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Abstract
Erythrocrine function refers to erythrocytes’ ability to synthesize and release active signaling molecules such as ATP and
nitric oxide (NO). Erythrocyte NO regulates its deformability and increases its perfusion and circulation that prevent tissue
hypoxia. Recently, there is a connotation between SARS-CoV-2 infection and erythrocrine function due to alteration in the
release of NO and ATP from erythrocytes. SARS-CoV-2 binds erythrocyte band3 protein, which has a similar characteristic
of ACE2, leading to alteration of erythrocyte physiology like oxygen transport with development of hypoxia. Similarly,
SARS-CoV-2 infection activates erythrocyte protein kinase C alpha (PKC-α), causing significant changes in the erythrocyte
functions. The erythrocytes can bind SARS-CoV-2 and its active particles with subsequent virus delivery to the liver and
spleen macrophages. Thus, the erythrocytes act as elimination for SARS-CoV-2 in COVID-19. Moreover, the erythrocyte
stored, release sphingosine-1 phosphate (S1P) improves endothelial and regulates lymphocyte functions. SARS-CoV-2
ORF8 protein binds the porphyrin part of hemoglobin heme at the β1 chain, causing hemolysis and dysfunctional he-
moglobin to reduce oxygen-carrying capacity. In conclusion, SARS-CoV-2 infection and associated pro-inflammatory
disorders lead to abnormal erythrocrine function with subsequent inflammatory complications and endothelial dysfunction
due to deficiency of protective released molecules (NO, G1P, and ATP) from functional erythrocytes. In vitro, preclinical,
and clinical studies are mandatory in this regard.
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Introduction

Erythrocrine function is defined as the ability of erythro-
cytes to synthesis and releases of active signaling mole-
cules. The capability of erythrocytes to liberate bioactive
molecules such as ATP and nitric oxide (NO) seems to be
an essential feature of their function. Thus, the erythrocrine
function represents the exocrine function of erythrocytes
that could play a potential role in the pathophysiology of
different metabolic disorders.1

It has been shown by different in vitro studies that the
erythrocyte nitric oxide synthase (NOS) regulates the er-
ythrocrine function; for example, NOS inhibitors abolish
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erythrocyte-induced platelets aggregation.2 Perfusion of
isolated heart and lung with washed erythrocytes attenuates
ischemic reperfusion injury (IRI) and pulmonary vaso-
constriction.3 Indeed, erythrocyte NO regulates its de-
formability and increases its perfusion and circulation to
prevent tissue hypoxia.4 Yang et al. observed that eryth-
rocytes of diabetic patients have higher arginase activity
with the production of reactive oxygen species (ROS) that
increase the risk of myocardial infarction and exacerbate
risk of IRI. Therefore, inhibitions of erythrocytes ROS may
improve myocardial function through inhibition of myo-
cardial IRI.5

Moreover, erythrocyte deformability triggers the release
of ATP under the effect of NO in normoxic status and
contributes to vasodilation and blood pressure control.
Thus, erythrocytes NO participate in increasing of blood
NO pool, which involved in the process of cardio-pul-
monary protection. Fresh blood has high NO content than
old blood, it has been reported that patients who received
old blood transfusion for more than two weeks were more
likely to die compared with that received fresh blood due to
low erythrocyte NO content. Of note, low erythrocyte NO
induces hemolysis, inflammation, and reduction capacity
for oxygen transport.6

The erythrocytes also sense the reduction of oxygen
saturation and oxyhemoglobin through erythrocyte oxygen
sensing signaling. Hypoxemia activates the release of NO
and ATP from erythrocytes that induces vasodilatation.7

