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Abstract 

Background:  This study aimed at (1) deriving Bayesian methods to predict breeding values for ratio (i.e. feed conver-
sion ratio; FCR) or linear (i.e. residual feed intake; RFI) traits; (2) estimating genetic parameters for average daily feed 
consumption (ADFI), average daily weight gain (ADG), lean meat percentage (LMP) along with the derived traits of RFI 
and FCR; and (3) deriving Bayesian estimates of direct and correlated responses to selection on RFI, FCR, ADG, ADFI, 
and LMP. Response to selection was defined as the difference in additive genetic mean of the selected top individuals, 
expected to be parents of the next generation, and the total population after integrating genetic trends out of the 
posterior distribution of selection responses. Inferences were based on marginal posterior distributions obtained from 
the Bayesian method for integration over unknown population parameters and “fixed” environmental effects and for 
appropriate handling of ratio traits. Terminal line pigs (n = 3724) were used for a multi-variate model for ADFI, ADG, 
and LMP. RFI was estimated from the conditional distribution of ADFI given ADG and LMP, using either genetic (RFIG) 
or phenotypic (RFIP) partial regression coefficients. The posterior distribution of the FCR’s breeding values was derived 
from the posterior distribution of “fixed” environmental effects and additive genetic effects on ADFI and ADG.

Results:  Posterior means of heritability were 0.32, 0.26, 0.56, 0.20, and 0.15 for ADFI, ADG, LMP, RFIP, and RFIG, respec-
tively. Selection against RFIG showed a direct response of − 0.16 kg/d and correlated responses of − 0.16 kg/kg for 
FCR and − 0.15 kg/d for ADFI, with no effect on other production traits. Selection against FCR resulted in a direct 
response of − 0.17 kg/kg and correlated responses of − 0.14 kg/d for RFIG, − 0.18 kg/d for ADFI, and 0.98% for LMP.

Conclusions:  The Bayesian methodology developed here enables prediction of breeding values for FCR and RFI 
from a single multi-variate model. In addition, we derived posterior distributions of direct and correlated responses to 
selection. Genetic parameter estimates indicated a genetic basis for the studied traits and that genetic improvement 
through selection was possible. Direct selection against FCR or RFIP resulted in unexpected responses in production 
traits.

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
In swine breeding programs, efficiency of nutrient use 
is a significant factor because of its economic and envi-
ronmental importance. Classically, feed efficiency is 
defined as output over input, for instance, milk yield, or 
milk components yield over dry matter consumption in 
dairy cattle, or body weight gain over feed consumption 

in pigs. However, in swine breeding programs, feed con-
version ratio (FCR) is primarily used, defined as average 
daily feed intake (ADFI) over average daily body weight 
gain (ADG).

The distribution of ratio traits such as FCR depends on 
the joint distribution of two normally distributed vari-
ables. The distribution of a ratio trait is easily determined 
if the mean of each random variable and the correlation 
between them are equal to zero. However, complex-
ity arises as the variables’ means and correlation devi-
ate from zero [1, 2]. The ratio of two correlated normal 
random variables has a closed approximate form, as 
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illustrated by Hinkley [2], and a distribution that devi-
ates from normality, as reported by Gunsett [3]. There-
fore, selection for ratio traits often results in unexpected 
responses in its component traits [3].

To circumvent the problems of ratio traits, residual 
feed intake (RFI) was proposed by Koch et  al. [4] as a 
better measure to determine animal feed efficiency. RFI 
is a partial measure of feed efficiency that refers to the 
proportion of feed intake that is independent of per-
formance. In the classical definition, RFI is observed as 
ADFI minus the expected ADFI based on body weight 
(BW) and ADG, along with carcass composition, e.g., 
lean meat percentage (LMP), based on the results of a 
multiple regression analysis. Following Kennedy et  al. 
[5], this could be termed phenotypic RFI, as the correc-
tion ensures that the phenotypic covariance between RFI 
and production traits (i.e. BW, ADG and LMP) is zero. If 
the genetic (co)variances for the component traits of RFI 
(e.g., ADFI, ADG and LMP) are known, a genetic RFI can 
be computed using partial genetic regression coefficients 
of ADFI on production traits (e.g., ADG and LMP), as 
applied by Shirali et al. [6]. Using a Bayesian framework, 
Jensen [7] showed that breeding values and the posterior 
distribution of RFI can be derived by defining the proper 
distributions of feed intake, conditional on BW and 
ADG, and potentially other traits that act as important 
energy sinks, such as body fat content. This procedure 
also circumvents the need for deriving the regression 
coefficients from a separate regression analysis first and 
then using them in genetic analysis to compute a pheno-
typic RFI. Using a multivariate animal model can ensure 
that parameter estimation in the regression analysis is 
not biased by fixed effects in the model, or by effects due 
to genetic trends for component traits in the population 
under investigation [7].

Bayesian methodology, as illustrated by Sorensen et al. 
[8], provides marginal posterior distributions for any 
parameter in the model, given the data available, where 
the required posterior distributions are obtained by 
means of the Gibbs sampler [9]. If non-informative priors 
are used, these distributions consider that other param-
eters, such as the variance components, are inferred 
from the data, such that proper probability statements 
can be made for response to selection. Bayesian meth-
ods ensure that uncertainties about the fixed effects and 
variance components are considered when evaluating 
breeding values and estimates of responses to selection. 
The Bayesian approach allows inference of the posterior 
distributions of non-linear functions of parameters, even 
if their distributions are unknown. Genetic or phenotypic 
variances and covariances in a given generation can be 
inferred based on their marginal posterior distributions, 
as shown by Sorensen et al. [10] for a univariate model. 

Inferences about breeding values are made using the 
marginal posterior distribution of the vector of breeding 
values. Marginal posterior distributions of responses to 
selection or of genetic superiorities of a selected group 
can be obtained by averaging predicted breeding val-
ues that are obtained using mixed model techniques, as 
shown by Sorensen et al. [8]. In addition, when variance 
components are known and flat priors are used for fixed 
effects, the Bayesian estimates of response to selection 
are identical to the analysis by Sorensen and Kennedy 
[11].

