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Abstract. MicroRNAs (miRNAs) as biomarkers of numerous 
diseases, are a novel group of single-stranded, non-coding 
small RNA molecules, which can regulate the gene expression 
and transcription or translation of target genes. Therefore, 
accurately identifying miRNAs and predicting their poten-
tial target genes correlated with ischemic stroke contribute 
to quick understanding and diagnosis of the pathogenesis of 
ischemic stroke. In order to identify the targets of miRNAs, 
the differential expression and expression profiling of mRNAs 
in genome are integrated by using the Gene Expression 
Omnibus (GEO) database and limma package. Furthermore, 
the probabilistic scoring approach called TargetScore, is 
proposed as a promising new technique combined with the 
expression and sequence information of the known genes. 
In this study, the priori and posterior probabilities of target 
genes were obtained by Variational Bayesian-Gaussian 
Mixture Model (VB-GMM). Consequently, the target genes 
of miR-124, miR-221 and miR-223, correlated with isch-
emic stroke, were predicted using the new target prediction 
algorithm. Ultimately, the comparable downregulation target 
genes were obtained by integrating the transcendental and 
posterior values.

Introduction

Ischemic stroke or cerebral ischemia, one of the most common 
cerebrovascular diseases, is mainly characterized by the 
softening necrosis of brain tissue caused by abnormal blood 
circulation, high incidence, sudden onset and easy relapse (1). 
According to the reports, ischemic stroke has become the 
third leading cause of death and permanent disability in the 

United States, with up to 30% mortality and higher disability 
rate (2,3). A large number of studies have indicated that isch-
emic stroke gives rise to complex cellular biochemical events, 
eventually causing apoptosis of cells and the death of neurons 
in ischemic regions (4,5). By the sudden onset of ischemic 
stroke and rapid development of brain injury in ischemic 
region restrictions, it is difficult to accurately find effective 
therapies to cure the patients with cerebral ischemia in a short 
time (6,7). Therefore, identifying the biomarkers and quickly 
diagnosing the pathogenesis of cerebral ischemia is urgently 
needed to prevent the onset of stroke. Recently, a large number 
of studies have demonstrated that microRNAs (miRNAs) 
can be identified as biomarkers of various diseases, and their 
expressive abilities play an important role in clinical applica-
tions (8-12). miRNA as one of the small non-coding RNAs, 
with ~19-25 nucleotides in length, has been found to negatively 
regulate the post-transcriptional gene expression by inhibiting 
protein translation or cutting off the mRNAs of the target 
genes (13-16). To date, the number of miRNAs in humans 
has reached >1,000 species (17). The target genes of mature 
miRNAs are distinguished by the base-pairing interactions 
between different nucleotides in the seed and untranslated 
regions. For a single miRNA, there are multiple evolutionarily 
conserved target genes and several times non-conserved target 
genes (18). Presumably, ~30% of all genes in human could be 
regulated by miRNAs (19).

Although the function of miRNAs on the pathogenesis 
of ischemic brain injury has been investigated (20,21), 
it is still a challenge to accurately predict the miRNA 
targets. Furthermore, the achieved specificity is <50% 
and poor consistency is shown among the most advanced 
algorithms (22). The prediction program of target genes is 
mainly based on sequence complementarity, evolutionary 
conservation, free energy, and target site accessibility (23-26). 
Although evolutionary conservation contributes to enhance 
the signal-to-noise ratios, the conservative approach is limited 
because of the existence of non-conservation functional target 
sites. Especially for the mammalian genomes, the performance 
of conservation‑based methods is significantly decreased due 
to the short evolutionary time (27). Similarly, the prediction 
program based on free energy or target site accessibility has 
a dependence on the secondary structure prediction tools, 
resulting in many shortcomings. The limitations of all these 
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prediction algorithms indicate a lack of genome-wide func-
tional data on investigating the effect of miRNA regulation 
in vivo. The development of transcriptomic analysis and 
proteomic profiling methods has assuaged the requirements 
for genome-wide functional data to some extent (28-30). 
Especially for mixed prediction methods, the expression 
profile of mRNA obtained by microarray sequencing, miRNA 
and overexpression, has been proven to be a promising 
predication method to illuminate the effect of specific miRNA 
regulation on genome-wide, and this approach does not rely on 
evolutionary conservation (31).