Crawford et al. revealed that hypoxic erythrocytes can
induce vasodilation by reducing nitrite to NO and ATP
release.8 The nitrite reductase activity of hemoglobin is
modulated and affected by heme redox potential and heme
deoxygenation, suggesting that oxygen sensing by he-
moglobin is associated with nitrite reduction and induc-
tion of vasodilation.8 This finding proposed that nitrite
reductase activity of erythrocytes hemoglobin is corre-
lated with hypoxia to increase NO-dependent vasodilation
and blood flow.8

On the other hand, the current coronavirus 2019
(COVID-19), which caused by a novel coronavirus called
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) leads to worldwide pandemic. In COVID-19, direct
SARS-CoV-2 cytopathic injury and liberation of pro-in-
flammatory cytokines lead to the initiation of acute re-
spiratory distress syndrome (ARDS).9 In COVID-19,
SARS-CoV-2 chiefly invades lung alveolar type II pneu-
mocyte cells due to higher expression of angiotensin-
converting enzyme 2 (ACE2), a receptor for entry of
SARS-CoV-2. The majority of affected COVID-19 patients
is asymptomatic or presented with mild respiratory
symptoms. However, a small percentage of COVID-19
patients presented with severe forms of respiratory dete-
rioration due to progression of acute lung injury (ALI),
which may advance to ARDS.10 Therefore, the aim of the

present review was to find the association between er-
ythrocrine function and COVID-19.

SARS-CoV-2 and erythrocrine function

Similarly, SARS-CoV-2 infection can activates erythrocyte
protein kinase C alpha (PKC-α), causing significant
changes in the erythrocyte functions. Therefore, inhibition
of PKC-α by plant-derived molecule chelerythrine im-
proves erythrocytes’ biological function and vitality.11,12

These findings indicate that the erythrocyte might be a
target for SARS-CoV-2 in a patient with COVID-19.

Human erythrocyte has impressive anti-inflammatory
and immune-modulatory effects in different viral infec-
tions. The erythrocyte activates the proliferation of CD8+

with the reduction of infected CD4+ in the human immune
deficiency virus (HIV).13 Human erythrocytes have specific
receptors such as sialoglycoprotein A (GPA) and ganglio-
sides that bind circulating viral molecules by reducing viral
load and infectivity since each GPA molecule binds a large
number of viral molecules.14 Therefore, the erythrocytes
may have the ability to bind SARS-CoV-2 and its active
particles with subsequent delivery of virus to liver and
spleen macrophages; thus, the erythrocytes act as elimina-
tion for SARS-CoV-2 in COVID-19 through macrophage of
reticuloendothelial system.15 Besides, erythrocyte expresses
complement receptors that enhance phagocytosis of infected
erythrocytes by the reticuloendothelial system.15

Moreover, the erythrocyte stores and releases sphin-
gosine-1 phosphate (S1P), which exerts a nephroprotective
effect, improves endothelial function, and regulates lym-
phocyte functions.15 S1P, a metabolic end-product of
sphingomyelinase activity, is a robust immune-modulator
molecule that might be synthesized within endothelial cells
and platelets and stored in the erythrocytes.16 S1P type 1
receptor (S1PR1) is highly expressed on dendritic cells,
lymphocytes and endothelial cells.15,16 Zhao and col-
leagues reported that S1PR1 agonists are regarded as a
potential therapy against HIN1-induced ALI and cytokine
storm through inhibition expression of chemokines, cy-
tokines, and macrophages, neutrophils, and natural killer
cells that limit immune exaggeration and progression of
cytokine storm.17 Marfia et al. revealed that serum S1P
level and its transporter (albumin and apolipoprotein M)
are reduced in COVID-19 patients and negatively corre-
lated with COVID-19 severity.18 The underlying mecha-
nisms of low S1P in COVID-19 are related to induction of
pro-inflammatory cytokines and cytokine storm that cause
anemia (decrease S1P store) and endothelial dysfunction
(decrease production of S1P) with significant reduction of
S1P transporters (albumin and apolipoprotein M).18 S1P
has a bidirectional effect; the local interstitial S1P augment
the inflammatory reactions, while the circulating S1P has
an anti-inflammatory effect. Therefore, the beneficial effect
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of glucocorticoid in Covid-19 might be through inhibition
of local S1P.19

