAD framework and other related studies based on SARS-COV-2 CT scan dataset.

Article Method SP SE Acc Precision F1-score

75 Customized CNN - 96 95 - 95

23 CoviDenseNet 85.92 87.41 86.88 85.92 89.53

21 x-DNN3 - 95.53 97.38 - 97.31

76 Customized Simple CNN 95.56 96 95.78 95.56 -

22 Bi-LSTM - 98.87 98.37 - 98.14

77 VGG-16+ResNet-50+ Xception+Majority voting 98.79 98.79 98.79 98.79 98.79

78 Fuzzy Ranking+ VGG-11, ResNet-50-2, and Inception v3 99 99.08 98.93 99 98.93

79 Customized CNN+Genetic Algorithm+ Xboost - 99 99 - 99

33 ResNet18+ ShuffleNet+ AlexNet+GoogleNet+ DWT+GLCM+ Statistical
features+ PCA+ SVM

99 99 99 99 99

Proposed CAD framework 99.72 99.47 99.60 99.72 99.60

Bi-LSTM: bidirectional long short-term memory; CT: computed tomography; CNN: convolutional neural network; CAD: computer-assisted diagnostic; DWT:
discrete wavelet transform; GLCM: gray-level covariance matrix; PCA: principal component analysis; SVM: support vector machine; SARS-CoV-2: severe
respiratory syndrome coronavirus 2.
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Q-SVM, and C-SVM classifiers, respectively. According to
the studies,73,74 the results of the proposed CAD framework
indicate that it is a reliable system, as the sensitivities are
greater than 80%, and both precisions and specificities are
greater than 95%.

The final architecture of the proposed framework is
shown in Figure 7. The figure shows that initially, images
are augmented and resized. They are then analyzed using
DWT-Haar and GLCM-8. The approximation coefficients
of DWT and the values obtained by GLCM are transformed
into heatmaps images. Next, these images are used indi-
vidually to train the ResNets. Afterward, deep features are
extracted from these ResNets and are fused using DCT,
where 500 coefficients are chosen for ResNet+ 18 and
ResNet-50 and 700 DCT coefficients for ResNet-101.
Finally, these coefficients are fused altogether in a concat-
enation manner and used as inputs to the C-SVM classifier.

Comparison with other related studies

The results of the proposed CAD framework after the
second fusion step are compared with those obtained by
other related studies based on the SARS-COV-2 CT-Scan
dataset. These results are shown in Table 5. The table
proves the competitiveness of the proposed CAD frame-
work compared to other methods. This is clear, as the per-
formance measures obtained using the proposed CAD
framework are superior to those obtained by other related
studies. The outstanding performance of the proposed
CAD framework allows it to be used by radiologists to
help them in providing an accurate and fast diagnosis.

Conclusions
In this study, an automated CAD framework for corona-
virus diagnosis was proposed. At first, the CT scans were
analyzed using two texture-based radiomics approaches
including GLCM and DWT methods. Afterward, the heat-
maps of the DWT and GLCM coefficients were plotted as
images. Next, these texture-based radiomics images were
resized and augmented then used to train three ResNets sep-
arately. Also, the original CT images were used to train the
same ResNets. Then, the deep features were extracted from
the three ResNets trained with texture-based radiomics
images and original CT images. Thereafter, the deep fea-
tures obtained from the two types of texture-based radio-
mics images were fused and reduced using the DCT
method for each ResNet. After that, the fused deep features
of the three ResNet were further combined altogether in a
concatenation way. Finally, three SVM classifiers were
used to perform the classification step into coronavirus
and non-coronavirus. The classification procedure was
done through three experiments. In the first experiment,
an end-to-end deep learning classification was accom-
plished. The results of this experiment showed that training

ResNets using the texture-based radiomics images was
better than training the ResNets with the original CT
images. This is because the accuracy achieved using
ResNets trained with heatmaps images of GLCM and
DWT are (83.22%, 74.90%) for ResNet-18, (80.94%,
78.39%) for ResNet-50, and (80.54%, 77.99%) for
ResNet-101. These accuracies are higher than that obtained
using the original CT images (70.34%, 76.51%, and
73.42%) for ResNet-18, ResNet-50, and ResNet-101,
respectively.

