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Abstract: Recently, academic research and industries have gained awareness about the economic,
environmental, and social impacts of conventional plastic packaging and its disposal. This conscious-
ness has oriented efforts towards more sustainable materials such as biopolymers, paving the way
for the “green era” of food packaging. This review provides a schematic overview about polymers
and blends of them, which are emerging as promising alternatives to conventional plastics. Focus
was dedicated to biopolymers from renewable sources and their applications to produce sustainable,
active packaging with antimicrobial and antioxidant properties. In particular, the incorporation
of plant extracts, food-waste derivatives, and nano-sized materials to produce bio-based active
packaging with enhanced technical performances was investigated. According to recent studies,
bio-based active packaging enriched with natural-based compounds has the potential to replace
petroleum-derived materials. Based on molecular composition, the natural compounds can diversely
interact with the native structure of the packaging materials, modulating their barriers, optical and
mechanical performances, and conferring them antioxidant and antimicrobial properties. Overall,
the recent academic findings could lead to a breakthrough in the field of food packaging, opening the
gates to a new generation of packaging solutions which will be sustainable, customised, and green.

Keywords: biopolymers; antioxidant compounds; antimicrobial compounds; essential oils; nanoparticles

1. Introduction

Food technologies have played a crucial role since the beginning of human civilisation.
Throughout history, the evolution of food processing and packaging has led to a constant
increase of food quality and safety, improving the quality of human life [1]. Recently,
human society has gained awareness about the impact of agri-food practices on our world,
and these concerns have oriented the food sector towards the adoption of novel and
sustainable technologies.

Among the main pillars of this multifaceted process, it is worth citing three lines of
research that have deeply contributed to re-define the concept of “Food Technology” [2]:

1. Substitution of thermal techniques and chemical sanitisation with green alternatives
in order to reduce the consumption of resources and the impact on food quality.

2. Extraction of added-value compounds from renewable sources (e.g., food by-products)
and their application as alternatives to conventional preservatives and additives.

3. Development of bio-based active packaging based on renewable biopolymers, aiming
to reduce the use of petroleum-derived plastics in the food packaging sector, and to
prolong the shelf-life of the products, preventing the generation of food waste.

This work provides a synthetic overview about the strategy trends which are leading
the food-packaging industry towards green technology and sustainability criteria, reducing
the energy consumption, waste generation, and footprints on the environment. A specific
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focus was dedicated to biodegradable polymers from renewable sources (e.g., agri-food
by-products) and natural-derived compounds, and their application to produce active pack-
aging items with antimicrobial, antioxidant, and nano-reinforced properties as prospective
substitutes for conventional plastic materials.

2. Bio-Based Packaging: General Considerations

Food packaging is a coordinated system aiming to preserve the safety and quality
of the food products from their production to their end-use [3]. It plays a crucial role in
human society as a fundamental component of the food supply chain [4].

Worldwide, it is estimated that one-third of produced food is disposed every year
due to various factors including incorrect harvesting procedures, mechanical damage, and
inadequate storage conditions, which result in microbial decay, oxidation, the degradation
of nutrients, and loss of acceptability [5]. Therefore, the selection of adequate packaging
solutions able to protect each targeted product and to maintain its quality is crucial to
extend the food’s shelf life, thus preventing waste generation.

Conventional packaging is commonly constituted by a one-time use item, immedi-
ately discarded after reaching the intermediate or final user [4]. Over a broad variety of
materials, fossil-based plastics have dominated the food-packaging industry since their
appearance during the Second World War [6] thanks to their enhanced barrier and me-
chanical properties, chemical resistance, durability, lightweight nature, availability, and
cost-effectiveness [7].

Currently, the global production of plastics comprises about 320 million tons/year [8].
Data reveal that one-third of all produced plastic is dedicated to packaging materials [9].
Hence, the food-packaging industry is closely involved in the production of massive
amounts of plastics, generating severe economic burdens and ecological impacts.

The main concern of plastics is related to their non-sustainable nature since their
source (petroleum) is not renewable (PE, PET, PP, etc.) [10–12]. Besides, single-use plastics
are generally considered as not “environmentally friendly” due to their non-compostable
nature and low recycling rate [13]. This ends up causing the accumulation of tremendous
masses of waste in landfills and oceans, increasing wildlife mortality from ingestion and
entanglement [14].

In the last few years, the awareness about the environmental impacts of plastic has
grown both at personal and at community levels. On the one hand, consumers are increas-
ingly demanding natural, high-quality foods, and food packaging that does not create
pollution. On the other hand, governments are pushing towards the reduction of human
impact on the environment. For example, the European Parliament focused its Sustainable
Development Goals on the partial replacement of oil-based polymers with biodegradable
polymers from renewable resources by 2030 (European Commission, 2015). This prompted
researchers and companies to shift their efforts towards the exploration and exploitation
of novel renewable resources and the development of sustainable packaging solutions,
including films, coatings, and other items.

Specifically, films are thin layers of material prepared through different technologies
such as solution casting or extrusion as stand-alone structures. The prepared films are
used to wrap the foods or to be placed between the layers of food products. Coatings are
thin layers of material which are directly applied on the food surface, and act as a barrier
between the external environment and the product during transportation, processing, and
storage. Coatings are applied either by dipping the product in the coating solution or by
directly spraying them over the product’s surface.

These novel packaging systems are designed to perform multiple functions. Along
with the “classic” packaging activity, namely the interposition of a physical barrier between
food and environment, they may operate as carriers of bioactive compounds with antioxi-
dant, antimicrobial, or nutritional properties. These “active ingredients” aim to prolong
the shelf life or increase the nutritional value of the packaged product [15]. Moreover, the
addition of bioactive compounds can result in modified physicochemical, mechanical, and
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barrier properties since they chemically interact with the biopolymer structure. Hence,
their wide application may allow improving or even adapting the functional features of
packaging solutions for a broad variety of applications [16].

2.1. Compostable, Biodegradable, or Renewable?

Research and industries are pushing towards the usage of biodegradable polymers for
food-packaging purposes. Additionally, the extensive exploitation of renewable resources
has the potential to reduce the use of oil and other fuels. However, plastics produced by
renewable resources are not necessarily compostable or biodegradable, and vice versa [17].
For example, cellulose, starch, and gelatin also maintain their biodegradability when
obtained synthetically. Equally, when castor oil monomers are polymerised to produce
Nylon 9, they lose their biodegradability [18]. In fact, biodegradation is correlated to the
chemical structure of the compound rather that its origin. In this context, it is important
to clearly state the definitions of biodegradation and compostability, allowing further
introduction of the concept of biopolymers.

Biodegradation broadly defines an event in which a biomass is over 90% decomposed
within 6 months via the action of enzymes and/or chemical degeneration associated with
living organisms such as moulds, yeasts, and bacteria [(UNI EN 13432:2002)]. This process
can be conducted both in aerobic and anaerobic conditions [19]. Other processes such as
photodegradation, hydrolysis, and oxidation may also have an impact on the structure
of biomass prior to or during biodegradation [20]. Compostability involves a series of
processes (mainly conducted in industrial conditions) that exploit biodegradation to convert
organic matter into the so-called “compost”, which must completely degrade in soil within
3 months by producing water, carbon dioxide, and other inorganic compounds [21].

In light of these statements, it is worth noting that the large-scale synthesis of com-
postable bioplastic using 100% renewable resources has not been realised yet. Until now,
bioplastic usually comprises more than 50% (w/w) of renewable sources [18]. Several
bioplastics include mixtures of synthetic compounds to improve the technical properties
of the final product, extending its potential applications. Despite that, the current ten-
dency is to replace synthetic additives with natural compounds with comparable functional
properties and to enhance the use of biopolymers over fossil-derived materials to produce
approximately 100% renewable and biodegradable plastics.

2.2. Biopolymers

According to the European Bioplastics association, biopolymers are defined as biodegrad-
able, compostable, and biocompatible polymers derived from renewable resources [22]. They
are broadly regarded as the most promising sustainable alternative to petrol-based synthetic
polymers for food-packaging applications due to their compostable nature and film-forming
ability [20].

Thanks to their technical variability, biopolymers are adaptable to various packaging
technologies, offering a range of package products, including cups, covers, separation
layers, and food containers. In particular, they can be used to prepare composite films
and multi-layered coatings to prolong the shelf-life of food products. Moreover, biopoly-
mers are compatible with functional ingredients including nutraceuticals, antioxidants,
antimicrobials, probiotics, and additives [23].

Biopolymers have been classified into three categories according to their sources and
synthesis: (I) polymers extracted from renewable biomasses, including polysaccharides,
polypeptides, and lipids; (II) polymers synthetised from chemical polymerisation of bio-
monomers (e.g., polylactic acid); and (III) polymers derived from microbial fermentation
(e.g., polyhydroxy alkanoates) [19] (Figure 1). Besides, biopolymers can be distinguished
according to their hydroplastic or thermoplastic behaviour [3].
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Figure 1. Classification of biopolymers (reproduced with copyright permission from Chen et al. [24]).

Most biopolymers possess remarkable technical features for packaging applications
due to their chemical complexity, as shown by the studies in Table 1. A brief description of
the most common biopolymers is detailed in the following sub-sections.

Table 1. Cases of study of biopolymers and their effects in food-packaging applications.

Polymers Additives Treatments Solvents for
the Polymers The Effects and Advantages References

Polybutylene succinate
(PBS), Polyhydroxybutyrate

(PHB), Polycaprolactone
(PCL), Polylactic acid (PLA)

/
Biodegradation test of

10 months at 25, 37, and
50 ◦C soil and compost

/
• Fast degradation of PCL in 8 weeks

at 50 ◦C due to the activity of fungal
strain of T. lanuginosus

[21]

Poly-β-hydroxybutyrate / Fermentation Oily sludge

• Isolated 63 bacterial strains that can
produce PHAs

• Presence of Bacillus coagulans in
99.96% of the cases

• Bacillus coagulans showed a produc-
tion yield with molasses of 6.36 g/L,
B. megaterium

[25]

PLLA-15% ZIF-8 MOF / Extrusion /

• Polymer was not suitable for food
packaging because of the high migra-
tion level of Zn2+

• Zn2+ release was double in acidic
simulant

[26]

Gelatin 6% (w/v) Glutaraldehyde (GTA)
50% (w/v of polymer) Cross-linking Distilled water

• GTA cross-linking enhanced gelatin
thermal stability and mechanical
properties with pH 4.5

[27]
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Table 1. Cont.