The aims of this study were to (1) derive methods for 
the Bayesian prediction of breeding values for pheno-
typic and genetic RFI and for FCR, without invoking 
unrealistic distributional assumptions for FCR; (2) esti-
mate genetic parameters for the production traits of 
growth, feed intake, and lean meat production, and for 
the derived traits of RFI and FCR; and (3) derive Bayesian 
estimates of direct and correlated responses to selection 
for feed efficiency, measured either as RFI or FCR, and 
for production traits.

Methods
Data
Animal care and handling were performed as part of a 
routine commercial breeding program. Animals were 
reared using standard procedures in a commercial Irish 
pig farm and therefore, no further approval of animal 
care and handling procedures was necessary. The dataset 
used for this study was collected as routine feed intake 
records from 2007 to 2014. Pigs (n = 3027; 2621 boars 
and 406 gilts) originated from Hermitage Genetics (Kilk-
enny, Ireland) and were selected on an index comprising 
feed conversion ratio, days to achieve 110  kg, and lean 
meat percentage (LMP). Animals went on trial at 52  kg 
(11, SD) and daily feed intake records were collected 
until they reached 110 kg (10, SD) of BW. During the test 
period, pigs were kept in mixed-sex pens of 12 pigs each, 
equipped with IVOG electronic feeders (Insentec B.V., 
Marknesse, The Netherlands). Pig were fed ad  libitum 
using a standard wheat and barley-based Irish finisher 
diet with 13.7 megajoules of digestible energy, 17% crude 
protein, and 0.97% standard ileal digestible lysine per kg 
of feed. The test period lasted a maximum of 8  weeks. 
Raw data contained records from each entry to the feeder 
during the test period. Feed intake errors in single visits 
to the feeding station were identified following the algo-
rithm developed by Casey et  al. [12] and were removed 
from the dataset. Descriptive statistics for the data are in 
Table 1. ADFI was calculated as total feed intake in the 
entire test period, divided by the number of days on test. 
ADG was calculated as total body weight gain divided by 
the number of days on test. LMP was predicted using a 
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transformation of fat layer and muscle depths between 
the 3rd and 4th last ribs from ultrasound images taken 
at the end of the test period using a Piglog 105 ultrasonic 
device (Carometec A/S, Denmark). Pedigree informa-
tion was available for at least the last four generations, for 
6237 animals.

Statistical models
Tri-variate analysis was used for ADFI, ADG, and LMP 
traits using the following models:

where yADFI, yADG and yLMP are vectors of phenotypic 
records for ADFI, ADG, and LMP, respectively; vectors 
bADFI, bADG, and bLMP contain “fixed” effects of year-
quarter, gender, and sow parity for ADFI, ADG and LMP, 
respectively; bADFI and bADG are “fixed” regressions for 
start body weight for ADFI and ADG, respectively; bLMP 
is the “fixed” regression for end body weight for LMP; 
aADFI, aADG, and aLMP, pADFI, pADG, and pLMP, eADFI, eADG, 
and eLMP are vectors of animal additive genetic, pen, and 
residual effects for ADFI, ADG, and LMP, respectively. 
The permanent environment effect of litter of origin had 
a small effect based on an initial likelihood ratio test and 
therefore was not included in the model. Matrices X are 
design matrices for year-quarter, gender, and parity 
effects; xs is a vector of start body weights for each ani-
mal and xe is a vector of end body weights. Matrices Z 
and S are the corresponding design matrices for additive 
genetic animal effects (aADFI, aADG, and aLMP) and the 
permanent environmental effect of pen (pADFI, pADG, and 
pLMP) for the three traits. Average BW was not included 
in the model because animals were tested over a fixed 
weight interval; therefore, all animals had the same 

(1)
yADFI = XbADFI + bADFIxs + ZaADFI + SpADFI + eADFI,

(2)
yADG = XbADG + bADGxs + ZaADG + SpADG + eADG,

(3)
yLMP = XbLMP + bLMPxe + ZaLMP + SpLMP + eLMP,

average weight. A full Bayesian analysis was conducted 
and, therefore, priors were specified for all parameters. 
Prior distributions for all random vectors were multivari-
ate normal distributions with a mean of zero, and 

Var





eADFI
eADG
eLMP



 = I⊗ R0 , where R0 is a 3 × 3 matrix of 

residual (co)variances, Var





aADFI
aADG
aLMP



 = A ⊗G0 , where 

A is the additive genetic relationship matrix, G0 is a 3 × 3 
matrix of additive genetic (co)variances, and genetic val-
ues are ordered by individual; and 

Var





pADFI
pADG
pLMP



 = I⊗ K0 , where K0 is a 3 × 3 matrix of 

pen (co)variances. The random effects of a, p, and e were 
considered independent of each other. The prior distribu-
tions for the covariance matrices G0, K0, and R0 were 
inverse Wishart distributions and priors for all dispersion 
and for all “fixed” location parameters were taken as flat 
priors.

The Bayesian estimation method via Gibbs sampling 
was used to obtain posterior distributions for all param-
eters that were included in the trivariate models (1), (2), 
and (3), including the matrices of variances and covari-
ances. The Gibbs sampler was run for 1.1 million rounds, 
with the first 100,000 rounds considered burn-in, and 
after the burn-in, every 250th sample was saved for pos-
terior analysis. The RJMC module in the DMU software 
package by Madsen and Jensen [13] was used for analysis.

Analysis of posterior distributions
A total of 4000 samples from the joint posterior distri-
bution of all location and (co)variance parameters from 
the trivariate models (1)–(3) were saved for post-Gibbs 
analysis. The BOA package of Smith [14] in the R pro-
gram [15] was used for convergence diagnostics through 
statistical and graphical analysis of the posterior distribu-
tions of the (co)variance, location, and derived parame-
ters. The results indicated convergence of all parameters 
investigated.