In experiment II, the deep features extracted from the
ResNets trained using texture-based radiomics images
(DWT or GLCM) were used individually to construct the
three SVM classifiers. The accuracies of this experiment
indicated that the L-SVM trained with deep features of
the texture-based radiomics (GLCM and DWT) images
(94.8%, 98.3%, and 98%) for GLCM and (95.4%, 98.6%,
and 98.3%) for DWT are higher than that attained using
the end-to-end deep learning classification of experiment
I. In the last experiment, the deep features sets obtained
from each CNN trained with each type of texture-based
radiomics images were fused and reduced using the DCT
method. These fused deep features sets were used individu-
ally to train the three SVMs. The results proved that fusing
both sets of deep features obtained from each CNN trained
using the texture-based radiomics images is superior to
using only one type of deep features set obtained from
either DWT or GLCM. The results also indicated that train-
ing the SVM classifiers with the fused texture-based radio-
mics deep features is superior to using deep features
obtained from the original CT images. The accuracies
attained for the L-SVM classifier after fusing the radiomics
images (heatmaps of DWT or GLCM) are 96.70%, 98.30%,
and 98.32% for ResNet-18, ResNet-50, and ResNet-101,
respectively. These accuracies are higher than the
94.98%, 98.20%, and 97.44% obtained using the L-SVM
classifiers trained with deep features mined with the same
ResNets trained with the original CT images. In the same
experiment, the fused texture-based radiomics deep features
of each CNN were further combined altogether and
employed to train the three SVMs. The accuracy attained
using L-SVM, Q-SVM, and C-SVM classifiers (99.00%,
99.54%, and 99.60%) demonstrated that combining texture-
based radiomics deep features of the three CNNs has
improved the performance of the proposed CAD frame-
work. The performance of the proposed CAD framework
compared to other related studies verified its superiority
as it attained 99.60% which is higher than the accuracies
obtained by related studies which range from 86.88% to
99%. Accordingly, it can be used to assist radiologists in
the automatic diagnosis of coronavirus accurately and
rapidly.

Motivated by the promising results of the proposed
framework, we emphasize the efficiency of the proposed
approach. Therefore it can be employed as a computer-
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assisted tool for the automatic clinical diagnosis of several
diseases and tumors such as brain, lung, and breast tumors.
It can be also used for other types of imaging modalities
such as X-rays, MRI, and mammograms. The noise in real-
world CT images is a well-known problem that reduces the
accuracy of diagnostics. This study did not examine this
problem and it is considered one of the limitations of the
proposed study that should be addressed in our future
work. Furthermore, the study did not consider optimization
techniques for feature selection and network hyperpara-
meters selection which will be addressed in the upcoming
work. Also, the study did not investigate the problem of dis-
criminating coronavirus from other forms of pneumonia
and chest diseases which will be addressed in future
work. Further work will also consider using more deep
learning and feature reduction techniques. Upcoming
work will also consider studying the effect of using differ-
ent combinations of radiomics and fusion methods as well
as other textural-based analysis methods.

Declaration of Conflicting Interests: The author(s) declared no
potential conflicts of interest with respect to the research,
authorship, and/or publication of this article.

Contributorship: It is a single author paper. the only contributor
is the author Omneya Attallah.

Guarantor: Omneya Attallah

Funding: The author(s) received no financial support for the
research, authorship, and/or publication of this article.

Ethical approval: Not applicable, because this article does not
contain any studies with human or animal subjects.

Informed consent: Not applicable, because this article does not
contain any studies with human or animal subjects.

ORCID iD: Omneya Attallah https://orcid.org/0000-0002-2657-
2264

Trial registration: Not applicable, because this article does not
contain any clinical trials.

References
1. Pascarella G, Strumia A, Piliego C, et al. COVID-19 diagno-

sis and management: a comprehensive review. J Intern Med
2020; 288: 192–206.

2. Bhattacharyya A, Bhaik D, Kumar S, et al. A deep learning
based approach for automatic detection of COVID-19 cases
using chest X-ray images. Biomed Signal Process Control
2022; 71: 103182.