Polymers Additives Treatments Solvents for
the Polymers The Effects and Advantages References

Methyl cellulose (MC) 1%
(w/v)

Murta berry extract
(MU) 25% (w/w of the

poly-
mer)Glutaraldehyde
(GA) 10–20% (w/w of

polymer)
Polyethylene glycol

(PEG) (25% w/w of the
polymer)

/ Distilled water
• Cross-linking decreased the swelling

index of the materials and increased
mechanical properties

[28]

Binary blend of polymers at
a final concentration of 5% of
gelatin (GEL) and different

polysaccharides: gum arabic
(GAR), methylcellulose
(MC), octenyl succinic

anhydride modified starch
(OSA), and water-soluble

soy polysaccharides (WSSP)

Glycerol 1% (w/w) / Distilled water

• Pure OSA film had low plasticity
• GAR film was weak from a mechani-

cal point of view
• Incompatibility between GEL and

MC, especially at a 50/50 ratio
• GEL improved the durability and

stiffness of the film

[29]

Polylactic acid (PLA)

Nanocomposite
films containing 1−5%
(w/w of the polymer) of
dye−clay hybrid nano

pigments
(DCNP)

Cationic exchange
reaction between a

cationic dye and C20A
Chloroform

• Maximum improvement of E′ and
glass transition temperature at 3% of
DCNP loading level

• Oxygen permeability and WVP de-
creased in comparison to neat PLA

• Optimum of 3% for optical property
and UV barrier

[30]

Polylactic acid (PLA) 1%
(w/v)

α-costic acid (α-CA) 7:1
(w/w of the polymer) / Chloroform

• The plasticising effect of the
sesquiterpenoid plant metabolite
induced better thermal degradation

• Homogeneous and efficient inclu-
sion of α-CA in PLA

[31]

PLA latex

Nanocellulose fibrils
with high lignin content
(NCFHL) from 5 to 20%

(w/w)

Extraction of Thuja
plicata bark and

fibrillation

Aqueous
suspensions of

NCFHL

• PLA reacted with NCFHL at nearly
50% of the total area

• NCFHL until 10% enhanced elastic
modulus and tensile strength

• NCFHL increased thermal stability
and hydrophobicity

[32]

Fossil-based and bio-based
polycarbonate (PC) / Moulding /

• Bio-based PC had weak thermal re-
sistance and low viscosity

• Good optical property but lower bire-
fringence compared with the fossil
PC

[7]

Sodium alginate 1–3.5%
(w/v)

200–800 mg/L of
protease from Bacillus

brevis
1–3.5% CaCl2

/ Milli-Q water
• Best performance of immobilisation

at 2.5–3% of Na-alginate and CaCl2,
with 400–600 mg/L of protease

[33]

CMC 0.5% (w/v), gelatin
(GEL) 0.05–0.25% (w/v)

Sodium benzoate 5–30%
(w/v),

saturate vapour of
glutaraldehyde (GLA)

UV irradiation at
(253.7 nm, 30 W) for

30–180 min

Aqueous
solution

• Best crosslinking rate with 20% SB
and 180 min of UV and 0.2% gelatin,
associated with exposure of GLA sat-
urate vapour for 90 min

• Photo-crosslinking enhanced hy-
drophobicity

• Both crosslinking methods improved
the tensile strength and contact angle
of CMC film

[34]

Chitosan 1.5% (w/v)

Glycerol 30% (w/w of
the polymer) and tween

80 0.2% (w/v of
essential oil)

/ Distilled water
• HAE’s gave light barrier properties,

higher water content and solubility
• EOs enhanced tensile strength

[35]

Chitosan (CH) 2% (w/w), pea
starch (S) 2% (w/w), CH:S 1:4

(w/w)

Lyophilised tannic acid
(TA) 1:0.04 (w/w on
polymer) or thyme

extract (TE) 1:0.15 (w/w
on polymer)

/ Water
dispersion

• TE modified the microstructural ap-
pearance of CH, due to crosslinking
effect of polyphenols

• TA and TE gave higher resistance
at the break but poor elasticity and
opaque films

[36]

Corn starch and polylactic
acid (PLA) blended at a ratio

of 80:20

Epoxidised cardoon oil
(ECO) 3% (w/w of PLA

fraction) and glycerol at
30% (w/w of starch

fraction)

Melt blending process /

• Compatibility between ECO and
PLA, which gave higher WVP and
barrier to O2

• Poor mechanical property of the
films

[37]
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Table 1. Cont.

Polymers Additives Treatments Solvents for
the Polymers The Effects and Advantages References

Zein (Z) 15% (w/v), gelatin
(G) 10% (w/v), blend ZG at
different ratios (2:1, 1:1, 1:2)

15% (w/v)

Tea polyphenol
2.5%–7.5% (w/v),

glycerol 0.4–0.8 mL
/

Acetic acid
(AA) and

water

• Zein/gelatin ratio influenced me-
chanical property in multilayer films

• Multilayers were more transparent
and had a higher UV barrier than
neat polymers

[38]

Microcrystalline cellulose 3%
(w/w) 68% ZnCl2 (w/w) / Distilled water

• Transparent Zn-cellulose film
crosslinked with Ca2+ [39]

Polyvinyl alcohol (PVA)
5–12.5% (w/v)

Heat cross-linking with
citric acid (CA) 3–12%
(w/w of the polymer),

Clove oil (CO) 20% (w/w
of the polymer)

Electrospinning and
cross-linking Distilled water

• Cross-linking process permitted to
reach a swelling degree above 400%

• Microfibers treated with CA were
highly hygroscopic

• Cross-link improved mechanical
property and thermal stability

[40]

Chitosan(CS) 4% (w/v)

Whey protein isolate
(WPI) 4% (w/v),
microcrystalline

cellulose (MCC) 4%
(w/v) and glycerin

10–50%

/ Distilled water

• Compatibility between polymer and
additives

• Better WVP at 1.5:1 CS/MCC ratio
with 30% glycerin and 3.6 of pH

[41]

Gelatin 6% (w/v)
Galla chinensis extract

powder (GCE)
0.03–0.12 g/100 mL

/ Distilled water

• GCE worked as a crosslinker for
gelatin hydrogel

• The maximum concentration of GCE
improved thermal stability and gel
strength

[42]

2.2.1. Polysaccharides

Polysaccharides are complex macromolecules consisting of repeated mono or disac-
charide units linked via glycosidic bonds [43]. They are natural, easily accessible, non-toxic,
and renewable.

Due to their complex structure, polysaccharides exhibit adequate mechanical resistance
and high barrier to oxygen (O2) and carbon dioxide (CO2). The presence of hydroxyl groups
lead to the formation of hydrogen bonds, responsible for inter–intra macromolecular
association and thus film-forming ability. However, their hydrophilic nature entails poor
moisture resistance and reduced capacity to hinder water vapour transmission [23]. To
overcome these drawbacks, polysaccharides are modified through chemical pathways to
obtain derivatives with enhanced performances or by blending them with hydrophobic
materials and nanofillers.

Chitosan

Chitosan, or β-(l-4)-2-amino-2-deoxy-D-glucopyranose, is a cationic linear polysaccha-
ride consisting of N-acetyl-glucosamine and N-glucosamine units. It derives from alkaline
N-deacetylation of chitin, the second most abundant natural polysaccharide after cellulose.
The primary sources of chitin are shellfish waste, insect cocoons, and fungi [44].

Chitosan is biodegradable, non-toxic, bio compatible, and broadly available. It is
widely used for many applications in the biomedical, cosmetic, agricultural, and food
sectors. The biodegradable property of chitosan results from the sensitivity of glycosidic
bonds to chemical and physical breakdown, mainly due to oxidation and reactivity with
enzymes (hydrolases), acids, and alkali compounds. Due to the absence of nearly positively
charged amino groups, the A-A and A-D glycosidic sections are the preferred targets of
hydrolysis in acidic conditions [45]. In general, it appears that as the acetylation levels
increase, so does the degradation rate. This concept is true even for lysozyme, an enzyme
present in human saliva and tears [46].

Chitosan is insoluble in water but soluble in acid aqueous solutions due to the proto-
nation of the NH2 groups. It exhibits good antimicrobial activity against Gram-positive
and Gram-negative bacteria, filamentous fungi, and yeasts [47].

Chitosan shows excellent film-forming abilities. However, extrusion technology is
inadequate to produce chitosan-based films due to the low degradation temperature of this
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polymer and its non-thermoplastic behaviour. As a result, the production of films is mainly
conducted through the solution-casting method.

These films have good mechanical properties and effectively obstruct O2 and CO2
transmission [48]. Meanwhile, they are highly sensitive to moisture transmission, which
compromises their use to preserve fresh or fatty food products. To overcome this criticism,
authors investigated different strategies including chemical crosslinking and grafting
with secondary components [49]. These methods provide an interpenetrated structural
network to the resulting films, improving their hydrophobicity. Another suitable technique
is blending chitosan with compatible polymers to induce a strong inter–intramolecular
hydrogen bonding, which results in improved barrier and mechanical performances of the
blend films [50].

Cellulose and Derivatives

Cellulose, or (1→4)-β-D-glucopyranosyl, is a linear chain polysaccharide in which
anhydrous glucose rings ((C6H10O5) n) are bound through β1-4 glycosidic bonds, and
the number of repeat units depends on the source material [51]. It constitutes the most
abundant biopolymer in nature and can be degraded by cellulolytic microorganisms. In
nature, the synergism between cellulolytic and non-cellulolytic microorganisms leads to the
complete degradation of this polymer. These microorganisms are mainly aerobic and can
synthesise cellulases enzymes (cellobiohydrolases and endoglucanases), which hydrolyse
the β1-4 glycosidic bonds [52,53].

Native cellulose is water-insoluble due to its structural complexity, high crystallinity,
and tightly packed hydrogen bonds, and is thus unable to form stable gels. This limitation
is overcome by applying an alkali treatment followed by acidification using hydrophilic
agents such as chloroacetic acid, methyl chloride, or propylene oxide to produce cellulose
hydroplastic and thermoplastic derivatives. Cellulose derivatives are commonly isolated
from wood, hemp, cotton, and other plant components [39]. These derivatives have been
extensively investigated to develop biodegradable composites and films due to their high
abundance, non-toxicity, and stability (Figure 2).
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Hydroplastic polymers obtained from cellulose are highly hydrophilic and possess
excellent gelling capacity. They include carboxy methylcellulose (CMC), methylcellulose
(MC), hydroxypropyl methylcellulose (HPMC), hydroxypropyl cellulose (HPC), and oth-
ers [55]. Films and coatings based on these polymers are transparent, odourless, resistant
to oxidation, and show enhanced mechanical and gas barrier properties [19]. However,
they are highly sensitive to water vapour transmission due to their hydrophilic nature,
which limits their application to dried and low-fat foods. In this context, several strategies
have been investigated to confer hydrophobicity to cellulose-based films, thus reducing
their WVP value. Shahbazi et al. [34] applied surface modification of CMC based films via
reaction with sodium benzoate and glutaraldehyde vapour, followed by photo-crosslinking
or chemical-crosslinking with gelatin. Authors observed that photo-crosslinking improved
hydrophobicity and water barrier property more than the chemical crosslinking. Another
study tested cellulose-based films obtained via chemical crosslinking of CMC with hydroxy
ethylcellulose (HEC) using citric acid [56].

Cellulose acetate is the most researched thermoplastic polymer derived from native
cellulose. This derivative is obtained treating technical-grade cellulose with a methylene
chloride-acetic acid solution to substitute hydroxyl groups with acetyl groups [57]. FDA
tagged cellulose acetate as GRAS, which prompted the food-packaging industry to develop
and test novel applications of this polymer [54]. Cellulose acetate is commonly used to
wrap fresh products and baked goods. Cellulose acetate films and coatings are tough and
resistant to puncture. Conversely, they possess relatively poor moisture barrier properties,
high rigidity, and lower thermal resistance compared with conventional thermoplastics [58].
These criticisms can be partially solved by adding plasticisers, which impart clarity and
tailored rigidity. Moreover, when employed for prolonged applications, cellulose acetate
may undergo partial hydrolysis to produce acetic acid [59].

Starch

Starch represents the primary energy reserve biosynthesised in the plants and one of
the most plentiful renewable feedstocks. Native starch consists of two types of glucose
polymers: amylose, a linear polysaccharide with (1→4)-α-D-glucopyranosyl units, and
amylopectin, branched amylose with (1→6)-α-D-glucopyranosyl side units. Starch has
been extensively studied as a biodegradable plastic and food hydrocolloid component
thanks to its renewability, biodegradability, and excellent film-forming capacity. This
polymer can be easily degraded in water, since amyloglucosidase or α- and β-amylase can
form complexes with starch and hydrolyse the glycosidic linkages [60]. This process is
strongly influenced by pH, the degree of crystallinity of starch, and its retrogradation [61].

Starch-based films and coatings exhibit remarkable mechanical strength, elasticity,
transparency, and low oxygen permeability [15]. The major challenges related to native
starch films are brittleness and high hydrophilicity, which results in poor water vapour
barrier properties. These drawbacks preclude the application of starch-based films and
coatings to package foods sensitive to moisture and oxidation [20]. To enhance the flexibil-
ity and water resistance, food-grade plasticisers (e.g., glycerol, glycol) and hydrophobic
substances can be incorporated into the film-forming solution [47].

Pectin

Pectin is an anionic, hydro soluble, and high-molecular-weight heteropolysaccharide.
It is one of the main components of the plant cell wall, contributing to tissue rigidity
and integrity.