Moreover, human erythrocytes have anti-inflammatory
and immunomodulatory effects through heme-containing
molecules which bind and downregulate the expression of
pro-inflammatory cytokines, including IL-6, IL-8, and IL-
36.20 The erythrocytes bind and inactivate different che-
mokines and dendritic cells, preventing excessive abnormal
inflammatory interactions.20 Therefore, human erythrocytes
may reduce the inflammatory burden during SARS-CoV-2
infection through binding and attenuation activity of pro-
inflammatory cytokines.21

Indeed, complement receptor 1 (CR1) binds human
erythrocytes, which activated by complement classical and
lectin pathways during SARS-CoV-2 infection, leading to
the elimination of viral particles before transmitting to the
immune cells.22 However, this interaction alters erythro-
cyte rheology and increases intravascular thrombosis risk
in Covid-19.22

Similarly, erythrocyte hemoglobin might be a potential
target for SARS-CoV-2 through CD147, CD26, and ACE2
receptors located on the erythrocytes. SARS-CoV-2 ORF8
protein binds the porphyrin part of hemoglobin heme at the
β1 chain, causing hemolysis and dysfunctional hemoglobin
to reduce the oxygen-carrying capacity.21 However, in a
retrospective study, DeMartino et al. observed no evidence of
hemoglobin injury and hemolysis during SARS-CoV-2 in-
fection.23 Moreover, SARS-CoV-2 entry to the erythrocytes
is also mediated by G-protein coupled receptor 78 (GRP78)
receptor. Thus, downregulation of these receptors in patients
with β-thalassemia might be a protective mechanism against
SARS-CoV-2 infection.24,25 Moreover, GRP78 serum level
is increased in COVID-19 patients, and GRP78 inhibitor
imatinib could be a therapeutic strategy against COVID-
19.26 Therefore, GRP78 inhibitors may interfere with SARS-
CoV-2 infection-induced erythrocrine dysfunction.

As well, SARS-CoV-2 infection induces anemia
through hepcidin mimetic action with subsequent hyper-
ferritinemia.27 These changes lead to significant modifications
in the volume and heterogeneity of circulating erythrocytes
measured by red blood cell distribution width, which correlate
with COVID-19 severity.28 Lippi and colleagues illustrated that
red blood cell distribution width is regarded as significant
predictor of COVID-19 severity, and can be used for assessing
the risk of critical outcomes in COVID-19 patients.29

These observations suggest that direct and indirect ef-
fects of SARS-CoV-2 infection on erythrocytes may induce
functional and structural changes which affect the eryth-
rocrine functions.

SARS-CoV-2 and erythrocyte nitric oxide

NO is important for the vascular system by controlling
blood flow and vascular tone by activating the soluble

guanylate cyclase of vascular smooth muscles. NO controls
mitochondrial function by suppression of cytochrome c
oxidase.30 The erythrocytes metabolize endothelial-de-
rived NO, limiting circulating NO; however, erythrocytes
are regarded as a source of NO and ATP. NO within the
erythrocyte is derived from the exterior by binding to
β-chain of hemoglobin, from nitrite entering erythrocyte
and from intracellular NO production within the erythro-
cytes.31 Hypoxemia, acidosis, and stress activate NO
production from erythrocytes leading to vasodilatation and
cardio-protection under hypoxic status.32