Let si be the vector of all model parameters in sample 
i from the marginal posterior distribution of s. Any fea-
ture or function of the distribution can be obtained using 
the ergodic theorem shown by Geyer [16] and Smith and 
Roberts [9]:

(4)µ̂m =
1

m

m
∑

i=1

g(si),

Table 1  Mean and  standard deviation (SD) of  average 
daily feed intake (ADFI), average daily gain (ADG), lean 
meat percentage (LMP), and  start (SBW) and  end body 
weight (EBW)

Trait Mean SD

ADFI, kg/d 2.61 0.39

ADG, kg/d 1.12 0.15

LMP, % 62.7 1.97

SBW, kg 54.9 11.3

EBW, kg 109 10.3
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where g(.) is an appropriate operator, μ is any function 
or feature of the marginal distribution of s, and m is the 
number of samples obtained. For more details on how to 
use this to estimate response in selection experiments, 
see Sorensen et  al. [8]. Then, we derived functions to 
define the posterior distribution of genetic and residual 
(co)variances to derive breeding values for various RFI 
and FCR definitions. In addition, functions to infer the 
amount of genetic variance and covariance available for 
selection were derived, along with responses to selection 
or of genetic superiorities of the selected groups for dif-
ferent selection criteria. Functions to define posterior 

definitions. Across the posterior samples, the distribu-
tion is, however, not necessarily normal.

For RFIG, the partial regression coefficients (bG) for 
ADG and LMP were computed from the genetic (co)
variance matrix, while for RFIP the partial phenotypic 
regression coefficients (bP) were from the phenotypic 
(co)variance matrix. Within a posterior sample, both RFI 
definitions involved conditional normal distributions, 
resulting in the following straightforward derivations: let 
P0 = G0 + K0 + R0 be the phenotypic and G0 the genetic 
(co)variance matrices of the traits involved, which are 
subdivided in:

where the diagonals of matrices are the variances and the 
off-diagonals are the covariances.

Bayesian estimation of partial phenotypic (bP) and 
genetic (bG) regression coefficients was obtained as:

which are 2 × 1 vector-valued functions that are obtained 
in each sample from the Gibbs output. The Pp and Gp are 
2 × 2 matrices of phenotypic and genetic (co)variance for 
the production traits of ADG and LMP from P0 and G0, 
respectively. Matrices Pp,ADFI and Gp,ADFI are the pheno-
typic and genetic covariances, respectively, of the pro-
duction traits ADG and LMP with ADFI.

Predictions of breeding values for RFI can be obtained 
simultaneously for all animals by the distribution of 
breeding values for ADFI (aADFI), conditional of breed-
ing values for ADG (aADG) and LMP (aLMP), using either 
phenotypic (bP) or genetic (bG) partial regression coeffi-
cients. A sample from the posterior distribution of breed-
ing values for phenotypic ( aRFIP ) and genetic ( aRFIG ) RFI 
is as follows:

For a given sample in si, distributions of RFI were 
obtained as the distribution of ADFI conditional on all 
other model parameters and on ADG and LMP. The cor-
responding variances and covariances can be obtained 
using the following equations:

P0 =





PADFI PADFI ,ADG PADFI ,LMP

PADG,ADFI PADG PADG,LMP

PLMP,ADFI PLMP,ADG PLMP



 and G0 =





GADFI GADFI ,ADG GADFI ,LMP

GADG,ADFI GADG GADG,LMP

GLMP,ADFI GLMP,ADG GLMP



,

(5)bP = P−1
p Pp,ADFI and bG = G−1

p Gp,ADFI,

(6)aRFIP = aADFI −
[

aADG aLMP

]

bP,

(7)aRFIG = aADFI −
[

aADG aLMP

]

bG.

genetic and residual variances for FCR are not available 
without resorting to Taylor series approximations but the 
amount of genetic variance in FCR available for selec-
tion can be derived from the output of the Gibbs sampler 
without resorting to approximations. The functions to 
predict RFI and FCR were used in every sample obtained 
and Eq. (4) was used to obtain summary information on 
the distribution of this function, i.e. the posterior mean 
and variance of genetic variance.

Posterior distribution of RFI
RFI was defined as (1) phenotypic RFI (RFIP) using phe-
notypic partial regression coefficients to ensure that phe-
notypic covariances are zero; and (2) genetic RFI (RFIG), 
conditioning breeding values of ADFI by breeding values 
for ADG and LMP using genetic partial regression coef-
ficients, ensuring that the genetic covariances between 
RFIG and production traits (ADG and LMP) are zero. In 
other words, the breeding values for ADFI are corrected 
for ADG and LMP using either genetic or phenotypic 
regression coefficients. In this section, we present the 
derivation of variance parameters and breeding values for 
both RFI forms, which are both linear combinations of 
the traits included in the analysis. In each individual sam-
ple (s), derivation of both the distribution and the breed-
ing values of the RFI traits are straightforward because 
they are conditional on the (co)variance components, 
and all elements are from multivariate normal distribu-
tions. These derivations are used on all samples obtained 
from the Gibbs sampler to obtain the posterior distribu-
tions of (co)variances and breeding values for the two RFI 
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(8)













var
�

gADFI
�

covariance

var
�

gRFIP
�

var
�

gRFIG
�

var
�

gADG
�

covariance var
�

gLMP

�













= BG0B
′,

(9)











var(pADFI ) covariance
var

�

pRFIP
�

var
�

pRFIG
�

var(pADG)
covariance var(pLMP)











= BP0B
′,

where BG0B
′ and BP0B

′ are genetic or phenotypic (co)
variances, respectively.

where bP,ADG and bP,LMP are phenotypic partial regres-
sion coefficients from bP , and bG,ADG and bG,LMP are 
genetic regression coefficients from bG for ADG and 
LMP, respectively.

Posterior distribution of FCR
FCR is a ratio between two normally distributed and 
usually correlated traits and therefore has a distribution 
that depends on the means of the two traits involved, as 
well as their (co)variance. As a result, the breeding value 
for FCR depends on “fixed” location parameters, since it 
depends on the mean of ADFI ( µADFI ) and ADG ( µADG ). 
Following Gunsett [3], the breeding value for FCR ( aFCR ) 
can be calculated from underlying parameters using the 
following equation for a given sample si:

where the estimate of µADFI can be obtained from Model 
(1) for ADFI as the sum of the average of each “fixed” effect 
(year-quarter, gender, and parity), in addition to “fixed” 
regressions for the start BW according to the population 
average. Similarly, an estimate of µADG can be obtained. 
Location parameters for the mean must be computed once 
per sample as we investigate functions of the variables in 

B =











1 0 0
1 −bP,ADG −bP,LMP

1 −bG,ADG −bG,LMP

0 1 0
0 0 1











,

(10)aFCR =
µADFI + aADFI

µADG + aADG
−

µADFI

µADG

,

the posterior distribution and are applied to Eq.  (10) to 
compute breeding values. In this way, the inaccuracy of 
computing the mean is considered when deriving the pos-
terior distribution of breeding values for FCR.