Pectin is chemically composed by poly α-(1→4)-D-galacturonic acid chains [62], com-
monly known as homogalacturonan. Its linear structure is interrupted by rhamnose
residues, on which secondary chains containing galactose, xylose, and arabinose are grafted.
Consequently, pectin is composed of three different polysaccharide domains. The first
domain is the homogalacturonan, which is the smooth component of the molecule. The
second domain is named rhamnogalacturonan I and it is constituted by a chain of α-(1,2)-
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linked L-rhamnopyranose residues. The third one, rhamnogalacturonan II, is characterised
by a complex and heterogeneous structure. The second and the third domains form the
hairy regions of pectin [63] (Figure 3).
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The carboxyl groups of galacturonic acid are partially esterified with methanol to
form methoxylated groups, and can be converted to amide groups via reaction with
ammonia [44]. According to the esterification degree (DE), pectin can be classified as
low-methoxyl (<50%) and high-methoxyl (>50%) pectin. DE strongly influences the gelling
properties of pectin [65].

The main industrial sources of pectin are orange pulp and apple pomace [47]. Pectin
is widely applied in the food industry as a gelling, thickening, and stabilising agent for
jam, drinks, and ice cream. It is recognised as safe (GRAS) by the FDA (2013) and it is
well known for its biocompatibility, good gelling ability, and biodegradability. Degrada-
tion of pectin can be performed through physical (ultrasonication, radiation, photolysis,
high-pressure treatment, etc.), chemical (pH differences of 3.5 allow either acid or alkali
hydrolysis), and enzymatic processes (mainly pectate lyase, pectin lyase, and endo- and
exo-polygalacturonase) [66,67].

The ability of pectin to form edible films and coatings has been largely investigated [63].
Some researchers suggested the scarce potential of pectin as a film-forming polymer due
to its limited physicochemical and mechanical performances [68]. Despite that, several
investigations have been conducted to improve pectin-based filming and coating properties.
To enhance the mechanical stability of the film and the surface adhesion on the food
substrate, pectin has been blended with food-grade plasticisers (e.g., glycerol, polyethylene
glycol, and sucrose) and polymers (e.g., polyvinyl alcohol and cellulose derivatives). As
well, pectin has been combined with hydrophobic compounds such as lipids to enhance its
resistance to moisture and water vapour transmission.

2.2.2. Proteins

Proteins are complex macromolecules characterised by variable molecular structures
and exertion of different functional properties [69]. Protein derivatives are commonly iso-
lated from natural resources and represent promising biopolymers to produce biodegrad-
able packaging with excellent physicochemical, optical, mechanical, and barrier perfor-
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mances. In particular, the enhanced capacity of protein-based packaging to control gas
transmission allows hindering the loss of flavours and restricting the migration of ac-
tive components [70]. Besides, protein-based packaging can be easily degraded in the
environment, and acts as a good biofertiliser due to the high nitrogen content [24].

The film-forming ability of protein derivatives strongly depend on their structure (e.g.,
sequence of amino acids, amount of intra-protein interactions), molecular weight, solubility,
and charge [69]. Besides, proteins can be combined with other biopolymers, resulting in
composite films with improved features [71].

Gelatin

Gelatin is a water-soluble protein obtained through the partial hydrolysis of native
collagen, a primary component of bones and connective tissues of animals. This protein
consists of a triple helix structure with repeated glycine-proline-hydroxyproline units. It is
composed by a mixture of α-chains (one polymer/single chain), β-chains (two crosslinked
α-chains), and γ-chains (three crosslinked α-chains), with relevant variability depending on
the source [24]. According to the synthesis method, gelatin is broadly classified as (I) Type A,
derived from acid-treated collagen, and (II) Type B, obtained from alkali-treated collagen.

Among biopolymers, gelatin has the peculiar capacity to form thermo-reversible gels
with a melting point close to 40 ◦C. This attribute, along with the abundance, prompted
its widespread use in food and pharmaceutical industries as stabilising agent and for the
production of biodegradable packaging [29].

Gelatin-based films exhibit low O2 permeability and acceptable mechanical proper-
ties [72]. Additionally, gelatin can act as a carrier for natural antioxidants and antimicrobial
agents. However, these films are highly sensitive to moisture and permeable to water
vapour due to their hygroscopic behaviour.

Numerous studies have been conducted evaluating the incorporation of crosslinkers,
strengthening nanofillers, plasticisers, vegetable oils (e.g., corn, sun flower, essential oils),
and natural polyphenolic antioxidants as promising methods to improve the performances
of gelatin-based films and to support their bioactivity [42]. In particular, the cross-linking
reaction was found to affect the intermolecular forces within the triple helix structure,
resulting in an interpenetrated network structure of the film matrix (IPN) [27]. More-
over, gelatin has been blended with other biopolymers including chitosan [27] and zein
protein [38] to produce a series of unique hybrid active films. Some studies have found
that crosslinking reduces the biodegradability of gelatin. Instead, blending with highly
hydrophilic polymers enhances the degree of degradability with respect to pure gelatin. In
general, the molecular weight of gelatin typically affects the rate of degradation [27].

Corn Zein

Zein is a prolamin protein mainly isolated from corn seeds. It is an alcohol-soluble
and biodegradable protein, whose hydrophobic nature relies on the high density of non-
polar amino acids [73]. Moreover, it exerts a thermoplastic behaviour and outstanding
film-forming properties [3]. These characteristics make zein a good candidate for the
development of biodegradable packaging items. This protein can be easily degraded in
specific environmental conditions (neutral pH, 50–60% of humidity, temperature over
40 ◦C) or in presence of proteases, such as trypsin, thermolysin, and pepsin [74].

Zein-based films are smooth, thermally stable, and possess low WVP values [75]. These
attributes are mainly related to the formation of hydrogen and disulfide bonds between
zein chains during solvent evaporation. For this reason, zein-based films can be tailored
to act as selective barriers to oxygen, carbon dioxide, and oils. Despite that, these films
generally exhibit poor mechanical properties and fragility, which can compromise their
wide application. Thus, many strategies have been explored to improve their structural
properties, including the addition of plasticisers and combination with other polymers to
produce bilayer and composite films [15].
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2.2.3. Polylactic Acid (PLA)

Polylactic acid (PLA) is a compostable (under industrial conditions), biocompatible,
and thermoplastic aliphatic polyester. This polymer can be completely degraded through
a slow cleavage reaction of ester bonds. The process of biodegradation is carried out by
microorganisms (Actinomycetes, other bacteria, fungi) or by degrading enzymes (proteases,
cutinases, and esterases) [76].

PLA is obtained either through direct polycondensation of L- and/or D-lactic acid
monomers or from the ring-opening polymerisation of lactide monomers. The first pathway
is generally followed to produce low-molecular weight PLA, while the second method is
applied to produce high-molecular weight PLA [20].

PLA is mainly synthetised by microbial fermentation from agricultural renewable
sources such as corn, cassava, sugar beet pulp and sugarcane. Although 90% of total PLA
is obtained by bacterial fermentation, the remaining 10% is synthetically produced by the
hydrolysis of lactonitrile [77]. Currently, the annual production of PLA is estimated to be
140,000 tons, with an increasing trend due to its potential as a substitute for petroleum-based
materials [78].

PLA properties include tensile strength, thermal stability, and gas permeability, and
are comparable to those of synthetic polymers such as polypropylene, polyethylene, and
polystyrene [30]. Moreover, PLA exhibits a better thermal processability compared with
other thermoplastic biopolymers, and thus can be processed through conventional blow
filming, injection moulding, fibre spinning, thermoforming, and cast filming [79].

PLA has been accepted as GRAS by the FDA [31]. As a result, this polymer has been
increasingly employed in the food-packaging industry to produce disposable cutlery, plates,
lids, and other items. Despite that, the high cost and the technical drawbacks, such as
brittleness, low resistance to oxygen, and low degradation rate still deter the mass use of
this polymer [3].

Considerable efforts have been made to improve PLA performances. Different blends
of PLA with other natural biopolymers were tested. For example, blending with thermo-
plastic starch (TPS) enhanced the mechanical properties and the biodegradability rate of
the biopolymer and reduced the production cost [37]. On the other hand, the PLA/PHB
blend obtained by melt blending showed improved oxygen barrier and water resistance
compared with pure PLA.

The addition of plasticisers represents another suitable strategy to improve the PLA
mechanical performances. Thus, the demand for new “green” plasticisers based on natural
and renewable resources such as vegetable oils is rapidly increasing [31].

2.2.4. Polycaprolactone (PCL)

Polycaprolactone (PCL) is a semicrystalline biodegradable but non-renewable biopoly-
mer of synthetic origin. This polymer is synthesised through the polymerisation of ε-
caprolactone at high temperature (over 120 ◦C) or polycondensation of hydroxycarboxylic
acid, yielding PCL with different degrees of molecular weight based on the alcohols used
as catalysts. The final molecular weight affects the polymer’s properties: low molecular
weight results in a crystalline, brittle, and hard film; high molecular weight results in a
more elastic, tough, and poorly crystalline film [80].

PCL is characterised by its good solubility in organic solvents (i.e., chloroform,
dichloromethane, benzene, tetrahydrofuran, toluene, etc.) at ambient temperature, insolu-
bility in water, and partial solubility in other organic solvents, such as acetone, acetonitrile,
ethyl acetate, and dimethyl formamide. However, the solubility in these last solvents can
be enhanced through heat thanks to the low melting point temperature (60–65 ◦C) [81]. Al-
though the physical and mechanical qualities are low and influenced by molecular weight,
the barrier properties to oxygen and water vapour are excellent. These characteristics
prompt the possibility to combine this polymer with others to improve its gas barrier
properties for applications in food packaging. Therefore, PCL has attracted the attention
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of medical research due to its non-toxicity and potential applications in drug-delivery
systems [82].

PCL is a biodegradable polymer that can be easily degraded through chemical and
enzymatic hydrolysis thanks to the presence of ester groups [81]. The enzymatic method is
preferable due to the rapid reactions that result in a complete polymer degradation in a few
days [83]. The composting of this polymer is particularly efficient due to the heat of the
process, which can support the biodegradation process, and to the enzymes (in particular,
lipase, and esterases) generated by the microorganisms involved in the process [80].

2.2.5. Polyhydroxy Butyrate (PHB)

Polyhydroxy butyrate (PHB) belongs to the family of the polyhydroxy-alkanoates
(PHAs), a series of biodegradable, crystalline, and thermoplastic polyesters synthesised
from microbial fermentation of organic biomass. It is produced by the Gram-positive
bacterium Bacillus megaterium [25].

This polymer cannot be easily degraded by chemical treatments. Instead, it is more
susceptible to thermo-mechanical degradation, oxidation, photodegradation, and enzyme
and biotic degradation. The enzymes usually involved in this process are esterases, lipases,
and proteases, which work through hydrolysis of ester linkage of the polymer. Biotic degra-
dation is carried out mainly by PHB depolymerase, synthesised by Alcaligenes, Pseudomonas,
Comamonas spp., and other species of bacteria, fungi, and algae [84].

PHB exhibits remarkable technical performances, comparable to those of polyethylene
and polypropylene. Moreover, owing to its lamellar structure, it has superior water vapour
barrier properties and a lower carbon footprint than conventional plastics. In fact, it
is easily biodegraded by the action of PHA hydrolases depolymerases, which form (R)-
and (S)-hydroxybutyrates and other non-toxic compounds under aerobic or anaerobic
conditions [85].

These attributes make PHB a sustainable candidate for the replacement of fossil com-
modity polymers for short-term applications. Despite that, some criticisms, i.e., high brit-
tleness, low thermal stability, and reduced processability still limit its widespread use [86].
Many attempts have been made to overcome these limitations. Arrieta et al. [87] blended
PHB with PLA thanks to their comparable melting point temperatures, showing improved
flexibility with respect to pure PHB. Additionally, extensibility can be enhanced by incor-
porating plasticiser or by fabricating composites through the addition of nanofillers [86].