3. Huang C, Wang Y, Li X, et al. Clinical features of patients
infected with 2019 novel coronavirus in wuhan, China. The
Lancet 2020; 395: 497–506.

4. Siordia Jr JA. Epidemiology and clinical features of
COVID-19: a review of current literature. J Clin Virol
2020; 127: 104357.

5. Nishiura H, Kobayashi T, Miyama T, et al. Estimation of the
asymptomatic ratio of novel coronavirus infections
(COVID-19). Int J Infect Dis 2020; 94: 54.

6. Wang X, Tan L, Wang X, et al. Comparison of nasopharyn-
geal and oropharyngeal swabs for SARS-CoV-2 detection in
353 patients received tests with both specimens simultan-
eously. Int J Infect Dis 2020; 94: 107–109.

7. Attallah O. ECG-BiCoNet: an ECG-based pipeline for
COVID-19 diagnosis using bi-layers of deep features integra-
tion. Comput Biol Med 2022; 142: 105210–15221.

8. Chung M, Bernheim A, Mei X, et al. CT Imaging features of
2019 novel coronavirus (2019-NCoV). Radiology 2020; 295:
202–207.

9. Rousan LA, Elobeid E, Karrar M, et al. Chest X-ray findings
and temporal lung changes in patients with COVID-19 pneu-
monia. BMC Pulm Med 2020; 20: –9.

10. Attallah O and Ma X. Bayesian Neural network approach for
determining the risk of re-intervention after endovascular
aortic aneurysm repair. Proceedings of the institution of
mechanical engineers. Part H: Journal of Engineering in
Medicine 2014; 228: 857–866.

11. Attallah O, Karthikesalingam A, Holt PJ, et al. Using multiple
classifiers for predicting the risk of endovascular aortic aneur-
ysm repair Re-intervention through hybrid feature selection.
Proceedings of the institution of mechanical engineers. Part
H: Journal of Engineering in Medicine 2017; 231: 1048–1063.

12. Attallah O and Sharkas M. GASTRO-CADx: a three stage
framework for diagnosing gastrointestinal diseases. PeerJ
Computer Science 2021; 7: e423.

13. Ragab DA, Attallah O, Sharkas M, et al. A framework for
breast cancer classification using multi-DCNNs. Comput
Biol Med 2021; 131: 104245.

14. Attallah O, Anwar F, Ghanem NM, et al. Histo-CADx: duo
cascaded fusion stages for breast cancer diagnosis from
histopathological images. PeerJ Computer Science 2021;
7: e493.

15. Attallah O, Sharkas MA and Gadelkarim H. Deep learning
techniques for automatic detection of embryonic neurodeve-
lopmental disorders. Diagnostics 2020; 10: 27–49.

16. Attallah O. DIAROP: automated deep learning-based diag-
nostic tool for retinopathy of prematurity. Diagnostics 2021;
11: 2034.

17. Attallah O. MB-AI-His: histopathological diagnosis of pediat-
ric medulloblastoma and its subtypes via AI. Diagnostics
2021; 11: 359–384.

18. Attallah O. CoMB-Deep: composite deep learning-based
pipeline for classifying childhood medulloblastoma and its
classes. Front Neuroinform 2021; 15: 663592.

19. Wang S, Zha Y, Li W, et al. A fully automatic deep learning
system for COVID-19 diagnostic and prognostic analysis. Eur
Respir J 2020; 56: 2000775–2000785

20. Bhuyan HK, Chakraborty C, Shelke Y, et al. COVID-19
Diagnosis system by deep learning approaches. Expert Syst
2021; 39(3): e12776.

14 DIGITAL HEALTH

https://orcid.org/0000-0002-2657-2264
https://orcid.org/0000-0002-2657-2264
https://orcid.org/0000-0002-2657-2264


21. Soares E, Angelov P, Biaso S, et al. SARS-CoV-2 CT-scan
dataset: a large dataset of real patients CT scans for
SARS-CoV-2 identification. medRxiv 2020: 1–8.