The impact of miRNA regulation on the cerebral ischemia 
has been investigated in many studies (32,33). However, very 
few reports are available on predicting the target genes of 
miRNAs by the screening of differentially expressed (DE) 
genes. Simultaneously, TargetScore, as a novel prediction 
algorithm, has a high accuracy in estimating known target 
genes, and it is used to identify the optimal target genes. In the 
present study, the selected miRNAs correlated with cerebral 
ischemia are hsa-miR-124, hsa-miR-221 and hsa-miR-223, and 
were studied by DE genes and TargetScan analysis (34-38). In 
addition, the probabilistic scoring method, named TargetScore, 
was adopted to evaluate the consistency of the predicted value 
with the true value.

Materials and methods

Overview. A new probabilistic method with high accu-
racy was adopted to analyze the miRNA target prediction 
problem, which was accomplished by combination of the 
miRNA-overexpression data and the sequence-based scores 
obtained by other prediction methods. Each score obtained 
could be considered as an independent observation variable 
to be entered into the Variational Bayesian-Gaussian Mixture 
Model (VB-GMM). The maximum likelihood method was 
chosen to avoid overfitting. In particular, due to the given 
expression fold-change resulted from the miRNA transfec-
tion, the downregulated target genes that had few or position 
fold‑change because of the off‑target effects were identified 
by using a three-component VB-GMM (39). The optimization 
of VB-GMM parameters was performed by using Variational 
Bayesian-Expectation Maximization (VB-EM) algorithm. 
Ultimately, the mixture component obtained from the largest 
absolute methods of the observed negative fold-change or 
sequence score was related to miRNA targets, which could 
be represented as ῾target component .̓ Any other component 
was considered as ῾background component .̓ Therefore, the 
inference result acquired from the posterior distribution of the 
target component for the observed variables was equivalent 
to the inference result of miRNA-mRNA interactions. The 
values of TargetScore as the sigmoid-transformed fold-change 
were calculated by weighting the average posterior value of 
target components for all of the features.

TargetScore. TargetScore can be considered as a comprehen- can be considered as a comprehen-
sive probabilistic score of a gene becoming the target of a 
miRNA. Briefly, the TargetScore value is defined as follows:

where σ(-logFC) is calculated using the formula:

and p(t|x) is the posterior inferred from the calculation method 
of VB-EM. The value of logFC in equations 1 and 2 is an actual 
value obtained from the experimental database. The higher the 
TargetScore value, the more accurate the prediction results.

miRNA‑overexpression data collection. Gene Expression 
Omnibus (GEO) database (www.ncbi.nlm.nih.gov/geo/) as 
a public microarray data repository, was used to collect the 
miRNA-overexpression data in the present study. To date, the 
GEO is the largest compendium of miRNA-overexpression 
data. In order to automatically process data, a pipeline written 
with R was developed by using the getGEO function of the 
GEOquery R/Bioconductor package (40). The logFC value 
for treatment (miRNA transfected) versus control (mock) 
was calculated in each dataset. For mRNAs responding 
with multiple probes in a single experiment, the average of 
the logFC values was adopted. The mRNAs without logFC 
in both vectors that related to the same miRNA transfection 
(investigated in different experiments) were deleted, and the 
remaining missing values were filled into one vector using the 
non-missing values in the other. For the same miRNA trans-
fection with >2 logFC, the mRNA deficiency in all of those 
vectors was deleted and the remaining missing values were 
interpolated making use of knn.impute from R package (41). 
Eventually, a representative logFC vector in each miRNA was 
selected, which possessed the highest Pearson's correlation 
with the binary vector of the verified target genes. Moreover, 
if there was no valid validation target, the average of multiple 
logFCs would be used as a further method of selection param-
eters. In the present study, data with no. GSE22255 were 
entered, and 40 data were exported. All data were divided 
into two groups on average; one was the treatment group with 
ischemic stroke, named IS, and the other was the normal group 
without ischemic stroke, named control.