3. Bio-Active Packaging

Food packaging has evolved beyond its use as simple containers and barriers against
external factors. The consumer demand for healthy, safe, and more sustainable products
has prompted scientists and industries to develop packaging materials able to actively
ensure food safety and extend the shelf-life, thus maintaining food quality and taste [88].
This new packaging approach is known as “active packaging” [89].

Active packaging items are designed as “materials and articles that are intended to
extend the shelf-life or to maintain or improve the condition of packaged food; they are
designed to deliberately incorporate components that would release or absorb substances
into or from the packaged food or the environment surrounding the food” (European
regulation [EC] No. 450/2009).

Active food packaging expands the features of traditional packaging, including con-
tainment, protection, preservation, and communication, shifting from a passive defensive
role towards an active role. It acts as a medium of interaction among product, environment,
and packaging itself, altering the native environment of the packed product [90]. Depend-
ing on its functioning mode, active packaging can be classified under two major categories:
scavenging and emitting systems. Scavengers are materials that absorb undesirable sub-
stances from the internal packaging environment, including moisture, oxygen, carbon
dioxide, ethylene, and odours/flavours. Conversely, emitters are designed to discharge
specific substances with desirable properties to produce a positive impact in the packaging
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headspace [91]. These active compounds can be either part of the packaging material or
enclosed inside the package, separated from the packed food. The advantages related to
the first solution are (I) no possible manipulation by the consumer, decreasing the chance
of contamination; and (II) the packaging is produced with conventional equipment, de-
creasing the complexity of the process (Figure 4). Some substances commonly added to the
packaging system are antioxidant and antimicrobial agents, enzymes, aromatic compounds,
nutraceuticals, and pre- or pro-biotics. Among these, antimicrobial and antioxidant active
compounds (either synthetic or natural-based) have been recognised as the most attrac-
tive ones to be incorporated into packaging systems, since microbial spoilage and lipid
oxidation are considered as the two major causes of food deterioration [92].
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3.1. Antimicrobial Packaging

Antimicrobial packaging has received increasing attention from food and packaging
industries as a valuable alternative to thermal treatments to control the growth and avoid
the spread of targeted pathogenic and spoilage microorganisms [20].

Concisely, antimicrobial packaging is obtained by incorporating an antimicrobial agent
in the packaging material [18]. This represents a potential alternative to the direct addition
of bioactive agents into or on the surface of food, which could lead to the immediate deple-
tion of the antimicrobial functionality [94]. In this sense, antimicrobial packaging can exert a
controlled release of the antimicrobial compounds, whose migration kinetics depend upon
different factors such as the molecular structures of the polymer and antimicrobial com-
pounds, the physicochemical characteristics of the packaging item, and the environmental
conditions, both internal and external [18]. In this context, the design of an antimicrobial
packaging system is complex, since it requires a thorough knowledge of five major factors:
the food product; the internal package atmosphere; the targeted microorganisms; the pack-
aging material; and the antimicrobial agent [95]. Different approaches have been explored
for the development of bio-based antimicrobial packaging, as shown in Table 2 (Figure 5).
According to their structure and production process, antimicrobial packaging systems can
be categorised into five classes [91]. The first class consists of antimicrobial sachets which
are included in the package, and gradually release the active compound during the storage
period. In the second class, the active molecules are directly blended in the polymer matrix
to produce antimicrobial items. The third class of antimicrobial packages are obtained
by adsorbing a specific matrix, serving as a carrier of the antimicrobial additive, onto
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the packaging surface. This production method overcomes the disadvantages related to
the second class, since the active compounds are not exposed to high temperatures and
shearing forces related to the production process. In the fourth class, the antimicrobial
agent is immobilised on the polymer matrix through ionic or covalent bonds between their
functional groups. In this case, polymers and additives should share compatible functional
groups, and the release of the active agent from the matrix largely depends on the type of
bonding. The fifth class of antimicrobial packaging involves the application of polymers
with intrinsic antimicrobial properties (e.g., chitosan). This approach requires direct contact
between the packaging material and the food product for effective inhibition, which could
be considered a limiting factor for two reasons: inhibition process is restricted to superficial
contact layers; and the polymer must be approved as a food additive [96].

Table 2. Antimicrobial compounds and their efficacy against food-borne pathogenic micro-organisms.

Antimicrobial Compounds Polymers Solvents for the
Antimicrobial Compounds The Effects and Advantages Microorganisms Efficacy References

Citric acid 0.5–1% (w/w) Gelatin 2% (w/v) Distilled water

• The active coating decreased the microbial charge by 3 logs
after 4 days of storage

• Citric acid helped avoiding lipid oxidation and keeping the
pH at values lower than the control

Total bacterial count(TBC) + [88]

L. curvatus CRL705
bacteriocins

Wheat gluten Distilled water
• The bacteriocins were effective against L. innocua but did not

affect L. plantarum CRL691, probably due to the high concen-
tration of fat in wieners

Lactobacillus plantarum -
[97]

Listeria innocua +

Microfluidiser apple skin
extract (ASP) 1:1 (v/v of the
polymer) and tartaric acid

(TA) 0.5–1%

0.75% CMC Distilled water

• The ASP/CMC film showed good inhibition zone against
Salmonella enterica and Shigella flexneri regardless of the con-
centration

Listeria monocytogenes -

[98]
Staphylococcus aureus -

Salmonella enterica +

Shigella flexneri +

AgNPs of 41 and 100 nm

HPMC 3% (w/w) in a
PVA-coated silver

nanoparticles solution
Distilled water

• The film of HPMC with nanoparticles showed antibacterial
properties against gram-positive S. aureus

• The size of nanoparticles seemed to be influenced by this
property

Escherichia coli +
[99]

Staphylococcus aureus +

Nisin (N), glutaraldehyde
(G) and succinic acid (A)

Stainless steel
(S)/polydopamine (D) / • Antimicrobial activity of SDGN and SDAN against L. mono-

cytogenes
Listeria monocytogenes + [100]

Murta berry extract (MU)
25% (w/w of the polymer),

glutaraldehyde (GA)
10–20% (w/w of polymer)

Methyl cellulose (MC) 1%
(w/v) Ethanol solution 70%

• All the films were effective against Listeria
• In the presence of MU, the reduction percentage of the mi-

croorganism was 99.9%
Listeria innocua + [28]

TiO2 nanopowders 0–2%
(w/w) Chitosan 2% (w/v) Distilled water

• The best results were represented by CS and CT1-UV, due
to the intrinsic antimicrobial property of CS and the photo-
catalysis of TiO2 that happens in presence of UV-light

S. aureus +

[101]

E. coli +

P. aeruginosa +

S. typhimurium +

Aspergillus spp. +

Pennicillium spp. +

Whey Protein Isolate (WPI) Clay composite 5–20% Distilled water

• The percentage of clay composite did not influence the an-
timicrobial effect

• WPI had a bacteriostatic effect on gram-positive bacteria
such as Listeria monocytogenes

Listeria monocytogenes +
[102]

Escherichia coli -

Nisin (N) 0.25–0.5% (w/w)
and ε-polylysine (PL) 0.2%

(w/w)

Corn distarch phosphate 3%
(w/w),nanocellulose 0.5%
(w/w), CMC 0.8% (w/w)

Distilled water
• N showed a better antimicrobial property against S. aureus,

PL against E. coli
• The combination of the two compounds gave the better re-

sult

S. aureus +
[103]

E. coli +

Nisin 105 IU/mL in 0.02 M
HCl, Grape seed extract

0.5% (w/v)

Chitosan 1% (v/v), gelatin
3% (v/v) Distilled water

• The blend between chitosan and gelatin showed a good an-
timicrobial property related to the polymers Total Viable Count (TVC) + [104]

Cellulose nanocrystal (CNC)
1% and lignin nanoparticle

(LNP) 3%

PLA grafted with GMA at
15% (w/w of the polymer) /

• LNP was effective against P. syringae pv. omato (Pst), even at

the concentration of 106 CFU/mL
Pseudomonas syringae pv.

tomato + [105]

Clove oil (CO) 20% (w/w of
the polymer)

Polyvinyl alcohol (PVA)
5–12.5% (w/v) cross-linked
with citric acid (CA) 3–12%

(w/w of the polymer)

Distilled water
• CO was particularly effective against S. aureus, slowing

down the growth of 0.13 OD with respect to the control
• CO was less effective against E. coli

S. aureus +
[40]

E. coli +

Cedrus deodara pine needle
extract (PNE) 15% (w/w

of SPI) and cellulose
nanofibril (CNF) 15% (w/w

of SPI)

Soy protein isolate (SPI) 6%
(w/v) Distilled water

• SL film had good activity against all the pathogens tested in
this experiment, gram-positive and negative.

• PNE showed a significant antimicrobial property

Escherichia coli +

[106]
Salmonella typhimurium +

Staphylococcus aureus +

Listeria monocytogenes +

Nanosized TiO2 1% (w/v)
and black plum peel extract

(BPPE) 1% (w/v)
Chitosan 2% (w/v) Distilled water

• Synergistic effect between CS- TiO2- BPPE with the highest
value of antimicrobial activity

• All the compounds showed good efficiency against all the
tested microorganisms

Escherichia coli +

[75]
Staphylococcus aureus +

Salmonella spp. +

Listeria monocytogenes +
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Figure 5. Different applications of green antimicrobial compounds to polysaccharide-based packaging
(reproduced with copyright permission from Zhao et al. [107]).

Antimicrobial compounds belong to several categories of molecules, either synthetic
or extracted from plant, animal, and microbial biomasses [33]. All these classes of molecules
have been successfully integrated into bio-based packaging, with promising results against
pathogenic and spoilage bacteria and fungi [3].

3.1.1. Essential Oils (EOs)

Essential oils (EOs) are aromatic secondary metabolites which are present in various
plants. They consist in complex oily blends of 20–60 components, extracted from different
plant parts including roots, leaves, flowers, and bark. They are extracted through solvent
extraction, distillation, cold pression, and non-conventional technologies (e.g., microwaves;
ultrasounds; supercritical fluids) [108]. The composition of EOs includes monoterpenes and
sesquiterpenes as the predominant components, followed by phenolic acids, aldehydes,
ketones, and terpenoids. Due to the presence of various active molecules, EOs have been
reported to exert a broad number of biological activities [3].

The biocidal action of EOs is exerted through different pathways. However, it is
commonly agreed that the main target of EOs is the cytoplasmic membrane of the microbial
cell [109]. Since EOs are hydrophobic, their presence induces a change in the structure and
fluidity of the cell membrane (Figure 6). This process triggers a cascade of chain reactions,
resulting in internal pH disorder, electrical potential alteration, and impairment of the
sodium-potassium pump, ultimately culminating in cell death [110].

Several studies, listed in Table 3, investigated the ability of EOs, either free or incorpo-
rated in biodegradable packaging, to impede the growth of Gram-positive bacteria (e.g.,
S. aureus; L. monocytogenes), Gram-negative bacteria (e.g., Aeromonas hydrophila; E. coli, S.
enterica, Campylobacter jejuni, Pseudomonas aeruginosa) and fungi (Fusarium spp.; Aspergillus
spp.; Penicillium spp.) [50,111,112]. These studies highlighted that the antimicrobial effec-
tiveness of EOs depends on their specific composition and source, as well as the defensive
strategies fielded by the microorganisms [18].
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Table 3. EOs and their activity through incorporation in packaging.

EOs and Plants Extracts Polymers Solvents for EOs The Effect and Advantages References

Rosemary EO at 0.5, 1.0, and
1.5% (v/v) Chitosan 2% (w/v) Distilled water

• Significant antioxidant activity of EO
• EO increased WVP and transparency
• EO reduced UV transmittance

[113]

Extracts of cinnamon,
guarana, rosemary and

boldo-do-chile

Blend of gelatin 4% and
chitosan 1% (w/v) Absolute ethanol

• Extracts increased gloss and mechanical
property

• GEL50:CH50 enhanced antioxidant and
antimicrobial properties.