22. Pathak Y, Shukla PK and Arya KV. Deep bidirectional classi-
fication model for COVID-19 disease infected patients. IEEE/
ACM Trans Comput Biol Bioinf 2020;18(4): 1234–1241.

23. Alshazly H, Linse C, Abdalla M, et al. COVID-Nets: deep
CNN architectures for detecting COVID-19 using chest CT
scans. PeerJ. Computer science 7, e655. https://doi.org/
10.7717/peerj-cs.655

24. Shah V, Keniya R, Shridharani A, et al. Diagnosis of
COVID-19 using CT scan images and deep learning techni-
ques. Emerg Radiol 2021; 28: 497–505.

25. Zhao W, Jiang W and Qiu X. Deep learning for COVID-19
detection based on CT images. Sci Rep 2021; 11: 1–12.

26. Amin SU, Alsulaiman M, Muhammad G, et al. Deep learning
for EEG motor imagery classification based on multi-layer
CNNs feature fusion. Future Gener Comput Syst 2019; 101:
542–554.

27. Xu Q, Wang Z, Wang F, et al. Multi-feature fusion CNNs for
drosophila embryo of interest detection. Physica A 2019; 531:
121808.

28. Zhang Q, Li H, Sun Z, et al. Deep feature fusion for iris and
periocular biometrics on mobile devices. IEEE Trans Inf
Forensics Secur 2018; 13: 2897–2912.

29. Zhou T, Lu H, Yang Z, et al. The ensemble deep learning
model for novel COVID-19 on CT images. Appl Soft
Comput 2021; 98: 106885.

30. Shalbaf A and Vafaeezadeh M. Automated detection of
COVID-19 using ensemble of transfer learning with deep
convolutional neural network based on CT scans. Int J
Comput Assist Radiol Surg 2021; 16: 115–123.

31. Attallah O, Ragab DA and Sharkas M. MULTI-DEEP: a
novel CAD system for coronavirus (COVID-19) diagnosis
from CT images using multiple convolution neural networks.
PeerJ 2020; 8: e10086.

32. Shankar K and Perumal E. A novel hand-crafted with deep
learning features based fusion model for COVID-19 diagnosis
and classification using chest X-ray images. Complex &
Intelligent Systems 2021; 7: 1277–1293.

33. Ragab DA and Attallah O. FUSI-CAD: coronavirus
(COVID-19) diagnosis based on the fusion of CNNs and hand-
crafted features. PeerJ Computer Science 2020; 6: e306.

34. Obiols MH, Jiao Y and Wang Q. Can Radiomics Features
Boost the Performance of Deep Learning upon Histology
Images? In Proceedings of the 2019 International
Conference on Medical Imaging Physics and Engineering
(ICMIPE); IEEE, 2019; pp. 1–6.

35. Alyasseri ZAA, Al-Betar MA, Doush IA, et al. Review on
COVID-19 diagnosis models based on machine learning
and deep learning approaches. Expert Syst 2021; 39(3):
e12759.

36. Scarpiniti M, Ahrabi SS, Baccarelli E, et al. A novel unsuper-
vised approach based on the hidden features of deep denoising
autoencoders for COVID-19 disease detection. Expert Syst
Appl 2021; 192: 116366–116380

37. Khan MA, Alhaisoni M., Tariq U., et al. COVID-19 case rec-
ognition from chest CT images by deep learning, entropy-
controlled firefly optimization, and parallel feature fusion.
Sensors 2021; 21: 7286–7304.

38. Rehman N, Zia MS, Meraj T, et al. A self-activated CNN
approach for multi-class chest-related COVID-19 detection.
Applied Sciences 2021; 11: 9023.

39. Kumar Singh V, Abdel-Nasser M, Pandey N, et al.
Lunginfseg: segmenting COVID-19 infected regions in lung
CT images based on a receptive-field-aware deep learning
framework. Diagnostics 2021; 11: 58.

40. Le V-H, Kha Q-H, Hung TNK, et al. Risk score generated
from CT-based radiomics signatures for overall survival pre-
diction in non-small cell lung cancer. Cancers (Basel) 2021;
13: 3616.

41. Le NQK, Hung TNK, Do DT, et al. Radiomics-based machine
learning model for efficiently classifying transcriptome sub-
types in glioblastoma patients from MRI. Comput Biol Med
2021; 132: 104320.

