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Abstract

Summary: Measuring the similarity of graphs is a fundamental step in the analysis of graph-

structured data, which is omnipresent in computational biology. Graph kernels have been pro-

posed as a powerful and efficient approach to this problem of graph comparison. Here we provide

graphkernels, the first R and Python graph kernel libraries including baseline kernels such as label

histogram based kernels, classic graph kernels such as random walk based kernels, and the state-

of-the-art Weisfeiler-Lehman graph kernel. The core of all graph kernels is implemented in Cþþ for

efficiency. Using the kernel matrices computed by the package, we can easily perform tasks such

as classification, regression and clustering on graph-structured samples.

Availability and implementation: The R and Python packages including source code are available

at https://CRAN.R-project.org/package¼graphkernels and https://pypi.python.org/pypi/graphkernels.

Contact: mahito@nii.ac.jp or elisabetta.ghisu@bsse.ethz.ch

Supplementary information: Supplementary data are available online at Bioinformatics.

1 Introduction

Graph-structured data are steadily growing and extensively being ana-

lyzed in computational biology. For example, chemical compounds are

modeled as graphs in drug discovery (Takigawa and Mamitsuka,

2013), and proteins are represented as graphs in protein function pre-

diction (Dhifli and Nguif, 2015). Finding efficient solutions for measur-

ing the similarity between a pair of graphs, known as the graph

comparison problem, is a fundamental step in graph analysis, in order

to perform classification or regression on graph data. There are

two approaches to graph comparison: alignment-based methods

(Faisal et al., 2015) that compare graphs via finding node mappings

and alignment-free methods (Yavero�glu et al., 2015) that measure the

similarity between graphs using features such as degree distributions or

subgraph counts without identifying correspondences between nodes.

To date, among the alignment-free approaches, graph kernels

have become a popular approach to quantify the similarity between

graphs (Borgwardt and Kriegel, 2005; Costa and Grave, 2010;

Gärtner et al., 2003; Kashima et al., 2003; Shervashidze et al., 2009,

2011; Sugiyama and Borgwardt, 2015; Vishwanathan et al., 2010),

and are at the heart of many machine learning approaches in compu-

tational biology. A number of key applications of graph kernels exist

such as biological function prediction from graph-based representa-

tions of chemical compounds. However, there is no convenient R or

Python implementation that can simply and efficiently compute

graph kernels, although R is a popular programming environment in

Bioinformatics and Python in Machine Learning.

Here we present graphkernels, the first package in R and

Python with efficient Cþþ implementations of various graph ker-

nels including the following prominent kernel families: (i) simple

kernels between vertex and/or edge label histograms, (ii) graphlet

kernels, (iii) random walk kernels (popular baselines) and (iv) the

Weisfeiler-Lehman graph kernel (state-of-the-art kernels). The pack-

ages can be easily used to perform graph classification and regres-

sion by machine learning algorithms (Fig. 1), such as support vector

machines (SVMs) or the k-nearest neighbors algorithm.

2 Materials and methods

Each function implemented in the graphkernels packages re-

ceives a collection of graphs G1, G2, . . ., Gn and returns the kernel
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(Gram) matrix ðKijÞ 2 Rn�n with the respective graph kernel, where

each kernel value Kij shows the similarity between graphs Gi and Gj.

The packages support the following 14 graph kernels:

• Linear kernels on label histograms: VertexHist, EdgeHist,

VertexEdgeHist, VertexVertexEdgeHist.
• Gaussian RBF kernels on label histograms: VertexHistGauss,

EdgeHistGauss, VertexEdgeHistGauss.
• Graphlet kernels: Graphlet, ConnectedGraphlet.
• Random walk based kernels: KStepRandomWalk, Geometric

RandomWalk, ExponentialRandomWalk, ShortestPath.
• The Weisfeiler-Lehman subtree kernel: WL.

All kernels are implemented in Cþþ and compiled through the

packages Rcpp (Eddelbuettel, 2013) and RcppEigen (Bates and

Eddelbuettel, 2013) in the R package. We use SWIG (Beazley, 1996)

interfaces to wrap Cþþ code in Python. See the Supplementary

Material for detailed mathematical definitions of these graph kernels.

In our packages, each graph is treated as an igraph object

(Csardi and Nepusz, 2006) and a collection of graphs is kept as a list

of igraph graphs. An example usage in R is shown in the follow-

ing, where we use the dataset MUTAG (Debnath et al., 1991), a typ-

ical benchmark dataset that is also provided in our package.

>library(graphkernels) # load the package

>data(mutag) # load a sample dataset,

## which is a list of (igraph) graphs

>mutag[[1]]

IGRAPH f2f3caf U— 2327 –

þattr: label (g/n), label (v/n), label (e/n)
þedges:
[1] 1– 21–142– 3. . .