[114]

Eugenol (E) and ginger (G)
EOs (0.5 g/g biopolymer)

Blend of gelatin 4% and
chitosan 1% (w/v) Distilled water

• E improved UV-vis light barrier and me-
chanical properties

• E showed the greatest resistance to oxi-
dation

[115]

EOs of Cinnamomum ssp.
and Syzygium aromaticum Chitosan Ethanol

• EOs inhibited more than 95% of mycelial
growth of M. canis at 200µg mL−1, 100%
over 400 µg mL−1

[116]

D-Limonene and terpenes
from Melaleuca alternifolia

(25 g/L to 0.1 g/L)
/ Sunflower oil and palm oil

• Nanoencapsulated terpenes at 1.0 g/L
delayed the microbial growth of L. del-
brueckii, at 5.0 g/L and completely inac-
tivated the microorganism in fruit juices

[117]

Cinnamon, citronella, pink
clove, nutmeg and thyme

EOs at 1% (v/v)
Chitosan 2%, gelatin 2% (w/v) Distilled water

• Compatibility between polymers and
EOs

• EOs improved UV barrier properties
• Efficient antimicrobial properties for

thyme EO against common food
pathogens.

[111]

Cinnamon essential oil (EO)
5–15 g/L

Sodium alginate 0.75%, CMC
0.25% Distilled water

• EO gave antimicrobial properties
against E. coli and S. aureus

• EO enhanced hydrophobicity of the film,
thickness, E%, and decreased TS

[55]
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Table 3. Cont.

EOs and Plants Extracts Polymers Solvents for EOs The Effect and Advantages References

Cinnamaldehyde 5.33% Chitosan 1.5% Ethanol 96%

• High temperature activated the film for
the release of the antimicrobial com-
pound that effectively inhibited L. mono-
cytogenes in milk

[49]

Origanum vulgare L. EO
0.4–1.2%, (w/v)

Chitosan nanoparticles
(CSNPs) and fish gelatin 4% Distilled water

• EO increased elasticity of the film and
ensured a good antimicrobial property
against S. aureus, L. monocytogenes, S. en-
teritidis, and E. coli at the concentration
of 1.2%

[118]

Oregano EO 0–2% (v/v) Mucilage from quince seeds
1% Distilled water

• Antimicrobial activity against gram-
positive bacteria (S. aureus, L. monocyto-
genes) at a concentration higher than 1%

[119]

Carvacrol 0–10% (w/v of the
polymer)

Cellulose acetate (CA) 5%
(w/v) Acetone

• 10% concentration was effective against
gram-positive and gram-negative bacte-
ria and did not change the film charac-
teristics, except for the degree of crys-
tallinity and glass transition tempera-
ture

• CA-carvacrol enhanced three times the
shelf life of cooked ham

[120]

Oregano essential-oil
nanoemulsion (ORNE)

0–7.5% (v/v)

Hydroxypropyl
methylcellulose (HPMC) 2.5% Distilled water

• EO at different percentages modulated
the mechanical property of the film

• ORNE improved UV barrier property
and showed activity against all the
tested microorganisms

[121]

Oregano essential-oil
nanoemulsion (ORNE)

0–7.5% (v/v)
Fish gelatin 3%, Chitosan 2% Distilled water

• EO gave antioxidant and antimicrobial
properties to the film

• EO positively influenced light barrier
and water vapour barrier property
(WVP), elasticity and thickness

[122]

Cinnamon EO
Chitosan nanofibre (CSNF)

emulsified in Nanostructured
lipid carriers (NLC)

Molten cocoa
butter

• CSNF and EO synergised together, giv-
ing a hydrophobic characteristic to the
film

• EO opacified the film

[123]

Clove bud EO 0–1.5% Pectin 3% (w/v) Distilled water

• EO improved the thermal stability of the
film.

• Efficiency of EO against gram-positive
bacteria in agar disc-diffusion assay.

[124]

Satureja khuzestanica Jamzad
EO 1%

Lecithin:cholesterol (60:0,
50:10, 40:20, and 30:30)

dissolved in
dichloromethane/methanol
(1:1), added to chitosan 2%

(w/v)

Methanol

• Nano-encapsulated EO provided a good
extension of the shelf-life of meat lamb
products, decreasing the microbial count
during storage

• EO provided antioxidant property

[125]

T. moroderi (TM) and T.
piperella (TP) extracted EOs

0.5–2% (v/v)
Chitosan 2% (w/v) Distilled water

• High antioxidant activity due to the
presence of EOs of plants related to Thy-
mus spp., with a higher value for the TP
extract

• Concentrations of 1–2% were effective
against all the microorganisms, probably
due to the presence of carvacrol or cam-
phor in the EOs, as bioactive compounds

[126]

Clove bud, tagetes, thyme,
eucalyptus, neem, cinnamon
leaf, himalayan pine needle,

tea tree EOs 0–40% (v/w)

poly(3-hydroxybutyrate-co-4-
hydroxybutyrate)

4%
Chloroform

• Thyme oil was the best option among
the tested EOs, giving a good antimicro-
bial property to the film at 30% with the
absence of mould

• EOs acted as a plasticiser for the poly-
mer and increased the WVP and elonga-
tion at break (%).

[127]

Plant EOs extracted from
Cinnamomum cassia Presl,
Litsea cubeba, Cymbopogon

martini, Thymus mongolicus
Ronn, Syringa Linn.,

Lavendula angustifolia Mill.,
Foeniculum uulgare Mill, Citrus

reticulata Banco, Mentha
haplocalyx Briq., Allium

sativum and Artemisia argyi

/ /

• Cinnamomum cassia Presl,
• Litsea cubeba, Cymbopogon martini

and Thymus mongolicus Ronn were the
EOs with the best antifungal activities,
probably due to the presence of trans-
cinnamaldehyde, citral, trans-geraniol,
and carvacrol, respectively.

[112]
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The most common EOs which are applied as active agents in food packaging include
cinnamon (cinnamaldehyde) [123], rosemary [128], ginger [115], oregano [121], tea tree [35],
citrus [122], and thyme [127] (Figure 7).
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Figure 7. Radial disk diffusion assay on (A) lettuce microflora film of control; (B) film with 10%
thyme essential oil in the presence of Escherichia coli and (C) film with 15% thyme essential oil against
broccoli microflora (reproduced with copyright permission from Chen et al. [24]).

All these studies demonstrated that the presence of EOs can remarkably affect the
structure of the packaging material, either improving or worsening the technical perfor-
mances by interacting with the polymer matrix and the plasticisers [111]. Besides, their
antimicrobial effect can be compromised by the fast release of volatile compounds. Fur-
thermore, EOs may also influence the organoleptic attributes of foods [129]. A strategy to
solve these issues is represented by the micro or nanoencapsulation of EOs and subsequent
addition to the polymer matrix. This process allows performing a controlled delivery of
the bioactive compounds and avoiding an excessive impact on the sensorial profile of
food [121].

3.1.2. Animal-Derived Polypeptides

Polypeptides are the most common animal-derived antimicrobial compounds. They
are mainly secreted as a defence mechanism against bacterial spread [130].

Lysozyme is an animal-derived enzyme which was recognised as GRAS for direct
inclusion in food matrices [131]. It is stable over broad ranges of temperature (4–95 ◦C)
and pH (2–10). The biocidal activity of lysozyme has been tested against a wide range of
pathogens and spoilage bacteria, finding its main effectiveness on Gram-positive bacteria
such as Clostridium tyrobutyricum and L. monocytogenes [132].

Lysozyme expresses its antibacterial activity by disrupting the peptidoglycan layer
of bacterial cell walls, achieved through the hydrolysis of the bond between N-acetyl-d-
glucosamine and N-acetyl-muramic acid [133]. This specific mechanism makes lysozyme
extremely effective against gram-positive bacteria, while the lipo-polysaccharidic layer
of Gram-negative bacteria inhibits its access to the site of action. Many studies have
suggested the possibility to expand the lysozyme activity by modifying its molecular
structure through different pathways including covalent attachment of saturated fatty acids
to lysine residues, thermal denaturation, glycosylation, reduction of disulfide linkages, and
application of chelating molecules [134]. Nowadays, lysozyme is mainly used to challenge
undesired butyric fermentation and late blowing caused by C. tyrobutyricum in semi-hard
cheeses [135].

Lactoperoxidase is another animal-derived enzyme, secreted in the epithelial cells
of the mammary gland and largely present in cow’s milk [136]. It is extremely effective
against enteric bacteria including Salmonella spp., Shigella spp., and E. coli. It catalyses the
oxidation of thiocyanate groups by hydrogen peroxide to yield thiocyanogen, which is
then hydrolysed to hypothiocyanite. These unstable molecules react with the sulfhydryl
groups of the bacterial cell membrane proteins, causing microbial death. This enzyme can
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be applied at ambient temperature, and thus is recommended for the preservation of raw
milk [137].

Lactoferrin is a globular glycoprotein exerting antioxidant, anti-carcinogenic, anti-
obesity, and antibiotic properties. It is found in secretions of humans and other mammalians
and in colostrum milk [138]. The antimicrobial activity of lactoferrin is due to its ability to
chelate iron, disrupting the external membrane of gram-negative bacteria. Along with the
biocidal activity, lactoferrin exerts a bacteriostatic action, decreasing the microorganisms’
proximity to nutrients. It resulted as effective against many pathogenic bacteria such as E.
coli, Klebsiella spp., and L. monocytogenes [139].

3.1.3. Antagonistic Microorganisms and Bacteriocins

Some microorganisms and their metabolites can prevent the growth of others. This
ability has attracted the attention of researchers and industries, eager to apply them as a
“natural shield” to the growth of pathogenic and spoilage microorganisms in food. Nowa-
days, the application of “antagonistic microorganisms” and their derivatives for preserving
food has become widespread, and it is commonly referred to as “bio-preservation” [140].

The prominent class of antagonistic microorganisms employed in food systems are
the Lactic Acid Bacteria (LAB). LAB have been defined as GRAS by the FDA and have
obtained the Qualified Presumption of Safety (QPS) by the European Food Safety Authority
(EFSA) [141].

The use of LAB to compete against undesired microorganisms has been investigated,
along with their ability to produce nutrients and metabolites with antimicrobial properties.
Successful results were achieved by applying them to fruit and vegetables [142], fresh dairy
products [143], and cooked meat [144]. In these studies, different species of Lactobacillus
showed their capacity to thrive in competition with bacterial (e.g., L. monocytogenes) and
fungal (e.g., Penicillium spp.) populations.

Bacteriocins are proteinaceous metabolites mainly produced by LAB as a defence
mechanism against other microbial strains. Their promising application has been assessed
on a wide range of food products, including minimally processed fruits and vegetables,
dairy products, meat and fish. In particular, their maximal potency is expressed when com-
bined with other technologies through a hurdle approach [110]. Nisin and pediocin are the
major bacteriocins that have received attention as promising food bio-preservatives [133].

Nisin is a heat-stable protein produced by specific Lactococcus lactis strains. It possesses
a strong antibacterial activity against Gram-positive bacteria such as Staphylococcus, Bacillus
cereus, Clostridium spp., L. monocytogenes, and others. However, it exhibits a lower inhibiting
activity against Gram-negative bacteria and fungi [145]. In fact, nisin hinders the growth
of Gram-positive cells by binding to specific groups of the cell wall, which results in the
poration of the cell membrane and the loss of intracellular constituents [146]. Nisin found
one of its most promising applications in controlling the populations of L. monocytogenes
and Clostridium spp. in dairy products [147].

Pediocin is produced by different species of Pediococcus, a group of Gram-positive,
homofermentative bacteria belonging to the family of Lactobacillaceae. Pediocin acts by
generating holes in the cytoplasmic membrane of the target cells, reducing the intrinsic pH
and inhibiting the proteins responsible for energy production [148]. The addition of con-
centrated pediocin has been tested for the preservation of vegetables, dairy products [149],
and processed meat [150]. The activity of pediocin in food is mainly influenced by pH,
osmotic equilibrium, enzyme activity, and temperature.