DE genes. The screening of DE genes was conducted by the use 
of limma that is an R/Bioconductor software package. It was 
provided by limma for an integrated solution of analyzing data 
in the gene expression experiments. In this study, two groups 
of samples, including control and IS group, were processed 
using the limma software package. Furthermore, the differen-
tial expression of genes was calculated and clearly displayed, 
and the expression genes with large differences were screened 
out. Using limma software package, t-test and F-test were 
performed on the gene expression matrix that was formed by 
the differential expression genes, limFit function was used for 
the data to linearly fit, eBayes statistics were carried out and 
FDR corrected P-values were calculated (<0.05). The extracted 
target genes after inspection in linear model should meet the 
the absolute value of logFC≥0.05 and P<0.05.

Results

Obtaining DE genes. Forty samples derived from the GEO 
database were divided into ῾control group̓  and ῾IS group̓. In 
total, 54,675 genes were obtained by entering the database 
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no. GSE22255. For the obtained genes, the t- and F-statistics 
were verified by the limma package. In addition, the linear 
fitting of data and eBayes statistics were performed using 
the limFit function. Ultimately, 901 expression genes with 
large difference were screened out, and the information of 
logFC and P-values of all genes were obtained. The density 
of P<0.05 was calculated (Fig. 1). P-value with a positive 

correlation between the number of DE genes with larger 
difference and the P-value can be seen from the results. 
Furthermore, a volcanic map showing the DE results of all 
genes was plotted as shown in Fig. 2A. A significant result 
can be seen in Fig. 2A; that is, the DE genes are reduced 
with the P-value decreased and the absolute value of logFC 
increased. Several significant DE genes were found, and 
their expression value in different samples was obtained 
and plotted in Fig. 2B. A similar trend for the four DE genes 
in IS group was presented, and the expression value for the 
downregulated gene ῾TNFRSF17᾿ was found to be lower 
than that of other upregulated genes. The expression of these 
significant DE genes is shown in Table I.

Acquisition of TargetScore. miRNAs in human genome are 
well conserved and play an important role in post-transcrip-
tional regulation of gene expression. In this study, the imput 
miRNAs were hsa-miR-124, hsa-miR-221 and hsa-miR-223, 
which contained a set of samples and expression profiles of 
20,514 genes for the experimental data. The average of all 
samples was taken to obtain the logFC average of each gene. 
Eventually, the TargetScore value of all genes was constructed 
by importing the logFC value into equation 1. A total of 
442, 263 and 384 genes with TargetScore value >4.25 were 
predicted for hsa-miR-124, hsa-miR-221 and hsa-miR-223, 
respectively. The distribution of TargetScore value and density 
for the three miRNAs was plotted and is shown in Fig. 3. 

Figure 2. (A) Volcano plot based on fold-changes and posterior odds of DE 
genes. (B) Expression values of several typical DE genes obtained from the 
limma package across different samples. DE, differentially expressed.

Figure 1. Number of DE genes in 40 samples correlated with ischemic stroke 
for different P-value regions. DE, differentially expressed.

Table I. Relative values of the expression levels of several dif-
ferential genes.

DE gene logFC Ave Expr t value P-value

TNFRSF17 -0.26587 2.458116 -3.3729 0.001625
JUN 0.280499 3.007196 3.532038 0.00103
CXCL8 0.458555 3.415384 3.221804 0.002486
G0S2 0.456548 3.240999 3.150832 0.003025

DE, differentially expressed.

Figure 3. Density distribution of TargetScore for miR-124, miR-221, and 
miR-223.
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An obvious result can be found in Fig. 3, that the number of 
predicted genes is increasing, especially for the TargetScore 
value which is >0.4254, and the number of genes at 0.4255 
is >100.