Correspondingly, the phenotypic deviation of FCR can 
be expressed as:

However, this expression cannot be used directly to 
derive the phenotypic variance of FCR due to influences 
such as selection and genetic drift. Instead, it can be used 
to compute the phenotypic variance of the derived traits 
(FCR, RFIG , and RFIP ) and the recorded traits (ADFI, 
ADG, and LMP) between animals that have phenotypic 
records and are available for selection.

Genetic trends
Genetic trends are defined as a linear function of the vec-
tor of breeding values following Sorensen et al. [8]:

where aj is the vector of breeding values for trait 
j, (j = ADFI,ADG, . . . ,FCR) ; rj is a vector of yearly 
means of breeding values, and T is an incidence matrix 
relating the breeding values of individuals to yearly 
batches.

Genetic (co)variance available for selection and direct 
and correlated responses to selection
Since genetic selection is usually performed within an age 
group, the amount of genetic (co)variance available for 
selection at a given time point is:

(11)pFCR =
µADFI + aADFI + eADFI

µADG + aADG + eADG
−

µADFI

µADG

.

(12)rj =
(

T′T
)−1

T′aj ,

(13)G∗
0 = Var

([

(aADFI − TrADFI), (aADG − TrADG), . . . (aFCR − TrFCR)
])

,
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where G∗
0 is the distribution of genetic (co)variance avail-

able for selection after integrating over the genetic trend 
and T and r (j = ADFI,ADG, . . . ,FCR) were defined in 
Eq. (12). This derivation is an extension of Sorensen et al. 
[10] to a multivariate setting.

The Bayesian estimate of the superiority of a selected 
group is the difference between the mean of the breeding 
values in the selected group and the mean of the breed-
ing values of all animals corrected for the genetic trend. 
This yields an expression of the superiority of the selected 
group in every sample from the posterior distribution, 
depending on the selection rule.

The mean of the selected group for trait j when select-
ing on trait j′ can be calculated as:

(14)ās
jj
′ =

1

ns

n
∑

i=1

a∗ijI(a
∗
ij′ > a∗

nsj
′ ),

where a∗ij is the breeding value for trait j on animal i, con-
ditional on the genetic trend; n is the total number of ani-
mals; and a∗

nsj
′ is the breeding value for a ranked 

individual (ns) when ordering breeding values for trait j′. 
If j = j

′ , the superiority is due to direct selection for the 
trait, and if j �= j

′ , the superiority is in trait j due to selec-
tion on a correlated trait j′. Six traits were investigated in 
this study and thus, six scenarios were developed to com-
pare direct and correlated responses to selection for feed 
efficiency and production traits. The number of individu-
als ranked for analysis was decided based on truncation 
selection of the top 5  to 30% of animals. Here, only the 
results of truncation selection of the top 10% are pre-
sented, since the results and conclusions were consistent 
across various truncation selection percentages.

Results
Genetic parameters of production and feed efficiency traits
Posterior means and standard deviations (PSD) of herit-
ability and genetic variances for the two RFI definitions 
and their component traits are in Table 2. The posterior 
mean of heritability was moderately high for the produc-
tion traits ADFI and ADG and high for LMP. The pos-
terior means of heritability and genetic variance were 
larger for ADFI than for ADG. For linear feed efficiency 
traits, the posterior means of heritability were low for 
RFIG and moderate for RFIP because of a lower posterior 
mean of genetic variance for RFIG compared to RFIP.

Posterior means (with PSD) of genetic and phenotypic 
correlations for the two RFI definitions and their com-
ponent traits are in Table  3. As RFIG was defined using 
genetic partial regression coefficients, its genetic corre-
lations with the production traits ADG and LMP were 
zero. The posterior mean of genetic correlation of RFIP 
was positive and moderate with ADG (0.35) and nega-
tive and low with LMP (− 0.06). Since partial phenotypic 
coefficients were used, posterior means of phenotypic 
correlations of RFIp with ADG and LMP were zero. Pos-
terior means of the genetic correlation were strong and 
positive between ADFI and ADG (0.82) and moderate 
and negative between ADFI and LMP (− 0.39). The pos-
terior mean of the genetic correlation between ADFI and 
RFIG was 0.51 but was larger between ADFI and RFIP , 
0.77.

Table 2  Posterior means of  heritability (h2) and  genetic 
variance ( σ2

A
 ) of  average daily feed intake (ADFI), 

average daily gain (ADG), lean meat percentage (LMP), 
and  phenotypic and  genetic residual feed intake ( RFIP 
and RFIG , respectively), with posterior standard deviations 
in parentheses

Traits ADFI, 
kg/d

ADG, kg/d LMP, % RFIP, kg/d RFIG, kg/d

h2 0.32 (0.04) 0.26 (0.04) 0.56 (0.06) 0.20 (0.03) 0.15 (0.03)

σ
2

A
0.035 (0.005) 0.004 (0.001) 2.024 (0.252) 0.011 (0.002) 0.009 (0.002)

Table 3  Posterior means of  genetic (below diagonal) 
and  phenotypic correlations (above diagonal) of  genetic 
and  phenotypic residual feed intake (RFIG and  RFIP, 
respectively), average daily feed intake (ADFI), average 
daily gain (ADG), and  lean meat percentage (LMP), 
with posterior standard deviations in parentheses

Traits RFIG RFIP ADFI ADG LMP

RFIG 0.95 (0.03) 0.47 (0.08) − 0.30 (0.08) 0.05 (0.05)

RFIP 0.92 (0.04) 0.71 (0.01) 0.00 (0.00) 0.00 (0.00)