Recently, there is a connotation between SARS-CoV-2
infection and erythrocrine function due to alteration in the
release of NO and ATP from the erythrocytes.33 Cosic et al.
illustrated that the spike protein of SARS-CoV-2 binds
erythrocyte band3 protein, which has a similar character-
istic of angiotensin-converting enzyme 2 (ACE2), leading
to alteration of erythrocyte physiology for oxygen transport
with development of tissue hypoxia.33 Tissue hypoxia is a
condition in which the body or part of the body has in-
adequate oxygen supply at tissue level, it may be localized
or generalized affecting the whole body.34 Tissue hypoxia
is occurs in severe anemia and methemoglobinemia in
which ferric atom of hemoglobin has high affinity for
oxygen and impair it delivery to the tissues.35 However,
hypoxemia refers to state of low arterial oxygen supply
due to ventilation disorders as in ALI/ARDS which refer
to lung alveolar hypoxia.34 In SARS-CoV-2 infection,
erythrocyte NO is increased that enable the release of
oxygen into hypoxic tissues.36 Prolonged hypoxia and
associated acidosis trigger the erythrocytes to activate
platelet aggregation and thrombosis through direct in-
teraction with the platelets or indirectly through re-
leasing chemical signaling.37 Therefore, high
erythrocyte NO in SARS-CoV-2 infection might be a
compensatory mechanism against hypoxia and may in-
volve the progression of silent hypoxemia in COVID-19
patients.38

Into the bargain, released NO from the erythrocytes has
an antiviral effect by inhibition of SARS-CoV-2 3CL
protease.39 NO blocks the interaction between SARS-CoV-
2 and ACE2 with inhibition of transmembrane serine
protease 2 (TMPRSS2), which facilitate binding of SARS-
CoV-2 to the ACE2 by trimming of the spike protein.
Therefore, dietary inorganic nitrate improves endothelial
and pulmonary vascular by restoration of NO.40

Siroka et al. observed that the erythrocytes have a higher
expression of nuclear factor kappa B (NF-κB), mainly in
obese patients that contribute to inflammation and oxida-
tive stress.41 The NF-κB pathway is engaged with the
development of pro-inflammatory cytokine and ALI. Thus,
obese subjects are at higher risk of developing COVID-19
complications due to underlying inflammatory and oxi-
dative stress disorders.42 Thus, SARS-CoV-2-induced NF-
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κB activation could be the possible mechanism for er-
ythrocrine dysfunction in COVID-19.

Moreover, activation of erythrocyte adenosine receptor
type 2B is involved in the activation of erythrocyte mi-
togen-activated protein kinase (MAPK) under the effect of
high circulating angiotensin II (AngII) during hypoxia.43 In
COVID-19, MAPK is highly activated by SARS-CoV-2
and pro-inflammatory cytokines leading to endothelial
dysfunction and thrombosis.44 Similarly, high AngII in
COVID-19 due to downregulation of ACE2 also activates
MAPK leading to severe complications.45 Taken together,
high AngII and activated MAPK may interfere with the
erythrocrine function of erythrocyte anti-inflammatory
actions with reduction of erythrocyte NO and subsequent
endothelial dysfunction. These changes induce abnormal
erythrocyte function with the development of extracel-
lular vesicles, which stimulate MAPK and NF-κB with
subsequent development of cytokine storm.46 As well
abnormal erythrocrine function in Covid-19 with

abnormal accumulation of porphyrin is due to oxidative
stress and mitochondrial dysfunction that affecting heme
biosynthesis.47

These findings reveal that SARS-CoV-2 infection in-
duces erythrocrine dysfunction through inhibition of NO,
S1P, and heme biosynthesis. Both SARS-CoV-2 and as-
sociated pro-inflammatory changes participate together in
the modulation of erythrocrine function (Figure 1).