Screening optimal target genes. For all obtained genes, the 
value of the TargetScan CS, TargetScan PCT derived from 
experimental data and TargetScore value calculated by 
equation 1 were analyzed to determine the optimal target 
genes. Density analysis of the TargetScan CS, TargetScan 
PCT and TargetScore for the hsa-miR-124 in different condi-TargetScore for the hsa-miR-124 in different condi- for the hsa-miR-124 in different condi-
tions was carried out, where ῾False᾿ indicates that the gene 
is not reported in the literature, and ῾True᾿ indicates that the 
gene has been reported in the literature (Fig. 4). It is worth 
mentioning that the negative values of all data in Fig. 4 are 
treated as positive values to facilitate the analysis. According 
to the density change of the curves in Fig. 4A-C, although the 
number of genes in the ῾False᾿ curve is significantly higher 
than that of ῾True᾿ curve, the densities of the ῾False᾿ and 
῾True᾿ curves have a similar tendency. Therefore, the optimal 
target genes could be identified by integrating the TargetScan 
CS (<-0.3 cut-off) and TargetScore (>0.4254 cut-off). Besides, 
the absolute value of TargetScan PCT (>0.8 cut-off) as an 
assistant reference was also used to screen the target genes. 
Ultimately, 23 possible target genes of miR-124 correlated 
with ischemic stroke were screened out, and their related 
detection information is shown in Table II.

Similarly, possible target genes of miR-223 and miR-221 
could be obtained by detecting the intersection of TargetScan 
CS (context score <-0.3) and TargetScore (>0.4254). However, 
the value of TargetScan PCT for the miR-221 and miR-223 

Figure 4. (A) Density distribution of TargetScore, (B) TargetScan PCT, and (C) TargetScan CS for validated and non-validated targets of miR-124. (D) The 
density distribution of TargetScore, TargetScan PCT, and TargetScan CS for miR-124 without regard to authentication.

Table II. Predicted target genes of miR-124 by integrating the 
novel probability scoring method (TargetScore) and Target-
Scan approach.

Target genes TargetScan CS TargetScan PCT TargetScore

TMEM134 -0.312 -0.95 0.425554761
ZCCHC24 -0.43 -0.96 0.425553511
MDC1 -0.506 -0.95 0.42555199
PTTG1IP -0.419 -0.94 0.425551244
NEK9 -0.305 -0.9 0.425550074
ALG2 -0.376 -0.93 0.425549367
SLC16A1 -0.436 -0.96 0.425548265
CTSH -0.361 -0.29 0.425540427
SMARCAD1 -0.387 -0.96 0.425537318
HEATR1 -0.386 -0.88 0.425536874
PGRMC2 -0.336 -0.96 0.425536619
MAGT1 -0.465 -0.96 0.425534569
NID1 -0.303 -0.92 0.425533275
RASSF1 -0.338 -0.18 0.425527887
TARBP1 -0.432 -0.85 0.425525204
CD164 -0.393 -0.96 0.425522658
TYK2 -0.328 -0.13 0.425518604
PQLC3 -0.336 -0.85 0.425516622
ANXA11 -0.433 -0.94 0.425510468
MYH9 -0.402 -0.96 0.425506438
TMEM134 -0.312 -0.95 0.425554761
ZCCHC24 -0.43 -0.96 0.425553511
MDC1 -0.506 -0.95 0.42555199
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could not be considered because of the absolute value of 
TargetScan PCT is <0.8. Eventually, the number of predicted 
target genes for miR-221 and miR-223 is 12 and 9, respectively. 
The relevant information is listed in Tables Ⅲ and Ⅳ.