ADFI 0.51 (0.05) 0.77 (0.04) 0.68 (0.01) − 0.30 (0.02)

ADG 0.00 (0.00) 0.35 (0.10) 0.82 (0.04) − 0.17 (0.02)

LMP 0.00 (0.00) − 0.06 (0.08) − 0.39 (0.08) − 0.17 (0.10)

Table 4  Posterior means of  available genetic variance for  feed conversion ratio (FCR) and  genetic correlations 
with genetic and phenotypic residual feed intake (RFIG and RFIP, respectively), average daily feed intake (ADFI), average 
daily gain (ADG), and lean meat percentage (LMP), with posterior standard deviations in parentheses

Genetic variance Genetic correlations

RFIG RFIP ADFI ADG LMP

FCR 0.010 (0.002) 0.89 (0.04) 0.82 (0.03) 0.52 (0.08) − 0.07 (0.10) − 0.40 (0.08)
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The genetic (co)variance available for selection was 
obtained for all traits based on Eq.  (13). The obtained 
posterior mean of genetic (co)variance available for 
selection and the genetic correlations among traits were 

identical to the results presented in Tables  2 and 3 and 
are therefore not shown. For FCR, posterior means and 
PSD of genetic variance available for selection and of 
genetic correlations with other traits of interest are in 
Table  4. Posterior means of the genetic correlations of 
FCR with the two RFI definitions were large and positive. 
The posterior means of the genetic correlation was nega-
tive and low between FCR and ADG (− 0.07) and nega-
tive and moderate between FCR and LMP (− 0.40).

Genetic trends
Posterior means of genetic trends of the traits of inter-
est are presented in Fig. 1. Posterior means of the genetic 
trend for RFIG and FCR had a similar pattern but the 
trend for RFIG was less favorable. Nonetheless, RFIP did 
not follow the trends of RFIG and FCR. Posterior means 
of the genetic trend of ADG and ADFI had similar pat-
terns. In addition, the genetic trend for LMP was similar 
to those for ADG and ADFI. In general, genetic trends 
indicated improved production traits and FCR. In con-
trast, both RFI definitions tended to increase, indicating 
deteriorating partial feed efficiency conditional on pro-
duction traits.

Genetic superiority of the selected group
The posterior mean of the direct and correlated superi-
ority of the selected groups under various selection sce-
narios are in Table 5. Since FCR is a ratio trait in which 
the numerator should be reduced relative to the denomi-
nator, a favorable response to selection is negative. For 
RFI , a negative selection response is also favorable, since 
the goal is to reduce the proportion of feed intake that is 
independent of the energy requirements for growth and 
maintenance. Direct selection on RFIG resulted in a cor-
related response of − 0.151 kg/d in ADFI, without alter-
ing ADG and LMP. However, direct selection for FCR 
resulted in a correlated response of − 0.176 kg/d in ADFI, 
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Fig. 1  Posterior means of genetic trends for genetic and phenotypic 
residual feed intake (RFIG and RFIP, respectively), feed conversion 
ratio (FCR), average daily feed intake (ADFI), average daily gain 
(ADG), and lean meat percentage (LMP). All lines for each trait were 
forced through the same origin in 2008 to make trends comparable 
across lines. All traits were scaled to the standard deviation of their 
estimated breeding values to make vertical axes comparable across 
traits

Table 5  Posterior means of direct (bold figures) and correlated (non-bold figures in a row) additive genetic superiorities 
of  the  selected group when  the  top 10% of  the  population is  selected for  single trait selection on  feed efficiency 
or production traits (by row), with posterior standard deviations in parentheses

a  RFIG = residual feed intake estimated from partial genetic coefficients; RFIP = residual feed intake estimated from partial phenotypic coefficients; FCR = feed 
conversion ratio; ADFI = average daily feed intake during test period; ADG = average daily gain during test period; LMP = lean meat percentage at end of the test

Scenarioa Genetic superiority of the selected group

RFIG, kg/d RFIP, kg/d FCR, kg/kg ADFI, kg/d ADG, kg/d LMP, %

RFIG − 0.161 (0.013) − 0.158 (0.013) − 0.155 (0.013) − 0.151 (0.017) 0.004 (0.004) 0.015 (0.100)

RFIP − 0.149 (0.016) − 0.170 (0.011) − 0.147 (0.014) − 0.233 (0.020) − 0.035 (0.010) 0.160 (0.161)

FCR − 0.144 (0.015) − 0.145 (0.013) − 0.174 (0.013) − 0.176 (0.025) 0.002 (0.011) 0.978 (0.183)

ADFI − 0.080 (0.015) − 0.130 (0.012) − 0.095 (0.016) − 0.305 (0.016) − 0.088 (0.008) 0.923 (0.159)

ADG 0.002 (0.007) 0.063 (0.016) − 0.010 (0.018) 0.257 (0.022) 0.110 (0.007) − 0.386 (0.188)

LMP − 0.002 (0.007) − 0.013 (0.012) − 0.072 (0.015) − 0.123 (0.022) − 0.020 (0.009) 2.263 (0.105)



Page 8 of 12Shirali et al. Genet Sel Evol  (2018) 50:33 

with a 0.978% increase in LMP. Furthermore, direct 
selection on RFIP not only reduced ADFI by 0.233  kg/d 
but also had an unfavorable effect, namely, a 0.035 kg/d 
reduction in ADG.

Discussion
In this study, a Bayesian method for estimating genetic 
parameters for RFI and FCR in farm animals is presented 
that properly accounts for non-normal distributions of 
ratio traits. Analyses conducted by Kennedy et  al. [5] 
to derive genetic and phenotypic RFI were extended to 
Bayesian analysis. Here, we present a Bayesian analysis of 
FCR without resorting to approximations resulting from 
unknown distributional properties of a ratio trait and its 
component traits, which causes the genetic parameters of 
FCR not to be directly estimable. Instead, we developed 
a posterior multivariate distribution of additive genetic 
(co)variance available for selection. The example shows 
that inference based on this measure is very similar to 
estimates of additive genetic (co)variance in the popula-
tion and can, therefore, also be used to investigate the 
posterior distribution of additive genetic variance in the 
ratio trait of FCR. Finally, we estimate the posterior dis-
tribution of the genetic superiority of the selected group 
when selection is based on various definitions of feed 
efficiency or production traits.