42. Attallah O and Sharkas M. Intelligent dermatologist tool for
classifying multiple skin cancer subtypes by incorporating
manifold radiomics features categories. Contrast Media Mol
Imaging 2021; 2021: 1–14.

43. Afshar P, Mohammadi A, Plataniotis KN, et al. From hand-
crafted to deep-learning-based cancer radiomics: challenges
and opportunities. IEEE Signal Process Mag 2019; 36:
132–160.

44. Jingxin L, Mengchao Z, Yuchen L, et al. COVID-19 lesion
detection and segmentation–A deep learning method.
Methods 2021.

45. Rajpal S, Lakhyani N, Singh AK, et al. Using handpicked fea-
tures in conjunction with ResNet-50 for improved detection of
COVID-19 from chest X-ray images. Chaos Solitons Fractals
2021; 145: 110749.

46. Keles A, Keles MB and Keles A. COV19-CNNet and
COV19-ResNet: diagnostic inference engines for early detec-
tion of COVID-19. Cogn Comput 2021: 1–11.

47. Bharati S, Podder P, Mondal M, et al. CO-ResNet: optimized
ResNet model for COVID-19 diagnosis from X-ray images.
Int J Hybrid Intell Syst 2021; 17: 1–15.

48. Zhou C, Song J, Zhou S, et al. COVID-19 detection based on
image regrouping and ResNet-SVM using chest X-ray
images. Ieee Access 2021; 9: 81902–81912.

49. Anwar SM, Majid M, Qayyum A, et al. Medical image ana-
lysis using convolutional neural networks: a review. J Med
Syst 2018; 42: 1–13.

50. Sarvamangala DR and Kulkarni RV. Convolutional neural
networks in medical image understanding: a survey. Evol
Intell 2021; 15: 1–22.

51. Li Z, Liu F, Yang W, et al. A survey of convolutional neural
networks: analysis, applications, and prospects. IEEE
Transactions on Neural Networks and Learning Systems
2021.

52. Talo M, Baloglu UB, Yıldırım Ö, et al. Application of deep
transfer learning for automated brain abnormality classifi-
cation using MR images. Cogn Syst Res 2019; 54:
176–188.

53. He K, Zhang X, Ren S, et al. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition 2016.

54. Chiesa-Estomba CM, Echaniz O, Larruscain E, et al.
Radiomics and texture analysis in laryngeal cancer. Looking
for new frontiers in precision medicine through imaging ana-
lysis. Cancers (Basel) 2019; 11: 1409.

Attallah 15



55. Ulrich EJ, Menda Y, Ponto LLB, et al. FLT PET radiomics for
response prediction to chemoradiation therapy in head and
neck squamous cell cancer. Tomography 2019; 5: 161–169.

56. Guezennec C, Robin P, Orlhac F, et al. Prognostic value of
textural indices extracted from pretherapeutic 18-F
FDG-PET/CT in head and neck squamous cell carcinoma.
Head Neck 2019; 41: 495–502.

57. Nailon WH. Texture analysis methods for medical image
characterisation. London, United Kingdom: IntechOpen,
2010. doi:10.5772/8912

58. Lahmiri S and Boukadoum M. Hybrid discrete wavelet trans-
form and gabor filter banks processing for features extraction
from biomedical images. J Med Eng 2013; 2013: 1–13.

59. Attallah O, Sharkas MA and Gadelkarim H. Fetal brain abnor-
mality classification from MRI images of different gestational
age. Brain Sci 2019; 9: 231–252.

60. Hasan AM and Meziane F. Automated screening of MRI
brain scanning using grey level statistics. Comput Electr
Eng 2016; 53: 276–291.

61. Thakral S and Manhas P. Image processing by using different
types of discrete wavelet transform. In Proceedings of the
International Conference on Advanced Informatics for
Computing Research. Shimla, Springer, July 14–15 2018:
499–507.

62. Lu J, Behbood V, Hao P, et al. Transfer learning using com-
putational intelligence: a survey. Knowl Based Syst 2015; 80:
14–23.
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