## the first graph has 23 nodes and 27 labels

>K<- CalculateVertexHistKernel(mutag)

## compute the kernel matrix

>K[1, 2]

[1] 282 ## The kernel value b/w graphs 1 and 2

The entire kernel matrix can be easily computed by a single line

of R code. Similar examples in Python can be found in the

Supplementary Material.

3 Application

As a representative application, we demonstrate graph classifica-

tion using the MUTAG dataset. In the dataset, there are 188

graphs, and the objective is to predict labels of graphs, indicating

whether or not they are mutagenic. We used 10-fold cross valid-

ation for graph classification. We randomly divided the entire

dataset into 10 folds. In each iteration 1 of the 10 folds was used

for testing and the rest for training. We computed the kernel ma-

trix of the training data using one of our functions implemented in

graphkernels, and use these data to train an SVM using the

kernlab package (Karatzoglou et al., 2004). We then predicted

labels on the test data, and obtained the accuracy by comparison

with the ground-truth labels. The detailed experimental method-

ology and the R code to reproduce these results are provided in the

Supplementary Material.

Figure 2 shows the prediction accuracy for graph kernels in our

package and the CPU running time needed to compute each kernel

matrix. This example demonstrates that our package allows for

an easy comparison of the effectiveness and the efficiency of

various popular graph kernels and will serve as a baseline when

designing new graph kernels for specialized applications in compu-

tational biology.

Funding

MS was funded by JSPS KAKENHI Grant Numbers JP16K16115 and

JP16H02870. MEG was funded by Horizon 2020 project CDS-QUAMRI,

Grant No. 634541.

References

Bates,D. and Eddelbuettel,D. (2013) Fast and elegant numerical linear algebra

using the RcppEigen package. J. Stat. Softw., 52, 1–24.

Beazley,D.M. (1996). Swig: An easy to use tool for integrating scripting lan-

guages with c and cþþ. In Proceedings of the 4th Conference on USENIX

Tcl/Tk Workshop, Monterey, California, USA.

Borgwardt,K.M. and Kriegel,H.-P. (2005) Shortest-path kernels on graphs. In

Proceedings of 5th IEEE International Conference on Data Mining, Houston,

TX, USA, pp. 74–81.

Costa,F. and Grave,K.D. (2010) Fast neighborhood subgraph pairwise dis-

tance kernel. In Proceedings of the 27th International Conference on

Machine Learning, Haifa, Israel, pp. 255–262.

Csardi,G. and Nepusz,T. (2006) The igraph software package for complex

network research. InterJournal, Complex Systems, 1695.

Debnath,A.K. et al. (1991) Structure-activity relationship of mutagenic aro-

matic and heteroaromatic nitro compounds. correlation with molecular or-

bital energies and hydrophobicity. J. Med. Chem., 34, 786–797.

Dhifli,W. and Nguif,E.M. (2015). Motif discovery in protein 3D-structures

using graph mining techniques. In: Elloumi, M., Iliopoulos, C., Wang,

J.T.L. and Zomaya, A.Y. (eds.), Pattern Recognition in Computational

Molecular Biology: Techniques and Approaches. John Wiley & Sons, Inc.,

Hoboken, NJ.

Eddelbuettel,D. (2013). Seamless R and Cþþ Integration with Rcpp.

Springer-Verlag New York.

Faisal,F.E. et al. (2015) The post-genomic era of biological network align-

ment. EURASIP J. Bioinformatics Syst. Biol., 2015, 3.
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Fig. 1. Overview. The kernel value Kij represents the similarity between

graphs i and j
Fig. 2. Accuracy (left) and running time (in seconds, right) on the MUTAG dataset

graphkernels 531

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx602#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx602#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx602#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx602#supplementary-data


Shervashidze,N. et al. (2009). Efficient graphlet kernels for large graph com-

parison. In Proceedings of the 12th International Conference on Artificial

Intelligence and Statistics, pp. 488–495. Clearwater Beach, FL, USA.

Shervashidze,N. et al. (2011) Weisfeiler-Lehman graph kernels. J. Mach.

Learn. Res., 12, 2359–2561.

Sugiyama,M. and Borgwardt,K.M. (2015) Halting in random walk kernels.

In: Cortes,C. et al. (eds.), Advances in Neural Information Processing

Systems 28, pp. 1639–1647.

Takigawa,I. and Mamitsuka,H. (2013) Graph mining: procedure, appli-

cation to drug discovery and recent advances. Drug Discov. Today, 18,

50–57.

Vishwanathan,S.V.N. et al. (2010) Graph kernels. J. Mach. Learn. Res., 11,

1201–1242.
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