Bacteriocins have been applied as antimicrobial additives incorporated in active pack-
aging. For example, nisin has been successfully employed in antimicrobial films (both
petroleum-derived and bio-based), used to wrap raw and processed meat, and tested
against Listeria spp. [97]. Moreover, its impact on the technical properties of biodegradable
films was evaluated in a recent study [103].
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3.2. Antioxidant Packaging

Antioxidant packaging represents another trend category of active packaging. In this
case, packaging is enriched with active compounds able to delay the oxidation rate of the
packed products [16].

With respect to the food sector, the activity of an antioxidant agent is mainly addressed
to suppress the ignition of lipid oxidation chain reactions, which naturally occurs within
biological matrices. This process causes the gradual alteration and decay of colour (en-
zymatic oxidation), odour, and flavour (oxidative rancidity), structure (softening), and
nutrients [151]. Antioxidants strongly differ from each other for their reaction pathways.
Some molecules act as “direct” antioxidants, reacting with intermediate peroxyl radicals
and blocking the subsequent reactions (e.g., glutathione, ascorbic acid, polyphenols). Other
molecules act as “preventative” antioxidants, binding cationic metals such as Fe (II) and
Cu (II) (e.g., albumin) [4]. According to their molecular nature and reactive mechanism,
antioxidants can be employed to produce release-type packaging, which transfers the active
substance to the food surface at a sustainable rate, or scavenging-type packaging, which
sequesters target radicals and ions without affecting the food composition [23].

The development of an antioxidant packaging system starts with the selection of
the bioactive agent, which must comply with two requirements: (I) suitability for the
target product to-be-preserved, and (II) compatibility with the polymer matrix to achieve a
homogeneous distribution of the substance in the packaging item [152]. Focusing on bio-
based and edible packaging, antioxidant films and coatings are mainly obtained through
direct incorporation of the active molecule in the biopolymer matrix. Other techniques
involve the functionalisation of the packaging material via physical (e.g., encapsulation) or
chemical (e.g., crosslinking, plasticiser addition) processes, which affect the adhesion of
the active compounds to the polymer matrix. These processes allow tailorising the rate of
release and/or the scavenging mechanism of the active molecule, adapting the materials
for a broad range of applications [153].

A broad variety of antioxidants have been evaluated for the development of active
packaging, as shown in Table 4. The current trend is focused on replacing synthetic
additives with natural and harmless alternatives.

3.2.1. Natural Antioxidants

Natural antioxidant molecules can be mainly categorised into three sub-groups: (I) vi-
tamins (e.g., ascorbic acid; α-tocopherol), (II) carotenoids (e.g., carotenes; xantophylls), and
(III) phenolic compounds.

Polyphenols constitute the most popular and important group of naturally occurring
antioxidant compounds employed for the production of active packaging due to their
strong free-radicals scavenging effect [154].

The antioxidant activity of polyphenols is commonly ascribed to single-electron trans-
fer and hydrogen transfer mechanisms, which allow the active molecule to react with active
radical species of the matrix, producing stable and harmless oxidised molecules.

Related to their composition, polyphenols can be classified into (ii) non-flavonoids
and (ii) flavonoids. Among them, flavonoids are the most largely studied for packaging
applications due to their strong antioxidant activity. Flavonoids are present in the form of
flavonols, flavones, isoflavones, anthocyanins, and others. Most of them are polar, which
makes them compatible with most of the hydroplastic polymers, and extracted through
protic solvents (e.g., water, ethanol, methanol, isopropanol) from non-edible portions of
fruit and vegetable by-products, such as peels and seeds [155].
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Table 4. Case studies of antioxidant compounds applied to food packaging for the prolongation of
the shelf-life.

Antioxidant Compounds Polymers Solvents of Antioxidant
Compounds The Effects and Advantages References

Catechin (2% or 5%) or green
tea extract (2% or 5%) Polypropylene / • Better stability against thermal oxida-

tion 6 times higher than the control
[153]

Microfluidiser apple skin
extract (ASP) 1:1 (v/v of the
polymer) and tartaric acid

(TA) 0.5–1%

0.75% CMC Distilled water
• ASP enhanced the antioxidant activity at

every concentration, but 2% was the best
one

[98]

Murta berry extract (MU) 25%
(w/w of the polymer),
glutaraldehyde (GA)

10–20% (w/w of polymer)

Methyl cellulose (MC) 1%
(w/v) Solution in ethanol 70% (v/v)

• Absence of radical scavenging activity
for control without MU

• GA decreased antioxidant activity at
higher concentration

• MU increased the release of antioxidants
from films by up to 50%

[28]

Thyme extract (TE) with a
ratio of 0.04:1 on the polymer

Chitosan 2% (w/w) and pea
starch 2% (w/w) solutions

blended together in a ratio of
1:4 w/w

Ethanol 50% • TE had an antioxidant activity of
0.26 ± 0.02 kg TE/mol DPPH

[36]

Tea polyphenol 2.5–7.5% w/w

Zein (Z) 15% (w/v), gelatin (G)
10% (w/v), blend ZG at

different ratios (2:1, 1:1, 1:2)
15% (w/v)

Acetic acid (AA) and water
• Tea polyphenol-loaded film inhibited

microbial growth and improved water
retention on freshly cut fruits.

[38]

Cedrus deodara pine needle
extract (PNE) 15% (w/w of

SPI) and cellulose nanofibril
(CNF) 15% (w/w of SPI)

Soy protein isolate (SPI) 6%
(w/v) Distilled water

• PNE is rich in phenolic compounds,
such as 2R,3R-dihydromyricetin,
myricetin-3-O-ß-D-glucopyranoside
and protocatechuic acid, that gave
antioxidant activity to SLE and SLEC
films

[106]

Anthocyanins from black
plum peel extract (BPPE)

1% (w/v)

Chitosan 2% (w/v)Nanosized
TiO2 1% (w/v) Distilled water

• CS and CS-TiO2 showed only a slight an-
tioxidant activity

• CS-BPPE showed a better radical scav-
enging activity due to the anthocyanins

• CS-TiO2- BPPE exhibited an intermedi-
ate result due to the antagonistic interac-
tion between TiO2 and BPPE

[75]

Generally, polyphenols are not employed in active packaging singularly, but mostly
exist as complex mixtures which include aqueous and alcoholic plant extracts, essential
oils from spices and herbs, and a broad variety of phenolic concentrates obtained from
various waste bio-sources [156]. For this reason, the overall antioxidant activity of these
products not only refers to their polyphenolic content, but it strongly depends on their
source, chemical composition, and extraction process [157].

3.2.2. Plant Extracts

The inclusion of plant extracts, as complex systems containing numerous molecular
components, has the potential to functionalise bio-based packaging materials with an-
tioxidant bioactivity. These mixtures are isolated from several botanical sources through
solvent-extraction technology. The extraction efficiency, and thus the phenolic content of the
extracts, can be varied by changing the operational parameters, such as time, temperature,
solvent type, solvent concentration, and pH [155]. Moreover, physical processes such as
microwave, ultra-sonication, and milling allow further enhancing the extraction rate of
these antioxidants [158].

The main vegetal sources of polyphenolic extracts used in food packaging comprise
medical plants (leaves, roots, and stems), and various parts of fruits and vegetables. Among
medical plants, extracts from thyme [36], black tea [159], green tea [160], mint [161], rose-
mary [114], and sage [162] have been added to film-forming solutions to produce antioxi-
dant films for packaging purposes. Edible fruits, grape seed [104], pomegranate peel [163],
thinned apple [164], and others have been evaluated as sources of polyphenolic extracts.
All these studies highlighted the ability of the extracts to enhance the radical scavenging
capacity of the polymer, mainly due to their high phenolic component.



Polymers 2022, 14, 4257 22 of 40

The polyphenolic prolife of an extract strongly changes in relation to its source. Ac-
cording to their composition, different extracts diversely interact with the polymer matrix,
creating variable hydrogen-bonding patterns [160]. This fact not only influences the final
antioxidant property of the film but can alternatively affect the mechanical and barrier
properties of the packaging item. For example, in some cases the large number of viable hy-
droxyl groups induce an increase of the free volumes in the blend matrix, leading to highly
flexible films [114]. In contrast, the rigid aromatic and heterocyclic rings of flavonoids can
act as physical crosslinkers of the polymer chains, improving the tensile strength and elastic
modulus of the film [2].

4. Nanotechnology in Biodegradable Packaging

Nano-technology represents one of the major research topics of the packaging sector
due to the huge number of prospective applications and advantages [165].

The use of nano-materials traditionally covers many aspects of the food sector, in-
cluding food safety, nano-sensors, nutrients delivery, and pathogen detection [4]. Lately,
nano-technologies have been utilised to improve the technical performances of conventional
bio-based materials, and to give them additional features. Besides, this novel approach
is laying the basis for the development of a new generation of smart and intelligent food
packaging systems, able to localise, sense, and remote control the food items [166].

The use of nano-structures (i.e., nano-fillers, bio-nanocomposites, and nano-capsules)
is expected to broadly enhance the potentialities of bio-based packaging, and extend the
number of smart packaging solutions in the next few years.

4.1. Bio-Nanocomposite Materials

Nanoparticles are characterised by nanoscale dimensions, usually <100 nm. When
nanoparticles are incorporated into a biopolymer material with specific technological
purposes, they take the name of “nanofillers”, and the resulting item is called a “bio-
nanocomposite” [167]. Bio-nanocomposite materials may be defined as a multiphase mate-
rial in which a continuous phase (i.e., a biopolymer) is embedded with a non-continuous
nano-dimensional phase (i.e., a nanofiller), either inorganic or organic [168].

Due to their small size, high aspect ratio, and large interfacial areas, nanofillers
have been firstly explored as structural reinforcing agents, with the function to improve
the technological properties of packaging materials. When uniformly distributed in the
polymer matrix, nanofillers are able to interact with the polymer chains, creating a tangled
network of hydrogen bonds that fill the free spaces within the matrix and restricts its
molecular mobility [91]. In this way, nanoparticles provide an overall enhancement of
the mechanical, barrier, and thermal properties of the material with respect to traditional
non-composite systems [169]. In particular, it was demonstrated that low concentrations of
fillers (<5%) are able to significantly improve biopolymer properties, which is economically
advantageous in view of their large-scale application [170].

Along with the structural function, the incorporation of nanofillers also represents a
suitable strategy to confer additional functions to the packaging material. On the one hand,
nanofillers can serve as bioactive additives, since some of them exhibit inner antimicrobial,
antioxidant, and scavenging properties [166]. On the other hand, nanofiller incorporation
can tailorise the retainment and release kinetics of bioactive compounds from the polymer
matrix, and adapt the barrier performances of the packaging item [152]. As a result,
the correct selection of a nanofiller (nature, quantity) and suitable process parameters to
customising the bio-nanocomposite materials for countless potential applications [171].
Some case studies are shown in Table 5.
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Table 5. Application of nanoparticle technologies to food packaging.