Discussion

The development of most miRNA target prediction tech-
niques is transformed into a paradigm that changed from 
the rule-based binary classification to the quantitative 
and probabilistic approach in a more context dependent 
manner (42,43). Under various experimental conditions, the 
number of miRNAs and mRNAs expression profiling data 
is increasing, which to a large extent promotes the transfer 
of the trend. By contrast, the large expression profiles of 
miRNAs and mRNAs need to span different tissues, cell 
lines or patients, and thus have certain limitations for the 
application of stable miRNA targets. Furthermore, similar 
general principles are adopted to develop the algorithm 

for most miRNA target gene prediction methods, namely, 
hunting for the targets in the 3'-UTR site of mRNAs and 
using degree of sequence conservation to screen the probable 
miRNA targets (44,45). However, there are some limitations 
that need to be overcome for most algorithms. For example, 
if there are multiple miRNA targets at the same location on a 
transcript, miRanda algorithm can only detect a miRNA that 
has the highest scoring and lowest energy, eventually leading 
to the appearance of false-negatives (13). In addition, for 
TargetScan algorithm, although the false-positive predictions 
are reduced, the applicability could be greatly restricted 
since the prediction is limited to conservative miRNAs 
with less than one substitution among the species (19). 
To our knowledge, the earliest prediction method of 
transfection-based miRNA target is the Sylamer, which is 
used to authenticate enriched k-mer motifs (46). However, 
Sylamer can not predict the specific targets since it does not 
detect the distribution of fold-changes or sequence features. 
In this study, the TargetScore, a Bayesian probabilistic 
scoring method was introduced to predict the specific targets, 
taking into account both the fold-change caused by miRNA 
overexpression and the information based on the sequence. 
Different from previous target prediction algorithms based 
on expression, the TargetScore approach is an unsupervised 
algorithm, which means it does not demand training data. 
And condition‑specific miRNA targets could be identified 
by using this novel algorithm. Moreover, TargetScore can 
operate the whole genome to more accurately simulate the 
overall likehood (47).

Ischemic stroke is an intricate pathology and physiology 
process, which is regulated by many factors. It may cause 
excitotoxicity in a few minutes, a strong inflammatory 
response and apoptosis in a few hours and days from the 
stroke onset, leading eventually to an irreversible neuronal 
damage of brain tissue affected by the ischemic stroke. 
There is large number of literature reports demonstrating 
that neuronal apoptosis is a distinctive feature observed after 
ischemic stroke, and apoptosis plays a key role in ischemic 
stroke (4,48). Lately, miRNAs have been considered to be an 
important regulatory factor of neuronal death caused by the 
ischemic stroke (49). They play an important role in regu-
lating secondary brain injury and functional outcome after 
ischemic stroke, and serve as biomarkers, while opening up 
a new field of ischemic disease treatment. However, their 
is little research on miRNAs in ischemic stroke, and most 
studies have mainly concentrated on profiling changes in 
the miRNA with ischemic disease. Currently, the miRNA 
expression profiling analysis methods have been used to 
identify the miRNA change in a rat middle cerebral artery 
occlusion (MCAO) model and cerebral ischemia as well as 
forebrain ischemia patients (21,50,51). It is worth mentioning 
that a single miRNA as a new therapeutic target can simulta-
neously control several related target genes, so the miRNAs 
can be regarded as promising candidates for cerebral isch-
emia therapeutics. It has been reported that the decrease of 
miR-181a by intracerebroventricular infusion of its antagomir 
significantly reduces the infarction area and defends the 
penumbra. Therefore, it indicates that decreasing or blocking 
miR-181a contributes in the protection of the brain from 
ischemic stroke (52). Additionally, more investigations have 

Table III. Predicted target genes of miR-221 by integrating the 
novel probability scoring method (TargetScore) and Target-
Scan approach.

Target genes TargetScan CS TargetScan PCT TargetScore

NDST3 -0.325 -0.4 0.425553
PHACTR4 -0.409 -0.61 0.425552
GPBP1 -0.305 -0.58 0.425552
PYROXD1 -0.302 -0.1 0.425551
ARF4 -0.329 -0.24 0.425546
MRPS7 -0.303 -0.09 0.425539
NDUFA1 -0.42 -0.14 0.425539
FOXN2 -0.313 -0.6 0.425536
RFX7 -0.356 -0.55 0.425536
ZNF652 -0.395 -0.61 0.425534
CD164 -0.343 -0.12 0.425523
RNF41 -0.323 -0.21 0.425516

Table Ⅳ. Predicted target genes of miR‑223 by integrating the 
novel probability scoring method (TargetScore) and Target-
Scan approach.