Erythrocyte deformability in SARS-CoV-2 infection

Erythrocyte deformability represents the normal function
of erythrocytes to facilitate blood flow in the narrow area of
circulation. Therefore, is essential for the normal circula-
tion and survival of erythrocytes. Erythrocyte deform-
ability is affected by erythrocyte mean cell volume and
mean cell hemoglobin which affect erythrocyte cytoplas-
mic viscosity.48 Improvement of erythrocyte deformability
by vinpocetin and pyritinol reduce risk of cerebrovascular

Figure 1. Abnormal erythrocrine function in COVID-19: SARS-CoV-2 inhibits sphingosine-1 phosphate (S1P) and protein kinase C
alpha (PKC-α), leading to abnormal immune function and endothelial dysfunction, decreased anti-inflammatory action of erythrocytes,
respectively. SARS-CoV-2 activates erythrocyte band3 protein (B3P) and erythrocyte complement, leading to abnormal oxygen
transport and thrombosis, respectively. As well, SARS-CoV-2 erythrocyte hemoglobin (Hb) leading to abnormal oxygen transport and
anemia. In addition, SARS-CoV-2 causes endothelial dysfunction with a reduction release of nitric oxide (NO). SARS-CoV-2, through
activation of mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) with high angiotensin II (AngII), induces the
release of pro-inflammatory cytokines. These changes are causing abnormal erythrocrine function, which increases COVID-19
complications.
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disorders.49 Moreover, erythrocyte deformability is re-
garded as a partner of inflammatory response in different
inflammatory disorders.50 Silva-Herdade et al. observed
that erythrocyte deformability is impaired during acute
inflammation due to changes in blood viscosity and re-
duction of content of erythrocytes NO.50 Likewise, sys-
temic inflammation increases eryptosis (erythrocyte
programmed cell death), platelet reactivity, and thrombotic
activation that affect hemorheological properties of
erythrocytes.51 Beside, oxidative stress reduces erythrocyte
deformability and increases sensitivity for high shear-
mediated injury.52 Of note, reduction of erythrocyte de-
formability is also linked with human immune deficiency
virus 1 (HIV-1) and disease severity.53

In COVID-19, both inflammatory disorders and oxi-
dative stress are augmented and may cause impairment of
erythrocyte deformability with subsequent reduction of
capillary blood flow and oxygen transport.54 Reduced
erythrocyte deformability leads to failure of microcircu-
lation and tissue hypoxia with reduction of drug concen-
tration in the affected organs. Therefore, alteration of
erythrocyte deformability is linked with COVID-19 se-
verity.55 A prospective study involved seven hospitalized
COVID-19 patients compared with seven patients with
sepsis and seven healthy controls illustrated that erythro-
cyte aggregations were increased in both Covid-19 and
sepsis compared to the controls.55 Changes in erythrocyte
membrane lipid composition and protein fragmentations
could be the proposed mechanism for erythrocyte aggre-
gations and erythrocyte deformability in COVID-19
patients.55

Indeed, reduction of erythrocyte deformability is cor-
related with chronic obstructive pulmonary diseases pro-
motes development of hyperviscosity syndrome with
induction of coagulation system and thrombotic disor-
ders.56 Therefore, patients with chronic obstructive pul-
monary diseases are at high risk for development of
systemic complication during SARS-CoV-2 infection.56

These verdicts suggest that erythrocyte deformability is
reduced in viral infections including SARS-CoV-2 infec-
tion due to inflammatory and oxidative stress disorders
with induction of COVID-19 complications.

Limitations of the present review were paucity of
clinical studies concerning erythrocrine function in
COVID-19 and most of studies were speculative in the
effect of SARS-CoV-2 on the erythrocytes. In addition,
most of the studies elucidate effect of COVID-19 on RBCs
NO and ignored other potential functions of erythrocytes.
However, in the present review whole erythrocrine func-
tions were reviewed and how these functions are affected.
This review opens a new window to study the mechanism
of erythrocrine dysfunction in COVID-19.

Conclusion

SARS-CoV-2 infection and associated pro-inflammatory
disorders lead to abnormal erythrocrine function with
subsequent inflammatory complications and endothelial
dysfunction due to deficient protective released molecules
(NO, S1P, and ATP) from functional erythrocytes. In vitro,
preclinical, and clinical studies are mandatory in this
regard.
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