Nanoencapsulated or
Nanofiller Molecules Polymers Solvent The Effects and Advantages References

Silver nanoparticles (AgNPs)
of 79 mM silver nitrate

incapsulated in 45 mM of
Poly(vinyl alcohol) (PVA)

Hydroxypropyl
methylcellulose (HPMC) 3%

(w/w)
Distilled water • AgNPs helped to increase tensile strength

• NPs decreased the WVP
[99]

Montmorillonite clay (MMT)
1–10%

Potato starch (PS) and
Microcrystalline cellulose

(MCC)
Distilled water

• Opacity increased
• MMT improved thermal stability at higher

concentration
• Compatibility between MMT and PSMCC

that increased WVP and mechanical property
• MMT influenced dielectric property

[172]

TiO2 nanopowders
0–2% (w/w) Chitosan 2% (w/v) Distilled water

• The addition of nanopowders improved the
mechanical and water barrier properties

• TiO2 lowered the transmittance through the
film

• Nanocomposites gave ethylene-
photodegradation property to the film

[101]

Nisin (N) 0.25–0.5% (w/w) and
ε-polylysine (PL) 0.2% (w/w)

Corn distarch phosphate
3% (w/w),nanocellulose 0.5%

(w/w),
CMC 0.8% (w/w)

Distilled water • Good compatibility of N and PL with CN to
form a compact and homogeneous film

[103]

Amine functionalised mullite
fibres(AMUF) from 0.5 to

10 %wt

Polypropylene-grafted-maleic
anhydride
(PP-g-MA)

o-xylene

• Improved thermal stability
• Up to 5%, AMUF enhanced the Young’s mod-

ulus and gave better crystallisation and less
fracture in the structure of PP

[173]

Nanofibril of cellulose
10–40 % w/w from wheat

straw
Polylatic acid (PLA) /

• Solid state shearmilling process (SSSM) per-
mitted to maintain good thermal stability for
cellulose but decreased the crystallinity index

[174]

Cellulose nanofibril (CNF)
15% (w/w of SPI)

Soy protein isolate (SPI) 6%
(w/v) Distilled water

• CNFs and PNE gave opacity to the film, im-
proving the barrier to UV-light and prevent-
ing photo-oxidation

[106]

Microcrystalline cellulose
3% (w/w)

Cellulose 3% in 68% ZnCl2
(w/w) Distilled water • Developed a transparent Zn-cellulose film

crosslinked with Ca2+
[39]

Microcrystalline cellulose
(MCC) 4% (w/v)

Chitosan
(CS) 4% (w/v), whey protein
isolate (WPI) 4% (w/v) and

glycerin 10–50%

Distilled water

• Compatibility between polymer and addi-
tives, rough surface, no sign of pores and
cracks

• Better WVP at 1.5:1 CS/MCC ratio with 30%
glycerin and 3.6 of pH

[41]

Nanosized TiO2 1% (w/v) and
black plum peel extract

(BPPE) 1% (w/v)
Chitosan 2% (w/v) Distilled water

• Nanoencapsulation of TiO2 and antho-
cyanins of BPPE improved mechanical,
UV-vis, WVP and light barrier properties

• Compatibility between molecules that form
the film

[75]

4.1.1. Nano-Clays

Clays have gained remarkable interest as reinforcing fillers to improve the mechanical,
thermal, and barrier properties of biopolymers [173]. These siliceous compounds mainly
exist in the form of laminated one-dimensional (1D) or two-dimensional (2D) fibrous struc-
tures that can be easily dispersed into a polymer through two possible mechanisms, namely
intercalation or exfoliation [175]. The latter mode represents the best strategy to incorporate
these compounds into a polymer matrix, since it allows the complete delamination of the
particles and their homogeneous diffusion [165].

Some widespread nano-clays applied to develop bio-nanocomposite materials are
montmorillonite, bentonite, palygorskite, and sepiolite. Among these, montmorillonite
have been largely tested due to its excellent technical behaviour, abundance, low cost,
and compatibility with a wide range of biopolymers [176]. It consists of a hydrated
aluminium silicate layered structure, with a modest negative charge which varies from
layer to layer [175]. It possesses a high surface ratio and interfacial area, which contributes
to its uniform distribution.

The features of a clay-reinforced film strongly depend on the polymer matrix, nature
of the clay, the clay–polymer interactions, and the processing conditions [102]. Besides,
surface-modification methods have been tested on clays to enhance their capacity of in-
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terfacial interaction, including the use of alkylammonium cation surfactants. However,
these surfactants are not appropriate for modifying clay surfaces in bio-applications due
to their toxicity [177]. As a result, most clay-composites are prepared using unmodified
clay materials.

4.1.2. Metal Nanoparticles

Metal nanoparticles such as copper (Cu), silver (Ag), gold (Au), and their alloys have
been widely applied to produce nanocomposite active films and coatings due to their
strong antimicrobial activity [178].

Different mechanisms have been postulated to explain the antimicrobial action of
metal nanoparticles. In particular, Tamayo et al. [179] suggested a three-step mechanism to
explain the antimicrobial activity of Cu-nanoparticles on the bacterial cell in Cu/polymer
nanocomposites: (I) the biopolymer gradually releases Cu2+ ions, which permeate the cell
wall and interact with the membrane proteins and lipopolysaccharides; (II) the cell wall
collapses due to the weakening of the membrane, which leads to the loss of cell organelles;
(III) ions interact with the bacterial DNA, causing its rupture and producing reactive oxygen
species (ROS), which lead to oxidative damage and bacterial death (Figure 8). A similar
mechanism was also proposed to describe the activity of Ag-doped edible packaging [178].

Despite their antimicrobial activity, metal nanoparticles possess a certain antioxidant
activity, exerted via the radical scavenging mechanism [180]. Moreover, they are compatible
with various natural antioxidant extracts and EOs, and thus can be used in synergy with
them to produce films with enhanced performances [181]. Additionally, the incorporation
of metal nanoparticles can alter the barrier properties of the material by filling the voids in
the porous matrix [99].

4.1.3. Metal Oxides

Metal oxides have been extensively studied for food-packaging applications due to
their strong antimicrobial properties, which makes them promising alternative to organic
agents. They include titania (TiO2), silica (SiO2), magnesium oxide (MgO), zinc oxide
(ZnO), and others. Among these, TiO2 and ZnO are the most widely tested in the food
packaging sector due to their specific physicochemical characteristics, chemical stability,
and biocompatibility [182]. These nanoparticles have been tested both as a reinforcing
agent to improve the technical properties of edible films, and as antimicrobial additives.
Specifically, they possess a remarkable photocatalytic activity in the near-UV region, since
they generate reactive oxygen species (ROS) that can directly damage the cell walls [183].

As an example, Siripatrawan et al. [101] developed TiO2-enriched chitosan films. The
authors showed that increasing concentrations of TiO2 enhanced the photodegradation rate
of ethylene. Besides, the film exhibited broad antimicrobial activity against Gram-negative
and Gram-positive bacteria.
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4.1.4. Bio-Nanofillers

Bio-nanofillers are ultrathin structures produced by different methods (e.g., electro-
spinning; acid hydrolysis etc.) [184,185] from organic materials. They are biodegradable,
renewable, and possess a high surface-to-volume ratio and low density. These particles
have been extensively tested in the food packaging sector as reinforcing agents, and to
modulate the delivery of bioactive compounds [186].

Cellulose derivatives are the most widespread bio-nanofillers to fabricate biodegrad-
able composites [187]. Cellulose nanoparticles can be classified into three types, related to
their structure: (I) cellulose nanocrystals (CNCs), which are rod-like crystals with 5–70 nm
width and 100–250 nm length; (II) cellulose nanofibre (CNFs), which possess a fibrous
structure with a width of 5–60 nm and length of several nanometers; and (III) bacterial
cellulose (BNCs), which consists of ribbon-shaped fibrils with 70–80 nm width [188].

Many researchers have focused their attention on the extraction of nanocellulose from
different sources of biomass and wastes, such as agricultural wastes, forest residues, algae
residues, and industrial by-products [189–191]. The extraction methods can be divided into
three different kinds of treatments: chemical, physical, and biological [189].

The chemical method represents the most conventional way to extract nanocellulose.
It employs a bleaching treatment (e.g., oxidation by NaClO in water at pH10, in presence
of NaBr and TEMPO for catalysts), alkaline treatment (80 ◦C for 2 h, 4.5% w/v NaOH), and
acid hydrolysis (45 ◦C for 40 min, H2SO4 60–64% w/v) [192–194]. The physical method
represents an effective treatment, which allows obtaining the highest yields of extraction.
The main drawback related to this method is that it is highly energy-consuming. Grinding,
homogenisation, ultrasound, high-pressure, and screw extrusion processes are widely
employed for this purpose [189]. Last but not least, the biological approach involves
the treatment of the cellulosic matrix through microorganisms, which can synthesise
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enzymes for the degradation of cellulosic materials [189], or through the direct application
of cellulases enzymes (such as cellobiohydroalases and endoglucanases) [185,190].

The combination of these techniques can overcome the drawbacks related to every
single method.

BCN is produced mainly by Komagataeibacter xylinum (but also Agrobacterium tume-
faciens, Dickeyadadantii, Salmonella enterica, Pseudomonas putida, Rhizobium leguminosarum,
Escherichia coli) bacteria, through molecular pathways that involve the presence of glucose
or different other sources of carbon [195].

Cellulosic nanofillers exhibit a characteristic self-association property, deriving from the
inter- and intramolecular hydrogen bonding involving their surface hydroxyl groups [196].
This promotes the strong adhesion of these materials on and within the polymer matrix,
enhancing the mechanical characteristics of the composite material by creating tortuosity,
crystal nucleation, and chain immobilisation [105]. In addition, the highly tortuous structure
induced by crystalline fibres can hamper the water vapour diffusion, resulting in low WVP
values. Due to their surface reactivity, they can also serve as bio-scaffolds.

Cellulosic nanoparticles possess an enormous amount of active surface hydroxyl
groups that can be modified by chemical reactions such as cationisation, silylation, car-
boxylation, polymer grafting, and hybridation with metals and metal oxides [23]. In
particular, surface-modified nanofillers possess higher interfacial compatibility with a
range of biopolymers compared with un-modified ones (Figure 9). Surface-modification
also influences the polarity and hydrophilic behaviour of the material, enhancing its ability
to hinder vapour diffusion throughout the packaging system [197].
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Oyeoka et al. [198] demonstrated the fast water absorption rate and biodegradation
of films incorporated with cellulose nanocrystals (CNCs). The behaviour of the CNCs at
different concentrations was interesting: at lower levels of incorporation, the films tended
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to absorb more water (until 516% in 50 min) and be more resistant to degradation in soil;
conversely, at higher levels of CNCs, the degree of absorption of water decreased (until
373% in 50 min), and the resistance to degradation was slightly reduced.

4.2. Nano-Encapsulation and Nano-Emulsions

Encapsulation is a technology which consists of packing a target substance into a solid
envelope, with the double purpose to protect it from external interactions and provide a
controlled release under specific conditions [125]. Commonly, hydrophilic materials (i.e.,
polysaccharides, proteins) are used to encapsulate hydrophobic substances, and vice versa.

According to their size, capsules can be categorised as macro-, micro-, and nano- [117].
Specifically, nano-capsules have been widely applied as carriers of nutraceuticals (macronu-
trients, enzymes, prebiotic, probiotic, vitamins, omega-3-fatty acids) and technological
additives (antioxidant, antibacterial, and antifungal chemicals; colourants; flavours) to
produce functional food with enhanced safety and stability [199]. In addition, they were
used to dope biodegradable films and coatings to fabricate nanocomposite packaging
solutions [118]. As an example, Liu et al. [200] developed films based on gelatin and
enriched with different concentrations of tea polyphenols/chitosan nanoparticles. The
incorporation of nanoparticles decreased the WVP of the resultant films. Moreover, the
release kinetics of tea polyphenols from the film surface were evaluated by means of two
food simulants (i.e., 50% ethanol at 4 ◦C; 95% ethanol at 25 ◦C). The study highlighted a
slow releasing rate of the polyphenols for both the simulants, which was probably due
to the film’s tortuosity and increased diffusion pathways induced by the nanoparticles.
Similar results were obtained by Cui et al. [201] for zein films doped with pomegranate
polyphenols/chitosan nanoparticles.

Nano-emulsification represents another technique which allows to increase the bioavail-
ability and stability of bioactive compounds, and to guarantee their proper delivery in the
surrounding environment [202].

A nano-emulsion is a system composed by two immiscible liquids in which one is
homogenously dispersed in the other, forming nano-sized globules (50–500 nm). Due
to their high ratio of droplet surface/mass unit, nano-emulsions possess a high deliv-
ery/encapsulation ability [203].