Bayesian method of predicting breeding values for feed 
efficiency
In this study, a Bayesian approach was used to derive a 
posterior distribution of all parameters of interest, which 
enables computation of the probabilities that the param-
eter lies between specified values. The Bayesian method 
integrates over all unknown model parameters, including 
“fixed” and random effects, and properly handles ratio 
traits that do not have standard distributions.

Derivation of RFI
Residual feed intake is a partial measure of feed effi-
ciency, for which the average components of feed effi-
ciency related to production and maintenance are 
excluded, and which is obtained through the conditional 
distribution of feed intake to production traits and meta-
bolic body weight. Many studies have used linear regres-
sion of the phenotype of feed intake onto phenotypes 
of the production traits, e.g., Mrode and Kennedy [17]. 
Some studies took the above approach one step further 
by using adjusted production traits values, accounting 
for the systematic effects that influence these traits with 
the aim of obtaining a more accurate estimation of RFI 
parameters, e.g., Cai et  al. [18] and Shirali et  al. [19]. 
Some studies estimated partial regression coefficients for 
production traits first and then adjusted the phenotype 

of feed intake for production traits using the obtained 
coefficients, e.g., Saintilan et  al. [20]. This approach is 
time-consuming and does not consider the systematic 
effects of production traits. However, RFI is originally 
defined as a residual effect from regression models that 
account for BW growth and gain by Koch et al. [4]. The 
methods for obtaining genetic or phenotypic RFI that 
use genetic or phenotypic (co)variance matrices from a 
multi-trait model were presented by Kennedy et  al. [5]. 
Phenotypic derivation of RFI ensures that the pheno-
typic correlation between RFI and its component traits 
of production traits are zero, but the genetic correlations 
can still be non-zero, as shown by Kennedy et  al. [5]. 
The non-zero genetic correlation of RFIP with produc-
tion traits is due to partial phenotypic regression coeffi-
cients, which result in a genetic correlation between RFIP 
and production traits. This genetic correlation is related 
to genetic and environmental covariances between feed 
intake and production traits, as well as the heritability 
of production traits, as shown by Kennedy et al. [5]. To 
obtain a genetic RFI , partial regression coefficients must 
be obtained from the genetic (co)variance matrix, which 
ensures that RFI is genetically independent of produc-
tion traits. However, this can result in non-zero pheno-
typic correlations of genetic RFI with production traits, 
i.e. cov(yRFI,  yp) = cov(yFI,  yp) − bgvar(yp), which is equal 
to cov(eFI,  ep)  −  cov(gFI,  gp)(1  −  hp2)/hp2), as also shown 
by Kennedy et al. [5]. Variation in maintenance require-
ments that are predicted from differences in metabolic 
body weight have not been significantly related to vari-
ation in feed consumption in pigs, as tested by Cai et al. 
[18], Shirali et al. [19], and the current study. This could 
be due to a relatively set body weight test period in pig 
breeding. Nonetheless, in future studies and in selection 
practices, the effect of metabolic body weight on the vari-
ation of feed intake should be tested since the results can 
vary depending on the species and breeding programs.

Derivation of FCR
Traditionally, FCR is derived by dividing the phenotype of 
feed intake by BW gain. This definition ignores the fixed 
and environmental effects that influence the component 
traits of the ratio trait. The Bayesian analysis presented 
here considers the uncertainties in the fixed effects and 
avoids approximations due to unknown distributional 
properties of a ratio trait and its component traits.

Genetic parameters for feed efficiency and production 
traits
Genetic background of RFI
The current study shows substantial genetic variance 
in RFI , which illustrates the possibility of selection for 
this trait in commercial breeding programs. Genetic 
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RFI showed a low posterior mean of heritability, lower 
than for phenotypic RFI , which is as expected, with few 
exceptions, as explained by Kennedy et  al. [5] because 
the genetic variance of phenotypic RFI is influenced by 
residual covariance between the component traits of feed 
intake and production traits. The posterior means of her-
itability estimates for genetic and phenotypic RFI were 
within the range of values (0.10–0.47) reported in the lit-
erature [6, 20, 21].

The percentage of genetic variance in ADFI that was 
explained by genetic RFI had a posterior mean of 26%, 
with a PSD of 6%. Thus, considerable genetic variance in 
ADFI is not due to production traits (ADG and LMP). 
Shirali et  al. [6] reported that the proportion of genetic 
variance in feed intake explained by genetic RFI ranged 
from 17 to 26% for three Danish pig breeds. Cai et  al. 
[18] and Shirali et al. [19] reported that 34 and 33% of the 
phenotypic variation in feed intake is due to phenotypic 
RFI in Yorkshire and crossbred pigs, respectively.

The considerably lower posterior mean of heritability 
for genetic RFI compared to ADFI is due to high genetic 
correlations between ADFI and production traits and 
to genetic correlations between traits being higher than 
environmental correlations. Nevertheless, feed intake 
records provide valuable information on feed efficiency 
over and above that provided by the production traits 
ADG and LMP.

Genetic background of production traits
Posterior means of heritability and genetic variance for 
ADG and LMP obtained here were larger than those for 
Danish Duroc pigs that were reported in Shirali et al. [6]. 
The larger posterior mean of the heritability for ADFI 
compared to ADG is in agreement with results of Shirali 
et al. [6] for three diverse Danish pig breeds and of Sain-
tilan et al. [20] for French Landrace and Large White sire 
and dam lines. Posterior means of genetic correlations 
between ADFI and ADG were larger than the corre-
sponding phenotypic correlations, which is in agreement 
with Shirali et al. [6].