Target genes TargetScan CS TargetScan PCT TargetScore

HAUS6 -0.331 -0.1 0.425554868
C18orf54 -0.471 -0.23 0.425552879
ZBTB42 -0.379 -0.08 0.425551922
PKNOX1 -0.427 -0.47 0.425535322
PARP1 -0.363 -0.47 0.425526427
LAYN -0.408 -0.44 0.425526211
FBXW2 -0.385 -0.19 0.425518779
CYB5A -0.314 -0.2 0.425517504
SLC39A14 -0.354 -0.19 0.425510965
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been reported on the effect of miRNAs regulation on the 
ischemic stroke. For example, in rat brains after middle cere-
bral artery occlusion, miR-29b is upregulated by apoptosis 
regulator BCL2L2, while miR-21 selectively downregulates 
Faslg (53,54).

In this study, the target genes of miRNAs with ischemic 
stroke were investigated by combining different prediction 
methods, especially for the TargetScore with higher accu-TargetScore with higher accu- with higher accu-
racy in identifying known targets (55). miR-124, miR-221 
and miR-223 have also been reported in other literature as 
potential biomarkers (56). The results of Wang et al (36) 
have revealed that miR-223 is related to the acute cerebral 
ischemia, and plays an important role in cerebral ischemia 
by upregulating growth factors, such as insulin-like growth 
factor-1 gene. Chen et al believe that miR-223 possesses the 
potential as a biomarker and treatment target for cerebral 
ischemia (34). Zhu et al have suggested that miR-124 is the 
most abundant miRNA in brain, and the amount of miR-124 
in brain obviously decreases after ischemic stroke. Besides, 
as an endogenous regulator of Ku70, it could be inversely 
upregulated by Ku70 expression, thereby relieving brain 
damage and dysfunction induced by ischemic stroke (35).

The research results on miRNAs in this study showed that 
target genes with ischemic stroke obtained by TargetScore 
value are downregulated, and the number of optimal target 
genes identified by integrating the priori logFC and posterior 
TargetScan CS, TargetScan PCT, and TargetScore is 23, 12 
and 9 for miR-124, miR-221 and miR-223, respectively. It is 
worth mentioning that the values of TargetScan CS, TargetScan 
PCT were derived from experimental data in the TargetScan 
site, and eventually introduced into the equation 1 to get the 
TargetScore value. A tacit approval for the TargetScore value 
has been proposed, that is, the higher the value of TargetScore, 
the greater the accuracy of obtained genes as a target of miRNA 
regulation. Moreover, miRNAs can control the expression of 
proteins by regulating the transcription or translation of target 
genes, which has been reported in literature. The reliability of 
high accuracy of target genes predicted through TargetScore 
values has been confirmed by Li et al (55). The predicted 
target genes in this study can be used as a reference and a new 
method for future investigation on the treatment and research 
of ischemic stroke.

In conclusion, new therapeutic strategies may be discov-
ered by verifying the novel target genes in a disease pathway 
with the identification of disease‑specific miRNAs. Therefore, 
the ability to identify and validate the target genes of miRNAs 
is imperative. Although not perfect, the calculation algorithms 
combined with Bayesian and Gaussian mixture models and 
TargetScore analyses can improve the accuracy of the identifi ‑ analyses can improve the accuracy of the identifi-
cation of miRNA targets. It is worth mentioning that although 
miRNA has great potential as a promising candidate to treat 
ischemic stroke, a lot of work still needs to be done in ascer-
taining the interaction between the individual specific miRNA 
and target, understanding the distribution region of miRNAs 
correlated with ischemic stroke to promote the therapeutic 
potential of miRNAs.
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