The most widespread application of nano-emulsions in the food industry consists of
the retainment and controlled delivery of active agents to solid foods. Bioactive molecules
such as EOs can be directly incorporated into a food system or entrapped in polymer matri-
ces to produce active packaging [50]. In particular, the incorporation of nano-emulsified
EOs into biodegradable materials has the double advantage to minimise the concentration
of active agent required to perform a valuable antimicrobial activity and to reduce its
sensory impact (Figure 10).
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5. Biodegradable Packaging from Agri-Food Waste

To date, about 30–50% of food is wasted from post-harvesting to processing, storage,
and consumer usage. Typical examples of food by-products are vegetable peels, fruit
pomace, seeds, and low-quality whole fruits and vegetables [204]. The large part of these
matrices is still discarded in landfills, while a small portion is valorised for bioprocess-
ing [205].

A feasible strategy to valorise food waste and by-products consists of their use for
the production of bio-based packaging materials. This approach involves two remarkable
benefits. On the one side, food by-products constitute a cheap, renewable, and under-
utilised source of polysaccharides, lipids, proteins, and many other components [206].
These components can be either employed as the major constituent of packaging or as
minor additives, resulting in the reduction of the production costs. In particular, the
inclusion of by-products components has been demonstrated to improve the engineering
properties of the packaging material, thus conferring it additional activity [207].

5.1. Life Cycle Assessment LCA

According to estimates by “Plastic Europe 2022”, the packaging sector is responsible
for 33.5% of plastic consumption worldwide, but only 6.6% of this plastic is recycled [208].
Due to this circumstance, it is necessary to determine the carbon footprint of these materials
to obtain an in-depth report about possible environmental damage to both production and
potential recycling.

For this reason, is important not only to replace non-biodegradable materials, but
also to estimate through a holistic approach the impact on the environment of the new
compounds chosen to be the new green polymers [209]. LCA is an analytical and systematic
methodology to estimate the ecological footprint of the entire process of modification,
transformation, transportation, emissions, and waste of a product. Life Cycle Assessment,
regulated by ISO 14040:2006, has developed into a legitimate area of study in the field
of research, becoming mandatory for efficient organisational, commercial, and disposal
process analysis.

Numerous studies have been recently conducted to highlight the issues related to the
production of plastics from non-renewable and poorly biodegradable sources [210–212].
These issues should be understood and exploited with a view towards a greener recycling
process for petroleum-based materials, with the hope of eventually replacing them entirely.

5.2. Pre-Treatments of By-Products and Application for Packaging Production

The most common way to prepare bio-based packaging containing food by-products
involves to directly blend the whole by-product or its components with biopolymers and
additional additives [213]. A necessary step to apply by-products for packaging production
is represented by their pre-treatment.

The first step of pre-treatment usually involves drying and milling processes. The
drying stops the microbiological decay and enhances the handling of the product. Milling
process reduces the size of the product particles, improving the processability, uniformity,
and dispersibility for blending [214].

A further step of treatment can involve the isolation of specific components through
conventional or non-conventional (e.g., microwave or ultrasound) extraction techniques [75].
This process allows isolating and purifying specific fractions of the raw material, which is
subsequently added to the film-forming solution for specific purposes such as technical
properties enhancement (e.g., polysaccharides to improve mechanical properties; lipids
to improve water-barrier properties) and providing additional features to the packaging
material (e.g., polyphenols for antioxidant capacity; essential oils for antimicrobial activity).

In recent years, some novel approaches have shown their potential as valuable ways
to valorise food by-products for packaging development. Among these strategies, it is
worthy to cite the extraction of fibres and cellulose from different by-products [215], the
isolation of nano-sized cellulose and their employment to improve the mechanical and
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water-related properties of packaging material [174], the production of cellulose by bacteria
from different foods by-products [216], chemical modifications of the raw material by
different methods (e.g., grafting) [217], and fermentation of fruit juice pulp to obtain
thermoplastic biodegradable polymers such as poly-hydroxy alkanoates [218] (Figure 11).
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5.3. Impact on the Engineering Properties of Packaging

In recent years, particular attention has been dedicated to by-products (both whole
and fractionated) as sustainable and green bio-fillers to produce materials with enhanced
technical characteristics.

Taking into account the mechanical properties, Nair et al. [32] showed that inclu-
sion of 5–15% of wood-based CNCs led to a significant increase in the tensile strength of
PLA films, mainly ascribed to the densified volume fraction of fibrils. Yang et al. [174]
observed that, according to the treatments performed on nano-sized cellulose (e.g., pres-
ence/absence of solid-state shear milling), their addition to the polymer matrix can either
decrease or increase the tensile strength of the final film. This effect mainly depends on
the interfacial contact area achieved between the nano-sized fibres and the polymer chains.
Overall, it is interesting to note that many bio-based materials enriched with nano-sized
cellulose have tensile strength comparable to commonly used low-density polyethylene
(7.0–25.0 MPa), while the elongation percentage of most films are significantly lower. Be-
sides cellulose-based bio-fillers, other compounds derived from by-products can help
improve the mechanical properties of packaging materials. As an example, pomegranate
peel extract was found to enhance the elongation percentage of protein-based (from 81%
to 173%) and PVA films (from 48% to 182%) based on the polyphenol interaction with the
material matrices, which chemically strengthened the composite [213].

The addition of by-products can reduce the water vapour permeability of a pack-
aging material by altering its overall hydrophilicity (reducing the available hydrogen
groups) and the structure of the biopolymer (increasing the tortuosity for the passage of
water molecules).

Grape seed extract [219], lime peel extract [207], and other extracts were found to
improve the water barrier properties of the tested materials when applied at specific
concentrations (excessive or not sufficient concentrations can either have no significant
effect or worsen the properties).

Aside from the above-mentioned properties, some researchers highlighted the changes
in oxygen barriers, optical properties, thermal properties, and the morphology of bio-based
materials induced by the addition of food by-products. For example, the introduction of
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discarded balsamic vinegar or tea leaf waste extract remarkably decreased the oxygen per-
meability of PVA films [220]. As well, thermal stability could be enhanced by strengthening
the chemical bonding pathways within the biopolymer matrix [219], or by including high
thermal-stable components such as lignin [32].

5.4. Impact on Antioxidant and Antimicrobial Capacities of Packaging

Food by-products contain a large number of bioactive compounds (i.e., polyphe-
nols, organic acids, EOs). Recently, the application of these compounds has caught the
interest of many researchers as an appealing strategy to confer targeted capacities to
packaging systems.

Regarding the antioxidant activity, the addition of pomegranate peel extracts [213]
apple skin powder [98], and black plum peel extract [75] resulted in a significant increase
of the antioxidant capacity of the final films. Some researchers applied various by-product
extracts to prevent the oxidation of lipid-rich foods. As an example, chitosan films enriched
with olive pomace resulted in significantly lower peroxide values in walnuts compared
with control (without extract) and polyethylene plastic films after 31 days of storage [221].

Along with antioxidant capacity, various by-products can also confer antimicrobial
properties to the packaging material, especially in the form of extracts. Two examples are
pine needle extract [106] and black plum peel extract [75].

The variable antimicrobial activities of extracts from by-products mainly result from
the mixed active compounds that characterise their specific composition. Moreover, the
antimicrobial efficacy strongly depends on the applied concentration and the interaction
with other components, which can be either synergistic or contrasting.

6. Future Challenges and Concluding Remarks

Much effort has been devoted to developing bio-based active packaging solutions
(Table 6). However, there is still a deep gap between laboratory-scale research and real-time
applications and commercialisation.

The first root of this gap is technological. It is worthy to cite some practical examples:

• EOs possess a strong biocidal efficacy on a broad range of microorganisms, which
virtually makes them suitable alternatives to conventional preservatives. However,
each of them also possesses a peculiar aromatic profile, which could negatively affect
the flavour of food, and this hinders their broad usage [222];

• Most of the biodegradable packaging films still do not provide a sufficient water
barrier for moisture-sensitive foods, and so their feasible applications are mainly
restricted to disposable food wrappers for fast foods that do not require improved
water barrier properties [174];

• To date, most of the studies focused on packaging with antimicrobial and antioxidant
properties are still performed at the in vitro level. For the future, it would be worthy
to extend the achieved findings to in vivo experiments in order to provide the food
industry with more specific data about the impact of these extracts on food safety,
quality, and shelf life.

• Industrial production of biopolymers for the replacement of plastic is still an im-
possible path to pursue due to the cost of production of these molecules compared
with plastics.

The second root is economical. For example, authors suggested reducing the sensory
impact of EOs by entrapping them in nano-emulsions. However, these approaches suffer
economic restrictions since they are not cost-effective [223]. Besides, talking about natural
metabolites, their production relies on the availability of their resource, on the extraction
procedure, and the purification steps, etc. All these aspects contribute to increase the
final price.
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Table 6. Advantages and disadvantages of essential oils, LABs, biopolymers, nanotechnology, and
natural antimicrobials.

Topics Advantages Disadvantages References

Essential oils • Antimicrobial effect
• Antioxidant property

• Volatility
• Hydrophobicity
• Modify the flavour of the products

[109,129,224]

LABs
• Does not affect the flavour of the

products
• Produce bacteriocins

• Different characteristics and effec-
tiveness for every strain

• Viability
[141,150]

Biopolymers

• Biodegradable
• Renewable
• Non-toxic
• Can be extracted from industry agri-

cultural wastes

• Water-soluble
• Poor mechanical property
• Scarce heat resistance
• Expensive industrialisation

[3,15,17–19,24,45–47,51–54,57,60,63,65–67,69,71–
74,76,79–84,91,168,199,225,226]

Nanotechnology

• Enhancing water vapour property
• Good barrier to gas
• Improvement of mechanical prop-

erty
• Improvement of thermal stability
• Wide application in food packaging
• Antimicrobial and antifungal activity

• Decrease of elongation %
• Potential toxicity
• Lack of data about migration from

packaging to food

[90,167,170,178,179,182,187,188,196,203,227]

Natural
Antimicrobials

• Generate ROS to inactivate the bacte-
ria

• Considered GRAS and non-toxic
• Biodegradable
• The one derived from plants usually

are good antioxidant compounds
• Can be encapsulated for a slow re-

lease of antimicrobial compounds
and a better thermal stability

• Poor knowledge of possible inter-
actions between antimicrobial com-
pounds and food

• Oscillating stability of the effective-
ness of these molecules

• Could give undesirable flavours
• Only a few natural antimicrobics

compounds have a wide range of ap-
plications against microorganisms

[1,5,19,20,50,90–92,96,107,108,110,133,139,145,147,
148,154,179,203,222,228]

The third root is related to the impact of these compounds on human health and the
environment. In this sense, the composition of each active agent, its specific migration rate
from the packaging material, and the interactions with the food product should be fully
characterised to avoid any possible hazard for human health and to ensure the quality of
the whole package. This is particularly the case of nano-technology application in food
packaging [23]. The risks related to nanomaterials are mainly due to the lack of knowledge
about their mechanisms of migration from the packaging to the food product and the
environment. In this sense, food regulatory bodies such as FDA and EFSA have expressed
their reservations about the extensive application of these materials and established strict
regulations on the transfer threshold of these compounds. For example, EFSA established
that the upper limit for silver migration in food packaging is 0.05 mg/L in water and
0.05 mg/kg in food (EFSA, 2021). In this sense, further and in-depth research about
the migration pathways of these particles is strictly required to sustain their regulatory
approval [167].

These concerns are certainly a significant drawback for the pilot and industrial ex-
ploitation of natural compounds as additives in novel, upgraded, bioactive food packaging
materials. However, environmental pollution connected to the disposal of foods, agro-
industrial by-products, and conventional plastic packaging are becoming significant issues.
For this reason, it is necessary to encourage research in the field of biopolymers based on
sustainable production (i.e., use of by-products from the industry as extracting matrices;
utilisation of green solvents and physical treatments; microbiological processes) to fulfil
the market demands and to achieve the goals outlined in the 2030 Agenda (UN).

Overall, further efforts will be needed to strengthen our knowledge about all the
branches of this field. These novel studies will allow the green era of food packaging to
move a step forward towards the future.
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