Genetic correlation between feed efficiency and production 
traits
The substantial deviation from 1 of the posterior mean 
of the genetic correlation between genetic and pheno-
typic RFI indicates different selection outcomes when 
selecting on these respective traits. The posterior mean 
of the genetic correlation between phenotypic RFI 
and ADFI was in the upper range of values (0.48–0.72) 
reported by Saintilan et al. [20] and in the range of val-
ues (0.70–0.88) reported by Do et al. [22]. The posterior 
mean of the genetic correlation between phenotypic 
RFI and ADG was larger than the genetic correlations 

reported by Saintilan et al. [20] (− 0.05 to 0.16) and Do 
et al. [22] (0.02–0.20). Dekkers and Gilbert [23] showed 
genetic correlations of 0.18 and 0.24 for phenotypic RFI 
with growth rate and backfat thickness, respectively in 
a divergent selection experiment for phenotypic RFI at 
Iowa State University, while Gilbert et  al. [24] reported 
genetic correlations of − 0.07 and 0.14 for phenotypic 
RFI with growth rate and carcass lean meat content, 
respectively, in similar experiments at INRA. Kennedy 
et  al. [5] showed that phenotypic RFI and production 
traits are genetically independent when the heritabilities 
of feed intake and production traits are equal and their 
genetic and environmental correlations are equal. The 
partial phenotypic coefficient ensures that phenotypic 
RFI is phenotypically independent of production traits, 
explaining the positive moderate and negative low poste-
rior means of genetic correlations of phenotypic RFI with 
ADG and LMP, respectively.

The Bayesian method provides a method to investigate 
the variance and covariances of the ratio trait of FCR 
without resorting to approximations. The posterior mean 
of the genetic variance for FCR was substantially lower 
than the estimates of 0.014 to 0.027 reported by Do et al. 
[22]. The posterior means of genetic correlations between 
FCR and different definitions of RFI deviated significantly 
from 1. Saintilan et al. [20] reported genetic correlations 
of 0.53 to 0.85 between FCR and phenotypic RFI , and Do 
et al. [22] reported values of 0.87 to 0.88, which are in line 
with our results. The posterior mean of the genetic cor-
relation between FCR and ADFI was in the middle range 
of the values reported by Saintilan et al. [20] (0.20–0.88) 
and by Do et  al. [22] (0.43–0.74). The posterior mean 
of the genetic correlation between FCR and ADG was 
in the lower range of values reported by Saintilan et  al. 
[20] (− 0.09 to − 0.51) and was in the range of those by 
Do et al. [22] (− 0.38 to 0.26). The posterior mean of the 
genetic correlation between FCR and LMP was larger 
than the estimates of − 0.15 to 0.03 between FCR and 
lean meat content in Saintilan et al. [20] and of − 0.36 to 
0.34 between FCR and backfat thickness in Do et al. [22].

Genetic trends
The genetic improvement in FCR can be explained by 
genetic trends for feed intake and production traits. 
Using realized genetic trends, on the basis of units of 
genetic standard deviation, for production and feed effi-
ciency traits in four PIC pig lines from 2001 to 2011, 
Knap and Wang [25] reported that genetic improvement 
for RFI is slower than for FCR and that the genetic trend 
of FCR is the result of genetic trends in ADG and ADFI. 
This was also observed in our study, possibly because the 
genetic trend of FCR is influenced by production traits, 
while the genetic trend of RFI is for the proportion of feed 
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intake that is independent of production traits, which has 
not been under direct selection. In fact, FCR improved 
over the period studied, because ADG increased more 
than ADFI. Efficiency defined in terms of genetic RFI 
deteriorated over the examined period.

Bayesian estimates of direct and correlated responses 
to selection
Additive genetic (co)variance available for selection
Applying the Bayesian approach to the data yields a mar-
ginal posterior distribution of breeding values for the 
analyzed traits and for any function of them, from which 
inferences can be made that take the inaccuracy of the 
knowledge of variances into account. We derived the 
marginal posterior distribution of additive genetic vari-
ance available for the selection of traits of interest from 
the population under study, considering the genetic trend 
in each year in a multivariate setting. This is an extension 
of Sorensen et al. [10], who conditioned additive genetic 
variance for the genetic trend in a Bayesian setting for a 
univariate model.

Bayesian estimation of genetic superiority of the selected 
group
The current study presents a new approach using Bayes-
ian inference to examine various selection criteria for 
feed efficiency either as a linear ( RFI ) or ratio (FCR) trait 
in breeding programs. The method yields a marginal pos-
terior distribution of the average response to selection of 
selected groups, which can be viewed as a weighted aver-
age of an infinite number of conditional distributions. 
The method also allows PSD of the expected response to 
selection to be derived easily.

Gunsett [3] also showed unexpected selection pressure 
on component traits of ratio traits and that a ratio trait 
is not a normally distributed variable, as it is a ratio of 
two normally distributed variables. Therefore, expected 
genetic gain from truncation selection on FCR is diffi-
cult to compute using selection index principles for nor-
mally distributed variables. Gunsett [3] observed that 
direct selection for ratio traits places a large propor-
tion of the selection pressure on reducing the numera-
tor, while using a linear index of component traits of 
ratio traits would allocate more weight to increasing the 
denominator. Based on a simulation study, Zetouni et al. 
[26] reported that direct selection against the methane-
to-milk production ratio trait increased the denomina-
tor and the numerator, while multi-trait selection could 
result in higher genetic gain and a simultaneous reduc-
tion in methane emission.

The Bayesian approach allows identification, with high 
accuracy, of the possible outcomes of any combination 
of single or multi-trait selection on feed efficiency and/

or traits in the breeding program. Bayesian analysis is 
useful to study the design of selection experiments, since 
it allows a variety of designs, and allows comparison of 
their efficiency in retrieving accurate marginal posterior 
distributions of parameters of interest [9]. An advan-
tage of the proposed Bayesian approach is that the pos-
terior distribution of direct and correlated responses to 
selection can be obtained and used to make probability 
statements on expected response to selection as well as 
other parameters of interest. It should also be noted that 
the principles outlined in this study have much broader 
applications beyond FCR, as they apply to any trait that is 
defined as a non-linear function of other traits.

Bayesian analysis suggests that direct selection against 
genetic RFI does not have a correlated response on pro-
duction traits in the breeding program, since the model 
ensured zero genetic correlations between these traits. 
The presence of a correlated response on production 
traits from direct selection against phenotypic RFI is 
due to the genetic correlation between these traits, 
which is due to the use of phenotypic partial regression 
coefficients that ensure that the phenotypic correla-
tions between phenotypic RFI and production traits are 
zero. Kennedy et al. [5] observed that response to selec-
tion on genetic RFI increases if the genetic correlation 
between feed intake and production is low or the herit-
ability of feed intake is high or higher than the heritabil-
ity of the production trait. Young and Dekkers [27] and 
Gilbert et  al. [24] showed that selection for phenotypic 
RFI resulted in correlated responses in other traits, with 
a reduction in FCR, backfat thickness, and feed intake in 
experimental selection lines of purebred Yorkshire and 
Large White pigs. Young and Dekkers [27] showed that 
eight generations of selection against phenotypic RFI in 
Yorkshire pigs decreased RFI by 241  g/d, feed intake by 
376 g/d, growth rate by 79 g/d, FCR by 2.2 g/g, and back 
fat thickness by 2.5  mm compared to a line selected as 
control line for five generations and thereafter for high 
RFI. Similar results were obtained in an experiment at 
INRA with the low RFI line having lower RFI , feed intake, 
growth rate, and backfat thickness than the high RFI line 
reported by Gilbert et al. [24]. Kennedy et al. [5] observed 
that response to selection on genetic RFI is less than or 
equal to the response to phenotypic RFI because selection 
for phenotypic RFI results in a reduction of the propor-
tion of feed intake used for production traits. Genetic RFI 
is a product of genetic parameters of the traits that are 
involved in the calculations of RFI . Therefore, accurate 
estimation of genetic parameters of the traits involved in 
the calculation of RFI is necessary to maximize response 
to selection. Our proposed Bayesian approach maximizes 
gain by averaging over the posterior distribution of vari-
ance components for the traits involved.
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Selection against the ratio trait of FCR results in unex-
pected selection pressure on feed intake and production 
traits (e.g., LMP) in the breeding program. This dispro-
portionate selection pressure on component traits can be 
explained by genetic correlations between ADFI, ADG, 
and LMP and their heritabilities. A large reduction in 
ADFI, which is the numerator of FCR, may be due to the 
heritability of ADFI being higher than that of ADG, in 
addition to a large positive posterior mean of the genetic 
correlation between these traits. The low posterior mean 
of the genetic correlation between FCR and ADG indi-
cates a smaller change in ADG due to selection for FCR, 
while a large negative posterior mean of the genetic cor-
relation between FCR and LMP explains the indirect 
genetic response from selection against FCR. The sub-
stantial reduction in ADFI through direct selection on 
FCR could also be due to a correlated response on LMP, 
since increased lean meat growth is one of the underly-
ing biological reasons for improved FCR. Therefore, 
selection for FCR is not an efficient strategy because, 
first the improvement in this trait can be due to improve-
ment in lean meat growth rather than improvement in 
efficiency of nutrient utilization per se; and second the 
relative improvements can change over generations as 
the means of the underlying trait change. Shirali et al. [6] 
reported low negative genetic correlations between feed 
intake and BW gain in Danish Duroc pigs, while for Dan-
ish Landrace and Yorkshire pigs, they were high negative 
in the range reported here. In addition, genetic correla-
tions of ADG in the 30  to  100  kg BW test period with 
LMP at the end of the test on Danish pigs were lower [6] 
than the posterior mean of the correlation between ADG 
and LMP in our study. Differences in genetic parameters 
of feed efficiency traits between breeds or breeding pro-
grams can result in differences in the outcome of the 
selection for a ratio trait such as FCR.

Gunsett [3] reported that selection intensity for a ratio 
trait influences the relative distribution of response in 
the component traits when selection intensity increases 
resulting in more selection pressure on reduction of the 
numerator of the ratio trait. In our study, a change in 
selection intensity did not alter the relative responses for 
linear and ratio feed efficiency traits and for production 
traits, providing a robust conclusion for the effects of 
selection on different traits.

In a selection index context, single-trait selection 
against genetic RFI is equivalent to selection on an index 
for feed intake that maintains production constant and 
considers no other traits in the breeding program. Luiting 
et al. [28] showed that joint selection on RFI and produc-
tion traits is equivalent to joint selection on a selection 
index of feed intake and production traits. Furthermore, 
Kennedy et  al. [5] showed that selection on an index 

that includes either genetic or phenotypic RFI , or ADFI, 
would result in the same responses to selection, provided 
that the corresponding economic weights are changed in 
the breeding goal. However, this is only possible by esti-
mating proper economic values when using phenotypic 
RFI or ADFI. If the economic value of ADFI, ADG, and 
LMP are known, phenotypic and genetic (co)variances 
are needed to derive the corresponding economic weight 
for RFI. Genetic RFI can be used in a breeding program 
because it is easy to communicate to farmers/breed-
ers since it expresses net feed efficiency rather than effi-
ciency achieved by improvement on production traits. 
Furthermore, genetic RFI can be suitable in selection 
experiments to provide insight into the biological basis of 
feed efficiency and variation in feed intake independent 
of production and maintenance requirements.

Conclusions
A Bayesian procedure for analysis of response to selec-
tion on linear versus ratio traits was developed and 
applied to feed efficiency in pigs. The Bayesian method-
ology allowed prediction of breeding values for ratio and 
linear definitions of feed efficiency from a multi-variate 
model for the traits measured. The Bayesian method 
allowed prediction of breeding values for FCR without 
the need for approximations. Posterior means of genetic 
parameters indicated that the traits were influenced by 
genetics and that genetic improvement through selec-
tion was possible. Direct selection against FCR or RFIP 
resulted in disproportional selection on production 
traits. Direct selection against FCR results in unexpected 
selection pressure on its component traits and on LMP. 
However, direct selection against genetic RFI allows for 
selection on the proportion of ADFI that is independent 
of production. In addition, since there is no genetic cor-
relation between genetic RFI and other production traits 
in the breeding program, an EBV for RFI that is inde-
pendent of production traits is easier to communicate 
to farmers/advisors than a breeding value for ADFI that 
is strongly influenced by production traits such as ADG 
and LMP.
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